Lectures
| Video | Date | Topics |
|---|---|---|
| 7 Jan 2026 | Course Introduction (PDF) | |
| Lecture 1 Video | 12 Jan 2026 | Machine Learning and Imaging Introduction (PDF) |
| Lecture 2 Video | 12 Jan 2026 | Mathematical Preliminaries Part I (PDF) |
| Lecture 3 Video | 14 Jan 2026 | Mathematical Preliminaries Part II (PDF) |
| Lecture 3 Video | 14 Jan 2026 | Fourier Transforms and Sampling (PDF) |
| Lecture 4 Video | 21 Jan 2026 | Sampling and Discrete Math (PDF) |
| Lecture 5 Video | 28 Jan 2026 | Introduction to Optimization (PDF) |
Lecture Resources
Here are a few links to useful additional material for reading and viewing:
- J. Goodman’s Introduction to Fourier Optics Link
- The Matrix Cookbook Link
- An introduction to conjugate gradient descent without all the pain Link
- Online learning and stochastic approximation Link
Jupyter Notebook Examples
- Jupyter Notebook: PyTorch basic optimization example
- Jupyter Notebook: High level intro to Neural Networks in Tensorflow
- Jupyter Notebook: Weighted image sum example - Associated cube1.mat datafile
- Jupyter Notebook: Physical layers example
- Jupyter Notebook: Spectral Un-mixing
- Jupyter Notebook: A simple Autoencoder in Tensorflow/Keras
- Jupyter Notebook: GAN example