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What we need for network training:
1. Labeled examples  

Summary of machine learning pipeline:

1. Network Training 
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Ex. [x1,y1] Ex. [xK,yK]

…
Training 
Data

What we need for network training:
1. Labeled examples  

Summary of machine learning pipeline:

1. Network Training 

E.g., images of 1’s and 5’s with labels:

x1 = y1 = +1 

y2 = -1 x2 =

… …
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Model
Output

y* Ex. [x1,y1] Ex. [xK,yK]

…
Training 
Data

What we need for network training:
1. Labeled examples  
2. A model and loss function 

Summary of machine learning pipeline:

f(W,x)

1. Network Training 
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Model
Output

y* Ex. [x1,y1] Ex. [xK,yK]

…
Training 
Data

Training error

dL/dW

What we need for network training:
1. Labeled examples  
2. A model and loss function 
3. A way to minimize the loss function L

Summary of machine learning pipeline:

Lin(y, f(W,x)) f(W,x)

1. Network Training 
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Summary of machine learning pipeline:

2. Network Testing

What we need for network testing:
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Summary of machine learning pipeline:

2. Network Testing

What we need for network testing:

4. Unique labeled test data

Ex. [xL,yL] Ex. [xN,yN]

… Test Data not from 
Training Dataset



Machine Learning and Imaging – Roarke Horstmeyer (2024)

deep imaging
Summary of machine learning pipeline:

2. Network Testing

What we need for network testing:

4. Unique labeled test data
5. Evaluation of model error

Modely* Ex. [xL,yL] Ex. [xN,yN]

… Test Data not from 
Training Dataset

Test error

Lout(y, y*) f(W,x)
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x2

x1

Caltech Learning from Data: https://work.caltech.edu/telecourse.html

https://work.caltech.edu/telecourse.html
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Use MSE error model

Where labels 
determined by 
thresholding

x2

x1

Linear classification:
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x1 x2

y

• Anything point to one side of y=0 
intersection is class +1, anything on 
the other side of intersection is 
class -1

With sgn() operation:

-1

+1 Projected to -1 or +1

0

Intersection y=0

Why does linear regression with sgn() achieve classification?
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x1 x2

Closed-form solution available for 
this boundary line w via pseudo-
inverse (see last lecture’s notes)

With sgn() operation:

y=-1
y=+1Linear classification 

boundary

Why does linear regression with sgn() achieve classification?

Let’s consider some other 
strategies to solve for w...
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1. Pseudo-inverse (this is one of the few cases with a closed-form solution)

2. Numerical gradient descent

3. Gradient descent on the cost function with respect to W

(easier)

(harder)

3 methods to solve for wT in the case of linear regression:
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Gradient descent: The iterative recipe

Initialize: Start with a guess of W

Until the gradient does not change very much:
 dL/dW = evaluate_gradient(W, x ,y ,L)
 W = W – step_size * dL/dW

evaluate_gradient can 
be achieved numerically 
or algebraically
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1. Evaluate function f(x(0)) at an initial guess point, x(0)

2. Compute gradient g(0) = ∇xf(x(0))

3. Next point x(1) = x(0) - ε(0)g(0)

4. Repeat: x(n+1) = x(n) - ε(n)g(n), until |x(n+1)-x(n)| < threshold t

epsilon

**Update epsilon – see next slide
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deep imagingSteepest descent and the best step size ε

1. Evaluate function f(x(0)) at an initial guess point, x(0)

2. Compute gradient g(0) = ∇xf(x(0))

3. Next point x(1) = x(0) - ε(0)g(0)

4. Repeat: x(n+1) = x(n) - ε(n)g(n), until |x(n+1)-x(n)| < threshold t

epsilon

**Update epsilon – see next slide

We computed this – computers can too 
in interesting ways
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What is a good step size ε(n)?
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What is a good step size ε(n)?

To find out, take 2nd order Taylor expansion of f (a good approx. for nearby points):
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What is a good step size ε(n)?

To find out, take 2nd order Taylor expansion of f (a good approx. for nearby points):

Then, evaluate at the next step: 
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What is a good step size ε(n)?

To find out, take 2nd order Taylor expansion of f (a good approx. for nearby points):

Then, evaluate at the next step: 

Solve for optimal step (when Hessian is positive):

J. R. Shewchuck, “An Introduction to the Conjugate Gradient Method Without the Agonizing Pain”

https://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf
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Model
Output

y* Ex. [x1,y1] Ex. [xK,yK]

…
Training 
Data

Training error

dL/dW

The linear classification model – what’s not to like?

Lin = || Wx - y||2 y* = Wx



Machine Learning and Imaging – Roarke Horstmeyer (2024)

deep imaging

Model
Output

y* Ex. [x1,y1] Ex. [xK,yK]

…
Training 
Data

Training error

dL/dW

The linear classification model – what’s not to like?

y* = Wx

Solution hypothesis

x

y 1. Can only separate data with lines (hyper-planes)…

Lin = || Wx - y||2
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Model
Output

y* Ex. [x1,y1] Ex. [xK,yK]

…
Training 
Data

Training error

dL/dW

The linear classification model – what’s not to like?

y* = Wx

x

y 1. Can only separate data with lines (hyper-planes)…

2. We only allowed for binary labels (y = +/- 1)

+1

-1

+1

-1

Lin = || Wx - y||2



Machine Learning and Imaging – Roarke Horstmeyer (2024)

deep imaging

Model
Output

y* Ex. [x1,y1] Ex. [xK,yK]

…
Training 
Data

Training error

dL/dW

The linear classification model – what’s not to like?

y* = Wx

x

y 1. Can only separate data with lines (hyper-planes)…

2. We only allowed for binary labels (y = +/- 1)

3. Error function Lin inherently makes assumptions 
about statistical distribution of data

+1

-1

+1

-1

Lin = || Wx - y||2
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x

f(x, W)
+1 = You

-1 = Bad guy

https://www.cnet.com/how-to/apple-face-id-everything-you-need-to-know/

https://www.cnet.com/how-to/apple-face-id-everything-you-need-to-know/
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x

f(x, W)
+1 = You

-1 = Bad guy

Two types of error: false accept and false reject f(x, W)

y
+1

-1

+1 -1

No Error

No Error

False reject

False accept

(you/you)

(bad guy/ 
bad guy)

https://www.cnet.com/how-to/apple-face-id-everything-you-need-to-know/

https://www.cnet.com/how-to/apple-face-id-everything-you-need-to-know/
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x

f(x, W)
+1 = You

-1 = Bad guy

Two types of error: false accept and false reject f(x, W)

y
+1

-1

+1 -1

No Error

No Error

False reject

False accept

It’s you, but you 
can’t get in…

Letting an intruder in

On a standard phone, what’s a good cost function?

https://www.cnet.com/how-to/apple-face-id-everything-you-need-to-know/

https://www.cnet.com/how-to/apple-face-id-everything-you-need-to-know/
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x

f(x, W)
+1 = You

-1 = Bad guy

Two types of error: false accept and false reject f(x, W)

y
+1

-1

+1 -1

No Error

No Error

False reject

False accept

It’s you, but you 
can’t get in…

Letting an intruder in

On a standard phone, what’s a good cost function?

https://www.cnet.com/how-to/apple-face-id-everything-you-need-to-know/

ReLU(x)  = 0, x < 0
               = x, x >= 0

x

ReLU(x)

https://www.cnet.com/how-to/apple-face-id-everything-you-need-to-know/
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x

f(x, W)
+1 = You

-1 = Bad guy

Two types of error: false accept and false reject f(x, W)

y
+1

-1

+1 -1

No Error

No Error

False reject

False accept

It’s you, but you 
can’t get in…

Letting an intruder in

Lin = ReLU[f(x, W)-y] + 10 ReLU[y-f(x, W)] 
 

Penalty for 
intruder

Large penalty for 
annoyance…

On a standard phone, what’s a good cost function?

https://www.cnet.com/how-to/apple-face-id-everything-you-need-to-know/

https://www.cnet.com/how-to/apple-face-id-everything-you-need-to-know/
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x

f(x, W)
+1 = You

-1 = Bad guy

What if you’re a CIA agent? f(x, W)

y
+1

-1

+1 -1

No Error

No Error

It’s you, but you 
can’t get in…

Letting an intruder in

False reject

False accept

https://www.cnet.com/how-to/apple-face-id-everything-you-need-to-know/

https://www.cnet.com/how-to/apple-face-id-everything-you-need-to-know/
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x

f(x, W)
+1 = You

-1 = Bad guy

What if you’re a CIA agent? f(x, W)

y
+1

-1

+1 -1

No Error

No Error

It’s you, but you 
can’t get in…

Letting an intruder in

Lin = 100,000 ReLU[f(x, W)-y] + ReLU[y-f(x, W)] 
 

BIG penalty 
for intruder

Don’t mind about 
annoyance…

False reject

False accept

https://www.cnet.com/how-to/apple-face-id-everything-you-need-to-know/

https://www.cnet.com/how-to/apple-face-id-everything-you-need-to-know/
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x

f(x, W)
+1 = You

-1 = Bad guy

Establishing cost function tied to conditional probabilities: f(x, W)

y
+1

-1

+1 -1

No Error

No Error

It’s you, but you 
can’t get in…

Letting an intruder in

P(y = -1 | f(x,W) = +1)

P(y = +1 | f(x,W) = -1)

Establish L, W to 
balance and 
minimize these 
probabilities

False reject

False accept

https://www.cnet.com/how-to/apple-face-id-everything-you-need-to-know/

https://www.cnet.com/how-to/apple-face-id-everything-you-need-to-know/
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• In previous case, we can measure probability of seeing a particular label, given model & data:
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deep imagingMachine learning and probability

• Probability measures help determine when to use certain cost functions

• In previous case, we can measure probability of seeing a particular label, given model & data:

• In general, to find the best model, we’d like to infer w, having at hand our labeled data:

Maximum Likelihood Estimation
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deep imagingMachine learning and probability

• Probability measures help determine when to use certain cost functions

• In previous case, we can measure probability of seeing a particular label, given model & data:

• In general, to find the best model, we’d like to infer w, having at hand our labeled data:

• These two quantities are connected via Bayes’ Theorem 

With 2 
conditioned 
variables:

Maximum Likelihood Estimation
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deep imagingMachine learning and probability

• Probability measures help determine when to use certain cost functions

• In previous case, we can measure probability of seeing a particular label, given model & data:

• In general, to find the best model, we’d like to infer w, having at hand our labeled data:

• These two quantities are connected via Bayes’ Theorem 

With 2 
conditioned 
variables:

Maximum Likelihood Estimation

What you want: but hard to 
vary data to find model…

What you can do: test the model, 
check the result
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• Given a close relationship between 

Maximum likelihood estimation asks the question,

:
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deep imagingLinear classification is the maximum likelihood for Gaussian data

• Given a close relationship between 

Maximum likelihood estimation asks the question,

:
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• Given a close relationship between 

Maximum likelihood estimation asks the question,

• Let’s assume our labels are a “noisy” Gaussian process that surround the correct label: 

(n is zero-mean Gaussian noise)

• Then, the above cond. prob. for labels can be expressed as a multivariate Gaussian  

:
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Summary: Linear classification with MSE assumes model output deviates from true labels 
via a Gaussian random process. Is this fair, given that labels are ether -1 or +1?
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Model
Output

y* Ex. [x1,y1] Ex. [xK,yK]

…
Training 
Data

Training error

dL/dW

The linear classification model – what’s not to like?

Lin(y, f(W,x))
y* = f(W,x)

f(W,x)=Wx

x

y 1. Can only separate data with lines (hyper-planes)…

2. We only allowed for binary labels (y = +/- 1)

3. Error function Lin inherently makes assumptions 
about statistical distribution of data

+1

-1

+1

-1
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Linear regression: predict some output h(x) from x
x0
x1
x2
xN

h(x)
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deep imagingLet’s think about the labels as a probabilistic measure:

Not a 
probabilistic 
mapping

Linear regression: predict some output h(x) from x
x0
x1
x2
xN

Linear regression

h(x)
x
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Linear classifier: predict binary output h(x) from x

Let’s think about the labels as a probabilistic measure:

Not a 
probabilistic 
mapping

Probabilistic, but 
all-or-nothing: 
either 0, or 1

x0
x1
x2
xN

Linear regression

h(x)
x

x

x0
x1
x2
xN

h(x)

Sign(x)

Linear regression: predict some output h(x) from x
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Linear classifier:

Let’s think about the labels as a probabilistic measure:

Probabilistic: 
continuous value 
between 0 and 1

Linear regression:

Logistic classifier:

[0, 1]

x

x

Not a 
probabilistic 
mapping

Probabilistic, but 
all-or-nothing: 
either 0, or 1

x0
x1
x2
xN

Linear regression

h(x)

x0
x1
x2
xN

h(x)

Sign(x)

x0
x1
x2
xN

h(x)

θ(x)

x

Any value between 0 and 1
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Probabilistic interpretation of function that maps outputs to labels, h(x) = θ(x)  

Example: You are trying to predict the probability that a patient may have a certain form a disease, θ(x), 
given a number of observations and measurements, x

Example: You are trying to predict the probability of rain tomorrow, θ(x), given a set of satellite image 
data, x
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Probabilistic interpretation of function that maps outputs to labels, h(x) = θ(x)  

Example: You are trying to predict the probability that a patient may have a certain form a disease, θ(x), 
given a number of observations and measurements, x

Example: You are trying to predict the probability of rain tomorrow, θ(x), given a set of satellite image 
data, x

The Logistic Function θ 

θ(x) = ex

1+ex

• Use soft threshold to map any number to [0,1] range
• Sigmoid “flattens out” x

0

1

θ(x) 

x

Also called Sigmoid function
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• Let’s re-derive a cost function for the case where labels are treated as probabilities 

• You’ll use this approach more often than not in Tensorflow…

From linear classification to logistic classification
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• Let’s re-derive a cost function for the case where labels are treated as probabilities 

• You’ll use this approach more often than not in Tensorflow…

• During learning, we will again have two classes (in this simple example), y= +/- 1

• map these binary values onto a [0,1] probability distribution

From linear classification to logistic classification
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• Let’s re-derive a cost function for the case where labels are treated as probabilities 

• You’ll use this approach more often than not in Tensorflow…

• During learning, we will again have two classes (in this simple example), y= +/- 1

• map these binary values onto a [0,1] probability distribution

From linear classification to logistic classification

P(y | x) = 
For y = +1

0

1

θ(x) 

x

Formula for likelihood using the logistic function θ, given binary labels  

θ(x) 

0
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• Let’s re-derive a cost function for the case where labels are treated as probabilities 

• You’ll use this approach more often than not in Tensorflow…

• During learning, we will again have two classes (in this simple example), y= +/- 1

• map these binary values onto a [0,1] probability distribution

From linear classification to logistic classification

P(y | x) = 
For y = +1

For y = -1

0

1

1-θ(x) 

x

Formula for likelihood using the logistic function θ, given binary labels  

θ(x) 
1 - θ(x) 

0
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• Let’s re-derive a cost function for the case where labels are treated as probabilities 

• You’ll use this approach more often than not in Tensorflow…

• During learning, we will again have two classes (in this simple example), y= +/- 1

• map these binary values onto a [0,1] probability distribution

From linear classification to logistic classification

Formula for likelihood using the logistic function θ, given binary labels  

P(y | f(x)) = 
θ(f(x)) 
1 - θ(f(x)) 

For y = +1

For y = -1

0

1

θ(f(x)) 

f(x)

0
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• Let’s re-derive a cost function for the case where labels are treated as probabilities 

• You’ll use this approach more often than not in Tensorflow…

• During learning, we will again have two classes (in this simple example), y= +/- 1

• map these binary values onto a [0,1] probability distribution

From linear classification to logistic classification

Formula for likelihood using the logistic function θ, given binary labels  

P(y | f(x)) = 
θ(f(x)) 
1 - θ(f(x)) 

For y = +1

For y = -1

0

1

θ(f(x)) 

f(x)

x1

x2

y = +1

y = -1

f(x) = +1
f(x) = -1 P should be close to 1

• If network output f(x) is large, then should map to y=+1 
with high probability

• θ(f(x)) is large for large value of x
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• Let’s re-derive a cost function for the case where labels are treated as probabilities 

• You’ll use this approach more often than not in Tensorflow…

• During learning, we will again have two classes (in this simple example), y= +/- 1

• map these binary values onto a [0,1] probability distribution

From linear classification to logistic classification

Formula for likelihood using the logistic function θ, given binary labels  

P(y | f(x)) = 
θ(f(x)) 
1 - θ(f(x)) 

For y = +1

For y = -1

0

1

θ(f(x)) 

f(x)

x1

x2

y = +1

y = -1

f(x) = +1
f(x) = -1

P should be close to 0
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• Let’s re-derive a cost function for the case where labels are treated as probabilities 

• You’ll use this approach more often than not in Tensorflow…

• During learning, we will again have two classes (in this simple example), y= +/- 1

• map these binary values onto a [0,1] probability distribution

From linear classification to logistic classification

Formula for likelihood using the logistic function θ, given binary labels  

P(y | f(x)) = 
θ(f(x)) 
1 - θ(f(x)) 

For y = +1

For y = -1

0

1

1-θ(f(x)) 

f(x)

x1

x2

y = +1

y = -1

f(x) = +1
f(x) = -1

f(x) < 0, but P should be close to 1

• If network output f(x) is small, then should map to y=-1 
with high probability

• θ(f(x)) ~0 for small values of f(x), so 1- θ(f(x)) ~1 is high 
probability to y=-1 mapping
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P(y | x) = 
θ(f(x)) 
1 - θ(f(x)) 

For y = +1

For y = -1

Deriving cost function for logistic classification for probabilistic outputs 

Instead of mapping f(x) to either +1 or -1 with the sign operator, let’s use θ to map it to lie between 0 and 1: 
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P(y | x) = 
θ(f(x)) 
1 - θ(f(x)) 

For y = +1

For y = -1

Deriving cost function for logistic classification for probabilistic outputs 

Instead of mapping f(x) to either +1 or -1 with the sign operator, let’s use θ to map it to lie between 0 and 1: 

We’ll stick with the case of linear classification, where f(x) = wTx

Also, please note that for the logistic function, θ(-a) = 1 - θ(a). 
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P(y | x) = 
θ(f(x)) 
1 - θ(f(x)) 

For y = +1

For y = -1

Deriving cost function for logistic classification for probabilistic outputs 

Instead of mapping f(x) to either +1 or -1 with the sign operator, let’s use θ to map it to lie between 0 and 1: 

We’ll stick with the case of linear classification, where f(x) = wTx

Also, please note that for the logistic function, θ(-a) = 1 - θ(a). 

So, we can summarize the case-based definition above with a single function,

P(y | x) = θ(y f(x))  
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P(y | x) = 
θ(f(x)) 
1 - θ(f(x)) 

For y = +1

For y = -1

Deriving cost function for logistic classification for probabilistic outputs 

Instead of mapping f(x) to either +1 or -1 with the sign operator, let’s use θ to map it to lie between 0 and 1: 

We’ll stick with the case of linear classification, where f(x) = wTx

Also, please note that for the logistic function, θ(-a) = 1 - θ(a). 

So, we can summarize the case-based definition above with a single function,

P(y | x) = θ(y wTx)  

Here, y = +/-1 flips θ(wTx) to be either θ(wTx) or θ(-wTx) = 1- θ(wTx) 

P(y | x) = θ(y f(x))  
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deep imagingDeriving cost function for logistic classification for probabilistic outputs 

Similar to the linear classification case, the likelihood of observing N independent outputs is given by,

P(y1,y2... yN | x1, x2, ...xN)   = ∏ P(yn | xn)  
n=1

N

= ∏ θ(yn wTxn) 
n=1

N

This is the probability of the labels, given the data. We’d like to maximize this probability!

*Like the linear regression case, but now the probability of classes given the data is not Gaussian 
distributed, but instead follows the sigmoid curve (is bound to [0,1], which is more realistic)

Maximize P(y1,y2... yN | x1, x2, ...xN)  = ∏ θ(yn wTxn) 
n=1

N
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Maximize P(y1,y2... yN | x1, x2, ...xN)  = ∏ θ(yn wTxn) 
n=1

N

Deriving cost function for logistic classification for probabilistic outputs 

Minimize 
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Maximize P(y1,y2... yN | x1, x2, ...xN)  = ∏ θ(yn wTxn) 
n=1

N

Deriving cost function for logistic classification for probabilistic outputs 

Minimize 

Minimize Use relationship
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deep imaging

Maximize P(y1,y2... yN | x1, x2, ...xN)  = ∏ θ(yn wTxn) 
n=1

N

Deriving cost function for logistic classification for probabilistic outputs 

Minimize 

Minimize Use relationship

Minimize 

Cross entropy error for logistic classification

Typically requires iterative solution to minimize
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Maximize P(y1,y2... yN | x1, x2, ...xN)  = ∏ θ(yn wTxn) 
n=1

N

Deriving cost function for logistic classification for probabilistic outputs 

Minimize 

Minimize Use relationship

Minimize 

Cross entropy error for logistic classification Mean-square error for linear classification
Closed form solution availableTypically requires iterative solution to minimize
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Model
Output

y* Ex. [x1,y1] Ex. [xK,yK]

…
Training 
Data

Training error

dL/dW

The linear classification model – what’s not to like?

Lin(y, f(W,x)) = y* = Wx

x

y

cross_entropy(y, f(W,x))

Probabilistic mapping to y
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Model
Output

y* Ex. [x1,y1] Ex. [xK,yK]

…
Training 
Data

Training error

dL/dW

The linear classification model – what’s not to like?

Lin(y, f(W,x)) = y* = Wx

x

y 1. Can only separate data with lines (hyper-planes)…

2. We only allowed for binary labels (y = +/- 1)

3. Error function Lin inherently makes assumptions 
about statistical distribution of data

cross_entropy(y, f(W,x))

Probabilistic mapping to y
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x

y

Learned f: not flexible

W1

xf

=

Training data
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x

y

Learned f: not flexible

Can we add flexibility by multiplying with another weight matrix?

W1

xf

=

W1

xf

= W2

Unfortunately not…

Training data
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x

y

Training data

x

y

Learned f: not flexible

W1

xf

=

Learned f: a bit flexible

Training data

W1

xf

= W2 • NL •
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x

y

Training data

x

y

Learned f: not flexible

W1

xf

=

Learned f: a bit flexible

Training data

W1

xf

= W2 • NL •

x

y

Learned f: more flexible
We can keep adding 
these “layers”…Does it generalize???
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Each matrix W is a convolution matrix 

Getting us to Convolutional Neural Networks

After, apply non-linearity and sub-sampling

Repeat a few times At the end, use a full W for a 
final matrix multiplication

Original Image published in [LeCun et al., 1998]
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deep imagingGetting us to Convolutional Neural Networks

In practice, this 
process is repeated 
many times:

Original Image published in [LeCun et al., 1998]


