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Announcements

* HW1 due Wednesday 2/15 at 11:59pm

e Submit via Canvas
* Lab workbooks due today
* HW2 will be posted this Wednesday, will be due two weeks after



The linear classification model — what’s not to like?

Training error
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Model 4 EX. [x1,y4] E_X-_[XK,yK]\
) Training
y* = Wx | <= Data
T

1. Can only separate data with lines (hyper-planes)...
2. We only allowed for binary labels (y = +/- 1)

3. Error function L, inherently makes assumptions
about statistical distribution of data



Cost functions matter: a simple example

What if you’re a CIA agent?

L, = 100,000 ReLUI[f(x, W)-y] + ReLU[y-f(x, W)]

BIG penalty Don’t mind about
for intruder annoyance...

https://www.cnet.com/how-to/apple-face-id-everything-you:need-to-know/
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+1 = You

-1 = Bad guy

f(x, W)

+1

-1

+1 No Error

It’s you, but you

False reject | getin...

-1 | False accept

N

No Error

Letting an intruder in


https://www.cnet.com/how-to/apple-face-id-everything-you-need-to-know/

The linear classification model — what’s not to like?

Training error
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Training
Data

. Can only separate data with lines (hyper-planes)...

We only allowed for binary labels (y = +/- 1)

Error function L;, inherently makes assumptions

about statistical distribution of data



Deriving cost function for logistic classification for probabilistic outputs

Similar to the linear classification case, the likelihood of observing N independent outputs is given by,

N
P(Y1,Y2--- YN | X135 X2y euaXn) = ﬂ P(yn | Xn)

n=1

N

TT 8y, wTx,)
n=1

This is the probability of the labels, given the data. We’d like to maximize this probability!

The Logistic Function 6

6(x) =

eX
1+eX

Also called
Sigmoid
function

*Like the linear regression case, but now the probability of classes given the data is not Gaussian

distributed, but instead follows the sigmoid curve (is bound to [0,1], which is more realistic)

N

Maximize P(y1,Yo... Yn | X15 X2y weXn) = [T 6(yn WTX)

n=1

deep imaging



Deriving cost function for logistic classification for probabilistic outputs

deep imaging
N

Maximize P(y1,Y2... Yn | X15 X2, wuXn) = [T 8(yn WTXy)

n=1

N
_— 1 T
Minimize N In (H 0(ynw x))

n=1
Use relationship  0(a) = ——
o In se relationship a) = ——
Minimize Z (O(anTx)) l14e @
N N
Minimize _ 1 Z (14 e ¥nW X) _ 1 Z — wTx)
N & N =
Cross entropy error for logistic classification Mean-square error for linear classification

Typically requires iterative solution to minimize Closed form solution available
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The linear classification model — what’s not to like? deep imaging
OUtpUt / \
- y* Model EX. [x1,y1] EX. [Xk, Y]
Training error 7 - ~
Training
Lin(Ys f(W,X)) = <: <: y* = WX <: Data
Ccross_entro . F(W,x - \_ Y, | . B )
py(y, f(W,x)) AL/dW ; N Y

Probabilistic mapping to y
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The linear classification model — what’s not to like? .
Output
- Uyliu Model /E_X-_[X1 A% E_X-_[XK,yK]\
Training error ~ - ~N
Training
Lin(y, f(W,x)) = G | y*=Wx | (&= Data

cross_entropy(y, f(W,x))

T = -

Probabilistic mapping to y

1. Can only separate data with lines (hyper-planes)...

2. We only allowed for binary labels (y = +/- 1)

3. Error function L, inherently makes assumptions
about statistical distribution of data
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f X deep imaging

e |-

Learned f: not flexible

Machine Learning and Imaging — Roarke Horstmeyer (2024)
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f X deep imaging
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Learned f: not flexible

Can we add flexibility by multiplying with another weight matrix?

- fi=Wix+ b

1
5

fo=Wafi + by

fz = Wg(lec + bl) + bg

s/ /
fo=Wx+b Unfortunately not...

Machine Learning and Imaging — Roarke Horstmeyer (2024)



f=W1£E

Learned f: not flexible

Can we add flexibility by multiplying with another weight matrix?

- fi=Wix+ b

fo=Wafi + by

[IE=

f X deep imaging

Machine Learning and Imaging — Roarke Horstmeyer (2024)



f=W1£l:

Learned f: not flexible

X
e o  Training data Add a non-linearity!
y ° [ ] o o° °
® ()
... ® f = Wzma,x(lec, 0)
’ ° o Learned f: a bit flexible
o (]
X
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f X

Machine Learning and Imaging — Roarke Horstmeyer (2024)



e , Iraining data
e o°

[IE=

f X deep imaging

f=W1:c

Learned f: not flexible

f = Wzma,x(lec, 0)

Learned f: a bit flexible

f = W3ma,x(0, W2I’I1&X(W1x, O))

Learned f: more flexible

J We can keep adding

Does it generalize??? these “layers”...

Machine Learning and Imaging — Roarke Horstmeyer (2024)
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Getting us to Convolutional Neural Networks Geep imaging
After, apply non-linearity and sub-sampling
o /03: f. maps 16@10x10
g\él:g; 6@.2232%@ maps N S4: f. maps 16@5)235. '
5@14x14. 20 | F8:leyer OUTPUT

Original Image published in [LeCun et al., 1998]

|
| Full CoaneCtiOn ’ Gaussian connections

Convolutions Subsampling Convolutions  Subsampling Full connection
Each matrix W is a convolution matrix Repeat a few times At the end, use a full W for a

final matrix multiplication



Getting us to Convolutional Neural Networks

INPUT
32x32

In practice, this
process is repeated
many times:

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5

6@28x28
S2: f. maps
6@14x14 r

| Full CoaneCtiOn ’ Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection
7x7 conv
input g4 filters 3x3 conv 3x3 conv 3x3
2 33 3x3 conv 3x3 3x3 conv 3x3 conv X5 conv
image Norm 84 fiters 64 filters Norm G4fiters 54 fiftors Nom 3128 fiters 128 fters Norm 128 fiters 128 fiters ot

RelLu

Relu Norm drop Relu Norm dr Norm Norm
d drop Sum

e mReLu m T < opsum b '09 Sum ReLu

Norm
I3conv 33 conv 3x3conv  3x3 conv 3x3 conv 3x3 conv 3x3 conv 3x3 conv FC (84) Softmax
256 filters 256 filters N°"" 2501iters g fiters  NomS12fiers  Bi2fiters Mo 5i2fifers 512 fiters gy

Norm Norm Relu Non'n . Norm
. drop Pool
ReLu mdm Som m RelLu 91OP Sum ReLu md“’p Som T RelLu { Dom @

—tT >

—v

deep imaging

Original Image published in [LeCun et al., 1998]
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Aside #1 before convolutional neural network details

Q: Can we try to avoid making these learning models too complicated?

Learned f: more flexible

Does it generalize???




deep imaging

Aside #1 before convolutional neural network details

Q: Can we try to avoid making these learning models too complicated?

Learned f: more flexible

Does it generalize???

A: Yes, by transforming the data coordinates before classification
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Image Features: Motivation

o | 6 @
®
* ®
® o o °
¢ o .. f(X’ y) = (r(X’ Y), e(xa Y)) o ..
e © |o ° > ° -
X ®le r o N
o PN ) b °
e (o ®
o) ®
. ® . o®
°
Cannot separate red After applying feature

and blue points with
linear classifier

transform, points can
be separated by linear
classifier

From Stanford CS231: http://cs231n.stanford.edu/



http://cs231n.stanford.edu/
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Example: Color Histogram

From Stanford CS231: http://cs231n.stanford.edu/



http://cs231n.stanford.edu/
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Example: Histogram of Oriented Gradients (HoG)  «wmen

Divide image into 8x8 pixel regions Example: 320x240 image gets divided
Within each region quantize edge into 40x30 bins; in each bin there are
direction into 9 bins 9 numbers so feature vector has

30*40*9 = 10,800 numbers

Lowe, “Object recognition from local scale-invariant features”, ICCV 1999
Dalal and Triggs, "Histograms of oriented gradients for human detection," CVPR 2005

From Stanford CS231: http://cs231n.stanford.edu/



http://cs231n.stanford.edu/

Example: Bag of Words
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Step 1: Build codebook

Fei-Fei and Perona, “A bayesian hierarchical model for learning natural scene categories”, CVPR 2005

a v
Cluster patches to
Extract random LS B9 form “codebook”
patches R of “visual words”
i .
N
N
|:| ] l:| |:| DD — [ |:| o [
= RN TN e
>
ﬂmﬂﬂuDDDDDD
AE §E=-ErE

From Stanford CS231: http://cs231n.stanford.edu/



http://cs231n.stanford.edu/

Image features vs ConvNets

3=
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Feature Extraction

10 numbers giving
scores for classes

<

training

. |} |
=l =3I
‘»l N N
5 X o X
\or 12\ A .

& NN s

e = ‘: . {

i { | )2?

\ %
\ — e —
192

» 10 numbers giving

scores for classes

training

From Stanford CS231: http://cs231n.stanford.edu/



http://cs231n.stanford.edu/

Hand-crafted versus learned features also applies to imaging H%

deep imaging

Normal camera

Classification acc.:
E -

Pre-designed mask

Classification acc.:

IR




Hand-crafted versus learned features also applies to imaging ﬂ%

deep imaging

Normal camera

Classification acc.:

=={E T

Classification acc.:

B - o

Classification acc.:

| By B

Pre-designed mask

ML-optimized mask?

A



Statistical Machine Learning in 30 minutes

deep imaging

Two competing goals in machine learning:

1. Can we make sure the in-sample error L,.(y, f(x,W)) is small enough?
 Appropriate cost function
 “complex enough” model



Statistical Machine Learning in 30 minutes

deep imaging

Two competing goals in machine learning:

1. Can we make sure the in-sample error L,.(y, f(x,W)) is small enough?
 Appropriate cost function
 “complex enough” model

2. Can we make sure that L_(y, f(x,W)) is close enough to L, (y, f(x,W))?
« Probabilistic analysis says yes!
« |L, - L,y bounded from above
 Bound grows with model capacity (i.e., complexity - bad)
* Bound shrinks with # of training examples (good)



Model overfitting versus underfitting — a thought exercise

deep imaging

Let’s fit these “training” data points:

X

10th order Polynomial Fit



Model overfitting versus underfitting — a thought exercise

deep imaging

Let’s fit these “training” data points: And then here’s our testing dataset — good?
o
o0 o ©
o ° o 0o
y y ° o
(
X1 X1

10th order Polynomial Fit



Model overfitting versus underfitting — a thought exercise

deep imaging

Let’s fit these “training” data points: And then here’s our testing dataset — good?

Perfect! But lucky....

X-| X1

10th order Polynomial Fit



Model overfitting versus underfitting — a thought exercise

deep imaging

Let’s fit these “training” data points: What if our test dataset was this :

y y

+—>

Noisy, low
. complexity target

X-| X1

10th order Polynomial Fit
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Model overfitting versus underfitting — a thought exercise

Let’s fit these “training” data points: What if our test dataset was this :

If our data was noisy and
the target followed a low-
complexity model, we’d be
better off with a second
order fit!

X-| X1
— 10th order Polynomial Fit

—— 2" order Polynomial Fit



Model overfitting versus underfitting — a thought exercise

Training data

X1

Model capacity: ability to fit a
wide range of functions

Error

[IE=
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If our data was noisy and
the target followed a low-
complexity model, we’d be
better off with a second

Test data order fit!

X1

Underfitting zone

Overfitting zone

— - Training error
Generalization error

Deep Learning, |. Goodfellow
et al., Fig. 5.3

Optimal Capacity

Capacity
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Model overfitting versus underfitting — a thought exercise oo e
y y If our data was noisy and
the target followed a low-
complexity model, we’d be
.. better off with a second
Training data Test data order fit!
X1 X1
Model capacity: ablllty to fit a Underfitting zone | Overfitting zone o Training. erlror
wide range of functions ——  Generalization error

Control capacity through model’s

hypothesis space (set of functions
Deep Learning, |. Goodfellow
model can take) k et al, Fig. 5.3
\ I Generalization gap

Hard to know ahead of time! , et T e
0 Optimal Capacity

Error

Capacity



Low Capacity Model

/ Training error L,

Expected Error

# of data points, J

Machine Learning and Imaging — Roarke Horstmeyer (2024)

Relatively
high error

[IE=
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Expected Error

Low Capacity Model

Q@I’I’Or Lout
Relatively

e Training error L, Migh error

# of data points, J

[IE=
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Expected Error

Low Capacity (complexity) Model

Qerror Lout

f Training error L,

# of data points, J

Relatively
high error

Expected Error

E—

0
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High Capacity (complexity) Model  dccp imaging

/Training error L,

# of data points, J

Relatively
low error



Expected Error

Low Capacity (complexity) Model

Qerror Lout

f Training error L,

# of data points, J

Relatively
high error

Expected Error

E—

0
Fo
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High Capacity (complexity) Model  dccp imaging

Test error Lot

/Training error L,

# of data points, J

But harder to get
test error down...

Relatively
low error



Low Capacity (complexity) Model High Capacity (complexity) Model  dccp imaging

. Qerror Lout S Test error Loyt
I R_elatively T JI[Bu’E[ hardegj to get
k! /" Training error L, high error ks est error down....
E'é_ E'é_ Relatively
0 0 — low error
/Tralnlng error L,
# of data points, J # of data points, J

Take away concepts:
« Can’t ever really expect test error to be less than training error
« Complicated models tend to appear to “do better” during training, before trying test data

 When the model gets complicated and you don’t have enough data, challenging to get test error down



Model bias versus variance

“True” model  Bias = distance between

rue and learned model
Learned f

Hypothesis space O

° Learned f

[IE=

deep imaging



Model bias versus variance

deep imaging

“True” model  Bias = distance between

rue and learned model
Learned f

Hypothesis space O

Bias = (g(x) - f(x))*

o Learnedf Measures how far our learning model f is biased

away from target function g (for perfect training
X data classification)

Models that tend to be “a bit too simple”
are biased away from "true” model



Model bias versus variance

Variance

“True” model Bias = distance between

rue and learned model
Learned f

Hypothesis space O

More complicated datasets exhibit lots of
variance between ideal boundary for
training and testing

[IE=

deep imaging



Model bias versus variance

“True” model Bias = distance between

rue and learned model
Learned f

Hypothesis space

| -
@)
-
| -
L
O
O
-
O
0]
Q
x
L

Error vs. # data points

variance 1. oror Lout

/ Bias Training error L,

# of data points, J

[IE=
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Variance

Test Error is sum of model
bias and variance!

Goal is to find a model f that
balances between these two
quantities for a given dataset



How to formally define capacity and complexity?

deep imaging

« Short answer: it’'s complicated...

» Related to something called the VC Dimension
« Can provide theoretical bounds on performance
« Dimensional bounds rather than scalar bounds...

| decided not to go into it, but please do take a look at the following
lecture material to learn more!

Learning From Data (Caltech, Prof. Y Abu-Mostafa)
https://www.youtube.com/watch?v=Dc0srOkdBVI#t=3m24s



Conclusions from statistical machine learning

deep imaging

- Conclusion: you want a model that is complex enough to capture variations within high-
dimensional space, but not too complex such that it overfits the data

- Want a model with a high capacity, but can still generalize to data outside training set
* More data -> less overfitting, complex target -> more overfitting

- For simple models, we can measure complexity via degrees of freedom, the VC bound
and so-on to help us nail down ideal models that can generalize well



Conclusions from statistical machine learning

deep imaging

- Conclusion: you want a model that is complex enough to capture variations within high-
dimensional space, but not too complex such that it overfits the data

Want a model with a high capacity, but can still generalize to data outside training set
* More data -> less overfitting, complex target -> more overfitting

For simple models, we can measure complexity via degrees of freedom, the VC bound
and so-on to help us nail down ideal models that can generalize well

For DL models: this will get too hard...here’s a few counter-intuitive properties:

1. A fixed DL architecture exhibits data-dependent complexities

* e.g., “good” DL networks achieve 0 training error on images with random labels, so
cannot generalize at all in this case, and are too complex

2. DL networks with more hidden units leads to better generalization (the main finding of
the last few years). So deeper models tend to be less complex, actually...

3. Complexity depends upon loss function and optimization method...



Important to remember: “No Free Lunch Theorem”
deep imaging
« “Averaged over all possible data-generating distributions, every classification algorithm has the
same error rate when classifying previously unobserved points.”

» The most sophisticated DL algorithm has same average performance (averaged over all possible
tasks) as the simplest.



Important to remember: “No Free Lunch Theorem” «»%

deep imaging

« “Averaged over all possible data-generating distributions, every classification algorithm has the
same error rate when classifying previously unobserved points.”

» The most sophisticated DL algorithm has same average performance (averaged over all possible
tasks) as the simplest.

« Must make assumptions about probability distributions of inputs we’ll encounter in real-world

Set of 20 “images”, random Gaussian distribution Face at different orientations =
manifold n-D space
EEEEEEEEEEEEIIIIIAD
EREEEEEEFERNA]YIFITS
EEEEEFEEFEEENNS3393 33
A A o o o o S S ShE A A e Bt e 1B 18
B B I I N
M- MY Ao g o4 of of s Shonihefefie e fhelicpb
MM N e of of of op e PPl

Deep Learning, |. Goodfellow et al., Fig. 5.12-13



Important to remember: “No Free Lunch Theorem” H%

deep imaging

« “Averaged over all possible data-generating distributions, every classification algorithm has the
same error rate when classifying previously unobserved points.”

» The most sophisticated DL algorithm has save average performance (averaged over all possible
tasks) as the simplest.

« Must make assumptions about probability distributions of inputs we’ll encounter in real-world

CT reconstructions of every brain in the
1D Manifold in 2D space world = kD manfold in nD space?

2.5

2.0 |

Manifold
Hypothesis

| &

1.5 |

1.0 |

0.5 |

0.0 |

—-0.5

-1.0 1 1 ] ] ] |
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Deep Learning, |. Goodfellow et al., Fig. 5.11



