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Machine Learning and Imaging

BME 548L
Roarke Horstmeyer

Lecture 7: Gradient descent and going beyond linear classification
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1. Network Training

Training

— es Data

E.g., images of 1’s and 5’s with labels:

What we need for network training: Xq = Vi = +1
1. Labeled examples
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What we need for network training:

1. Labeled examples
2. A model and loss function
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Summary of machine learning pipeline:

1. Network Training

Training error

Output
*

y Model

Linly, W) | o0 || & | fWx) | <=

What we need for network training:

1. Labeled examples
2. A model and loss function

/E_X._[X1 ,y1] E_X-_[XK,yK]\

3. A way to minimize the loss function L

Training
Data

deep imaging
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2. Network Testing

/ E_X ._[xL,yd E_X-_[XNaYN]\

— ces Test Data not from
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What we need for network testing:

4. Unique labeled test data



Summary of machine learning pipeline:

2. Network Testing

Test error

Lout(Y1 y*) <:

<

G

Model

\_

f(W,x)

G

/ E_X._[x|_,y|j E_X-_[XNaYN]\

N - /

What we need for network testing:

4. Unique labeled test data
5. Evaluation of model error

deep imaging

Test Data not from
Training Dataset
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X = (1,21, T2) 21 intensity o symmetry
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Caltech Learning from Data: https://work.caltech.edu/telecourse.html
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X = (1,21, T2) 21 intensity o symmetry

X5
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Linear classification:

Use MSE error model L = N Z(’w Li — yz)2

—1 ifz <O,

—1 :
Where labels z* . sgn(z) := ¢ 0 if z = 0,
determined by f(X;) = yi = sgn(w” x;) 1 if x > 0.

thresholding



E—

0
H*
—v =
deep imaging

Why does linear regression with sgn() achieve classification?

With sgn() operation:

f(x;) = yi = sgn(w'x;)
+1
1 o ,
. =~ Z w'z; — y;)
: pa—

* Anything point to one side of y=0
intersection is class +1, anything on
the other side of intersection is
class -1

L+ 40 |- 0] paloaloid
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Why does linear regression with sgn() achieve classification?

With sgn() operation:

o

f(xi) = yi = sgn(w” x;)

1 N
—Nzw i — i)

Linear classification
boundary

Closed-form solution available for
this boundary line w via pseudo-
inverse (see last lecture’s notes)

Let’s consider some other
strategies to solve for w...



deep imaging

3 methods to solve for w' in the case of linear regression:

(easier) 1. Pseudo-inverse (this is one of the few cases with a closed-form solution)
2. Numerical gradient descent

3. Gradient descent on the cost function with respect to W
(harder)



Gradient descent: The iterative recipe

Initialize: Start with a guess of W

Until the gradient does not change very much:
dL/dW = evaluate_gradient(W, x ,y ,L)
W =W —step_size * dL/dW

original W

S

negative gradient direction

3=

deep imaging

evaluate_gradient can
be achieved numerically
or algebraically



Steepest descent and the best step size € deep imaging

1. Evaluate function f(x©) at an initial guess point, x©
2. Compute gradient g = V,f(x©)
3. Next point xM = x© - g0gO)

4. Repeat: x(+1) = x( - gig until |x"+1)-xM| < threshold t

while previous step size > precision and iters < max iters:
prev_xX = cur_ X
cur x -= epsilon * df(prev_x)
previous step size = abs(cur _x - prev_Xx)

**Update epsilon — see next slide

iters+=1



Steepest descent and the best step size €

1. Evaluate function f(x©) at an initial guess point, x©
2. Compute gradient g© = V,f(x©)
3. Next point x" = x© - g0gO)

4. Repeat: x*+1) = x - ghig™ yntil [x"+1)-x0)| < threshold t

while previous step size > precision and iters < max iters:

prev_x = cur_Xx

We computed this — computers can too
in interesting ways

deep imaging

-

VL(w)

| N
L:Ngw T; —

~

cur X -= epsilon * df(prev_x) <
previous step size = abs(cur_x - prev_Xx)

**Update epsilon - see next slide

iters+=1
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Steepest descent and the best step size € deep imaging

What is a good step size £M?

To find out, take 2"d order Taylor expansion of f (a good approx. for nearby points):

f@) ~ f@ ) + (@ —2P)Tg+ L (z — 2T H(z — 29)

2
Then, evaluate at the next step:

f@ — g) ~ f(a%) ~ g g+, 29 Hy

Solve for optimal step (when Hessian is positive): | € =

J. R. Shewchuck, “An Introduction to the Conjugate Gradient Method Without the Agonizing Pain”



https://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf
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The linear classification model — what’s not to like? deep imaging
Output
y* Model (Ex. [xoys] Ex. [xeyid
Training error ~ r ~N ][] ]
Training
Ln =1l Wx - y[12] ¢=2 || 4= | y*=Wx | &= Pata

dUdw o 1 g N - /




The linear classification model — what’s not to like?

Training error

Lin =1l Wx - y||?

Output
y*

-

Model
~N
yv* = WX
J

/E_X._[X1 ,y1] E_X-_[XK,yK]\

[IE=

deep imaging

Training
Data

1. Can only separate data with lines (hyper-planes)...
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Training error

Lin =1l Wx - y||?
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Training
Data

1. Can only separate data with lines (hyper-planes)...

2. We only allowed for binary labels (y = +/- 1)



The linear classification model — what’s not to like?

Training error

Lin =1l Wx - y||?

Output
y*

E—

0
o
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-

Model 4 EX. [x1,y4] E_X-_[XK,yK]\
) Training
y* = Wx | <= Data
T

1. Can only separate data with lines (hyper-planes)...

2. We only allowed for binary labels (y = +/- 1)

3. Error function L, inherently makes assumptions
about statistical distribution of data
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Cost functions matter: a simple example deep imaging

+1 = You

-1 = Bad guy

https://www.cnet.com/how-to/apple-face-id-everything-you-need-to-know/



https://www.cnet.com/how-to/apple-face-id-everything-you-need-to-know/
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Cost functions matter: a simple example deep imaging

+1 = You
fix, W) ——
-1 = Bad guy
Two types of error: false accept and false reject f(x, W)
+1 -1
+1 No Error False reject
(you/you)
y No Error
-1 False accept| (bad guy/
bad guy)

https://www.cnet.com/how-to/apple-face-id-everything-you:need-to-know/
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Cost functions matter: a simple example

Two types of error: false accept and false reject

On a standard phone, what’s a good cost function?

https://www.cnet.com/how-to/apple-face-id-everything-you:need-to-know/
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+1 = You

f(x, W) ——

-1 = Bad guy

f(x, W)

+1

-1

No Error

It’s you, but you

False reject | getin...

False accept

N

No Error

Letting an intruder in


https://www.cnet.com/how-to/apple-face-id-everything-you-need-to-know/

Cost functions matter: a simple example

Two types of error: false accept and false reject

On a standard phone, what’s a good cost function?

RelLU(x)
RelLU(x) =0,x<0
=x,Xx>=0

https://www.cnet.com/how-to/apple-face-id-everything-you:need-to-know/
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+1 = You
fx, W) ———

-1 = Bad guy

f(x, W)
+1 -1

It’s you, but you

+1 No Error False reject can’t get in...

F No Error

N

Letting an intruder in
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Cost functions matter: a simple example deep imaging

+1 = You
fx, W) ———

-1 = Bad guy

Two types of error: false accept and false reject f(x, W)
+1 -1
On a standard phone, what’s a good cost function?
No E Eal oct It’s you, but you
O Error aise rejec ’ .
Lin = ReLUIf(x, W)-y] + 10 ReLU[y-f(x, W)] + can’t get in...
y
Penalty for Large penalty for
intruder annoyance... -1 F<Ise a@ No Error

https://www.cnet.com/how-to/apple-face-id-everything-you-need-to-know/ Lettmg an intruder in
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Cost functions matter: a simple example

What if you’re a CIA agent?

https://www.cnet.com/how-to/apple-face-id-everything-you:need-to-know/
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+1 = You

-1 = Bad guy

f(x, W)

+1

-1

No Error

It’s you, but you

False reject | getin...

False accept

N

No Error

Letting an intruder in


https://www.cnet.com/how-to/apple-face-id-everything-you-need-to-know/

Cost functions matter: a simple example

What if you’re a CIA agent?

L, = 100,000 ReLUI[f(x, W)-y] + ReLU[y-f(x, W)]

BIG penalty Don’t mind about
for intruder annoyance...

https://www.cnet.com/how-to/apple-face-id-everything-you:need-to-know/
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+1 = You

-1 = Bad guy

f(x, W)

+1

-1

+1 No Error

It’s you, but you

False reject | getin...

-1 | False accept

N

No Error

Letting an intruder in


https://www.cnet.com/how-to/apple-face-id-everything-you-need-to-know/
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Cost functions matter: a simple example deep imaging

+1 = You
fix, W) ——
-1 = Bad guy
Establishing cost function tied to conditional probabilities: f(x, W)
+1 -1
Py = -1 f(x,W) = +1) Establish L, W to .1 | NoEror glse reject )| o /O PUEYOu
balance and y can't get In...
.~ minimize these

Py = +1 | f(x,W) = -1) probabilities 1 lee a@ No Erfor

https://www.cnet.com/how-to/apple-face-id-everything-you-need-to-know/ Lettmg an intruder in
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* Probability measures help determine when to use certain cost functions

* In previous case, we can measure probability of seeing a particular label, given model & data:
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* In general, to find the best model, we’d like to infer w, having at hand our labeled data:

Maximum Likelihood Estimation p(W|X1, - XN3 Y1, ---YN>



Machine learning and probability

* Probability measures help determine when to use certain cost functions

* In previous case, we can measure probability of seeing a particular label, given model & data:

p(y|w,x)

* In general, to find the best model, we’d like to infer w, having at hand our labeled data:

Maximum Likelihood Estimation p(W|X1, - XN3 Y1, ---YN>

« These two quantities are connected via Bayes’ Theorem

o _ PIW)p(W) With 2 _ p(x,y|w)p(w)
o) =G o sty <20

p(W[x,y) o< p(x,y|w) o< p(y|x, w)

deep imaging



MaChine Iearning and prObabiIity deep imaging

* Probability measures help determine when to use certain cost functions

* In previous case, we can measure probability of seeing a particular label, given model & data:

p(y|w,x)

* In general, to find the best model, we’d like to infer w, having at hand our labeled data:

Maximum Likelihood Estimation p(W|X1,..XN; Y1, --YN)

« These two quantities are connected via Bayes’ Theorem

With 2
X|wW)p(w
p(wix) = PEIPW) conditioned  p(wlx,y) = 2ZYWP(W)
p(x) variables: p(x,y)
What you want: but hard to o p(X,y|W) o What you can do: test the model,

vary data to find model... check the result



Linear classification is the maximum likelihood for Gaussian data deep imaging

- Given a close relationship between p(w|x,y) «— p(y|x,w) :
Maximum likelihood estimation asks the question,

For what w is p(yq, ...y 5 |X1, ...Xn; W) maximized?
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- Given a close relationship between p(w|x,y) «— p(y|x,w) :
Maximum likelihood estimation asks the question,

For what w is p(yq, ...y 5 |X1, ...Xn; W) maximized?

For what w is H,fil p(y;, |Xi, W) maximized?



Linear classification is the maximum likelihood for Gaussian data

- Given a close relationship between p(w|x,y) «— p(y|x,w) :

Maximum likelihood estimation asks the question,

For what w is p(yq, ...y 5 |X1, ...Xn; W) maximized?

For what w is Hf;l p(y;, |Xi, W) maximized?

Let’s assume our labels are a “noisy” Gaussian process that surround the correct label:

Yi = wlix;+n (n is zero-mean Gaussian noise)

Then, the above cond. prob. for labels can be expressed as a multivariate Gaussian

deep imaging



Linear classification is the maximum likelihood for Gaussian data deep imaging

For what w is Hfil p(y;, |Xi, W) maximized?

— (y'i _WTX)2
202

For what w is Hfll exp ( ) maximized?



Linear classification is the maximum likelihood for Gaussian data deep imaging

For what w is Hfil p(y;, |Xi, W) maximized?

— (y'i _WTX)2
202

For what w is vazl exp ( ) maximized?

. N —(v.—wTx)2
For what wis ) _." , (YZ%Z x)

maximized?



Linear classification is the maximum likelihood for Gaussian data

For what w is Hfll p(y;, |Xi, W) maximized?

— (yi _WTX)2
202

For what w is vazl exp ( ) maximized?

. N —(v.—wTx)2
For what wis ) _." , (YZ%Z x)

maximized?

For what wis 3;" ., (y; — w”'x)2 minimized?

via a Gaussian random process. Is this fair, given that labels are ether -1 or +17?

Summary: Linear classification with MSE assumes model output deviates from true labels

deep imaging



The linear classification model — what’s not to like?

Training error

Lin(Y1 f(W!X))

Output
y*

Model 4 EX. [x1,y4] E_X-_[XK,yK]\

[*
y:

F(W,

f(W,X)\

X)=Wx

E—

0
o
—_

deep imaging

Training
Data

. Can only separate data with lines (hyper-planes)...

We only allowed for binary labels (y = +/- 1)

Error function L;, inherently makes assumptions

about statistical distribution of data



Let’s think about the labels as a probabilistic measure:

;O
X1
X2

deep imaging

Linear regression: predict some output h(x) from x



Let’s think about the labels as a probabilistic measure:

deep imaging
Linear regression: predict some output h(x) from x Linear regression Not a
robabilistic
. )>(<O @ hix) E)muoping
r)= Xe& (—0o0,00 1
@)= xe (~o0,00) %



Let’s think about the labels as a probabilistic measure:

Linear regression: predict some output h(x) from x Linear regression

Xo h(x)
h(z) = x€ (—o0,00) "
2

Linear classifier: predict binary output h(x) from x

Sign(x)

h(x) — sign(wij) Xo @ h(x)
X1
h(z) = sign(x) € {0, 1} Xo

deep imaging
Not a
probabilistic
mapping

Probabilistic, but
all-or-nothing:
either O, or 1




Let’s think about the labels as a probabilistic measure:
Linear regression: Linear regression

Xo h(x)
h(z) = x€ (—00,0) "

Linear classifier: _
Sign(x)

- T
h(z) = sign(w, ;) Xo @ h(x)
X4
h(z) = sign(x) € {0,1} X2
XN
O(x)
Logistic classifier: Xo h(x)
X
h(x) = 6(x) % [0, 1] “ @
| N

Any value between 0 and 1

deep imaging

Not a
probabilistic

mapping

Probabilistic, but
all-or-nothing:
either O, or 1

Probabilistic:
continuous value
between 0 and 1
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Probabilistic interpretation of function that maps outputs to labels, h(x) = 6(x)

Example: You are trying to predict the probability that a patient may have a certain form a disease, 6(x),
given a number of observations and measurements, x

Example: You are trying to predict the probability of rain tomorrow, 6(x), given a set of satellite image
data, x



deep imaging

Probabilistic interpretation of function that maps outputs to labels, h(x) = 6(x)

Example: You are trying to predict the probability that a patient may have a certain form a disease, 6(x),
given a number of observations and measurements, x

Example: You are trying to predict the probability of rain tomorrow, 6(x), given a set of satellite image
data, x

The Logistic Function 6 1 /—
6(x)
6) = —=— ;/
1+eX 0

Also called Sigmoid function * Use soft threshold to map any number to [0,1] range
* Sigmoid “flattens out” x

X




From linear classification to logistic classification

deep imaging

» Let’s re-derive a cost function for the case where labels are treated as probabilities

* You’ll use this approach more often than not in Tensorflow...
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» During learning, we will again have two classes (in this simple example), y= +/- 1

* map these binary values onto a [0,1] probability distribution



From linear classification to logistic classification

deep imaging

» Let’s re-derive a cost function for the case where labels are treated as probabilities
* You’ll use this approach more often than not in Tensorflow...
» During learning, we will again have two classes (in this simple example), y= +/- 1

* map these binary values onto a [0,1] probability distribution

Formula for likelihood using the logistic function 08, given binary labels

B(x) Fory = +1 1
Ply | ) = { r_




From linear classification to logistic classification

deep imaging

» Let’s re-derive a cost function for the case where labels are treated as probabilities
* You’ll use this approach more often than not in Tensorflow...
» During learning, we will again have two classes (in this simple example), y= +/- 1

* map these binary values onto a [0,1] probability distribution

Formula for likelihood using the logistic function 08, given binary labels

P _ { 6(x) Fory = +1 T —
(y|x) = 1 - 6(x) Fory = -1 —m




From linear classification to logistic classification

» Let’s re-derive a cost function for the case where labels are treated as probabilities

* You’ll use this approach more often than not in Tensorflow...

» During learning, we will again have two classes (in this simple example), y= +/- 1

* map these binary values onto a [0,1] probability distribution

Formula for likelihood using the logistic function 08, given binary labels

O(f(x))

Fory = +1

Ply | f(x)) = {

1 - B(f(x))

Fory = -1

6(f(x))
0

f(x)

deep imaging



From linear classification to logistic classification

» Let’s re-derive a cost function for the case where labels are treated as probabilities

* You’ll use this approach more often than not in Tensorflow...

» During learning, we will again have two classes (in this simple example), y= +/- 1

* map these binary values onto a [0,1] probability distribution

Formula for likelihood using the logistic function 08, given binary labels

o(f For y = +1 e
Py | 10x) = { (fb<)

1-0(fx) Fory=-1 r_
6(f(x))
y=-1
0

[
® =
f(X) 1 P should be close to 1

y=+1

f(x)

If network output f(x) is large, then should map to y=+1
with high probability

x; ¢ O(f(x)) is large for large value of x

deep imaging



From linear classification to logistic classification

» Let’s re-derive a cost function for the case where labels are treated as probabilities
* You’ll use this approach more often than not in Tensorflow...
« During learning, we will again have two classes (in this simple example), y= +/- 1

* map these binary values onto a [0,1] probability distribution

Formula for likelihood using the logistic function 08, given binary labels

B(f(x)) Fory = +1 1
Py = { 1-0(f(x) Fory=-1 /_
orf
e (f(x))
0

P should be close to 0

f(x)

deep imaging



From linear classification to logistic classification
deep imaging

» Let’s re-derive a cost function for the case where labels are treated as probabilities
* You’ll use this approach more often than not in Tensorflow...
« During learning, we will again have two classes (in this simple example), y= +/- 1

* map these binary values onto a [0,1] probability distribution

Formula for likelihood using the logistic function 08, given binary labels

P(y | f(x) = B(f(x)) Fory = +1 1
1-0(f(x)) Fory=-1
1-6(f(x))
X ¢ y=-1
2 f(x) <0, but P should be close to 1 0

f(x)

« If network output f(x) is small, then should map to y=-1
with high probability

* O(f(x)) ~O for small values of f(x), so 1- 6(f(x)) ~1 is high

X4 probability to y=-1 mapping




Deriving cost function for logistic classification for probabilistic outputs

deep imaging

Instead of mapping f(x) to either +1 or -1 with the sign operator, let’s use 8 to map it to lie between 0 and 1:

P(y | x) = { o) rory=+1
1-0(f(x)) Fory =-1
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Instead of mapping f(x) to either +1 or -1 with the sign operator, let’s use 8 to map it to lie between 0 and 1:

P(y | x) = { o) rory=+1
1-0(f(x)) Fory =-1

We’ll stick with the case of linear classification, where f(x) = wTx

Also, please note that for the logistic function, 6(-a) = 1 - 8(a).
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Instead of mapping f(x) to either +1 or -1 with the sign operator, let’s use 8 to map it to lie between 0 and 1:

P(y | x) = { o) rory=+1
1-0(f(x)) Fory =-1

We’ll stick with the case of linear classification, where f(x) = wTx

Also, please note that for the logistic function, 6(-a) = 1 - 8(a).

So, we can summarize the case-based definition above with a single function,

P(y | ) = 8(y (x))



Deriving cost function for logistic classification for probabilistic outputs

deep imaging

Instead of mapping f(x) to either +1 or -1 with the sign operator, let’s use 8 to map it to lie between 0 and 1:

o(f Fory = +1
Ply | X) = { (f(x))

1-0(f(x) Fory = -1

We’ll stick with the case of linear classification, where f(x) = wTx

Also, please note that for the logistic function, 6(-a) = 1 - 8(a).

So, we can summarize the case-based definition above with a single function,

P(y | x) = B(y f(x))
P(y | x) = 6(y w'x)

Here, y = +/-1 flips B(wTX) to be either 8(w'x) or 6(-w'x) = 1- B(wTX)



Deriving cost function for logistic classification for probabilistic outputs

deep imaging

Similar to the linear classification case, the likelihood of observing N independent outputs is given by,
N

P(Y1,Y2--- YN | X135 X2y euaXn) = ﬂ P(yn | Xn)

n=1

N

TT 8y, wTx,)
n=1

This is the probability of the labels, given the data. We’d like to maximize this probability!

*Like the linear regression case, but now the probability of classes given the data is not Gaussian
distributed, but instead follows the sigmoid curve (is bound to [0,1], which is more realistic)
N
Maximize P(y1,Yo... Yn | X15 X2y weXn) = [T 6(yn WTX)

n=1



Deriving cost function for logistic classification for probabilistic outputs

deep imaging
N

Maximize P(y1,Y2... Yn | X15 X2, wuXn) = [T 8(yn WTXy)

n=1

N
_— 1 T
Minimize N In (H 0(ynw x))

n=1



Deriving cost function for logistic classification for probabilistic outputs

deep imaging
N
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Deriving cost function for logistic classification for probabilistic outputs

deep imaging
N

Maximize P(y1,Y2... Yn | X15 X2, wuXn) = [T 8(yn WTXy)

n=1

N
_— 1 T
Minimize N In (H 0(ynw x))

n=1

1
Minimize Z In (9(y WTX)) Use relationship  0(a) = g g

N
1 T
o : S —YynwW X
Minimize =N E_ n(l+e )

Cross entropy error for logistic classification

Typically requires iterative solution to minimize



Deriving cost function for logistic classification for probabilistic outputs

deep imaging
N

Maximize P(y1,Y2... Yn | X15 X2, wuXn) = [T 8(yn WTXy)

n=1

N
_— 1 T
Minimize N In (H 0(ynw x))

n=1
Use relationship  0(a) = ——
o In se relationship a) = ——
Minimize Z (O(anTx)) l14e @
N N
Minimize _ 1 Z (14 e ¥nW X) _ 1 Z — wTx)
N & N =
Cross entropy error for logistic classification Mean-square error for linear classification

Typically requires iterative solution to minimize Closed form solution available
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The linear classification model — what’s not to like? deep imaging
OUtpUt / \
- y* Model EX. [x1,y1] EX. [Xk, Y]
Training error 7 - ~
Training
Lin(Ys f(W,X)) = <: <: y* = WX <: Data
Ccross_entro . F(W,x - \_ Y, | . B )
py(y, f(W,x)) AL/dW ; N Y

Probabilistic mapping to y
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The linear classification model — what’s not to like? .
Output
- Uyliu Model /E_X-_[X1 A% E_X-_[XK,yK]\
Training error ~ - ~N
Training
Lin(y, f(W,x)) = G | y*=Wx | (&= Data

cross_entropy(y, f(W,x))

T = -

Probabilistic mapping to y

1. Can only separate data with lines (hyper-planes)...

2. We only allowed for binary labels (y = +/- 1)

3. Error function L, inherently makes assumptions
about statistical distribution of data
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f X deep imaging

e |-

Learned f: not flexible

Machine Learning and Imaging — Roarke Horstmeyer (2024)
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f X deep imaging

o e

Learned f: not flexible

Can we add flexibility by multiplying with another weight matrix?

- fi=Wix+ b

1
5

fo=Wafi + by

fz = Wg(lec + bl) + bg

s/ /
fo=Wx+b Unfortunately not...

Machine Learning and Imaging — Roarke Horstmeyer (2024)



f=W1£E

Learned f: not flexible

X
‘e o o lIraining data
y ° [ ] o o° °
® ()
... ® f = Wzma,x(lec, 0)
’ ° o Learned f: a bit flexible
o (]
X

[IE=

deep imaging

f X

Machine Learning and Imaging — Roarke Horstmeyer (2024)



e , Iraining data
e o°

[IE=

f X deep imaging

f=W1:c

Learned f: not flexible

f = Wzma,x(lec, 0)

Learned f: a bit flexible

f = W3ma,x(0, W2I’I1&X(W1x, O))

Learned f: more flexible

J We can keep adding

Does it generalize??? these “layers”...

Machine Learning and Imaging — Roarke Horstmeyer (2024)
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Getting us to Convolutional Neural Networks Geep imaging
After, apply non-linearity and sub-sampling
o /03: f. maps 16@10x10
g\él:g; 6@.2232%@ maps N S4: f. maps 16@5)235. '
5@14x14. 20 | F8:leyer OUTPUT

Original Image published in [LeCun et al., 1998]

|
| Full CoaneCtiOn ’ Gaussian connections

Convolutions Subsampling Convolutions  Subsampling Full connection
Each matrix W is a convolution matrix Repeat a few times At the end, use a full W for a

final matrix multiplication



Getting us to Convolutional Neural Networks

INPUT
32x32

In practice, this
process is repeated
many times:

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5

6@28x28
S2: f. maps
6@14x14 r

| Full CoaneCtiOn ’ Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection
7x7 conv
input g4 filters 3x3 conv 3x3 conv 3x3
2 33 3x3 conv 3x3 3x3 conv 3x3 conv X5 conv
image Norm 84 fiters 64 filters Norm G4fiters 54 fiftors Nom 3128 fiters 128 fters Norm 128 fiters 128 fiters ot

RelLu

Relu Norm drop Relu Norm dr Norm Norm
d drop Sum

e mReLu m T < opsum b '09 Sum ReLu

Norm
I3conv 33 conv 3x3conv  3x3 conv 3x3 conv 3x3 conv 3x3 conv 3x3 conv FC (84) Softmax
256 filters 256 filters N°"" 2501iters g fiters  NomS12fiers  Bi2fiters Mo 5i2fifers 512 fiters gy

Norm Norm Relu Non'n . Norm
. drop Pool
ReLu mdm Som m RelLu 91OP Sum ReLu md“’p Som T RelLu { Dom @

—tT >

—v

deep imaging

Original Image published in [LeCun et al., 1998]



