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• HW1 due Wednesday 2/15 at 11:59pm 
• Submit via Canvas

• Lab workbooks due today
• HW2 will be posted this Wednesday, will be due two weeks after
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Model
Output

y* Ex. [x1,y1] Ex. [xK,yK]

…
Training 
Data

Training error

dL/dW

The linear classification model – what’s not to like?

y* = Wx

x

y 1. Can only separate data with lines (hyper-planes)…

2. We only allowed for binary labels (y = +/- 1)

3. Error function Lin inherently makes assumptions 
about statistical distribution of data

+1

-1

+1

-1

Lin = || Wx - y||2
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x

f(x, W)
+1 = You

-1 = Bad guy

What if you’re a CIA agent? f(x, W)

y
+1

-1

+1 -1

No Error

No Error

It’s you, but you 
can’t get in…

Letting an intruder in

Lin = 100,000 ReLU[f(x, W)-y] + ReLU[y-f(x, W)] 
 

BIG penalty 
for intruder

Don’t mind about 
annoyance…

False reject

False accept

https://www.cnet.com/how-to/apple-face-id-everything-you-need-to-know/

https://www.cnet.com/how-to/apple-face-id-everything-you-need-to-know/
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Model
Output

y* Ex. [x1,y1] Ex. [xK,yK]

…
Training 
Data

Training error

dL/dW

The linear classification model – what’s not to like?

Lin(y, f(W,x))
y* = f(W,x)

f(W,x)=Wx

x

y 1. Can only separate data with lines (hyper-planes)…

2. We only allowed for binary labels (y = +/- 1)

3. Error function Lin inherently makes assumptions 
about statistical distribution of data

+1

-1

+1

-1
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Similar to the linear classification case, the likelihood of observing N independent outputs is given by,

P(y1,y2... yN | x1, x2, ...xN)   = ∏ P(yn | xn)  
n=1

N

= ∏ θ(yn wTxn) 
n=1

N

This is the probability of the labels, given the data. We’d like to maximize this probability!

*Like the linear regression case, but now the probability of classes given the data is not Gaussian 
distributed, but instead follows the sigmoid curve (is bound to [0,1], which is more realistic)

Maximize P(y1,y2... yN | x1, x2, ...xN)  = ∏ θ(yn wTxn) 
n=1

N

The Logistic Function θ 

θ(x) = ex

1+ex

Also called 
Sigmoid 
function
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Maximize P(y1,y2... yN | x1, x2, ...xN)  = ∏ θ(yn wTxn) 
n=1

N

Deriving cost function for logistic classification for probabilistic outputs 

Minimize 

Minimize Use relationship

Minimize 

Cross entropy error for logistic classification Mean-square error for linear classification
Closed form solution availableTypically requires iterative solution to minimize
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Model
Output

y* Ex. [x1,y1] Ex. [xK,yK]

…
Training 
Data

Training error

dL/dW

The linear classification model – what’s not to like?

Lin(y, f(W,x)) = y* = Wx

x

y

cross_entropy(y, f(W,x))

Probabilistic mapping to y
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Model
Output

y* Ex. [x1,y1] Ex. [xK,yK]

…
Training 
Data

Training error

dL/dW

The linear classification model – what’s not to like?

Lin(y, f(W,x)) = y* = Wx

x

y 1. Can only separate data with lines (hyper-planes)…

2. We only allowed for binary labels (y = +/- 1)

3. Error function Lin inherently makes assumptions 
about statistical distribution of data

cross_entropy(y, f(W,x))

Probabilistic mapping to y
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x

y

Learned f: not flexible

W1

xf

=

Training data



Machine Learning and Imaging – Roarke Horstmeyer (2024)

deep imaging

x

y

Learned f: not flexible

Can we add flexibility by multiplying with another weight matrix?

W1

xf

=

W1

xf

= W2

Unfortunately not…

Training data
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x

y

Learned f: not flexible

Can we add flexibility by multiplying with another weight matrix?

W1

xf

=

W1

xf

= W2

Training data
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x

y

Training data

x

y

Learned f: not flexible

W1

xf

=

Learned f: a bit flexible

Training data

W1

xf

= W2 • NL •

Add a non-linearity!
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x

y

Training data

x

y

Learned f: not flexible

W1

xf

=

Learned f: a bit flexible

Training data

W1

xf

= W2 • NL •

x

y

Learned f: more flexible
We can keep adding 
these “layers”…Does it generalize???
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Each matrix W is a convolution matrix 

Getting us to Convolutional Neural Networks

After, apply non-linearity and sub-sampling

Repeat a few times At the end, use a full W for a 
final matrix multiplication

Original Image published in [LeCun et al., 1998]
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In practice, this 
process is repeated 
many times:

Original Image published in [LeCun et al., 1998]
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x

y

Learned f: more flexible

Aside #1 before convolutional neural network details

Q: Can we try to avoid making these learning models too complicated? 

Does it generalize???
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x

y

Learned f: more flexible

Does it generalize???

Aside #1 before convolutional neural network details

Q: Can we try to avoid making these learning models too complicated? 

A: Yes, by transforming the data coordinates before classification
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From Stanford CS231: http://cs231n.stanford.edu/

http://cs231n.stanford.edu/
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From Stanford CS231: http://cs231n.stanford.edu/

http://cs231n.stanford.edu/
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Hand-crafted versus learned features also applies to imaging

Classification acc.:

NN 80%

Classification acc.:

NN 90%

Normal camera

Pre-designed mask
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Hand-crafted versus learned features also applies to imaging

Classification acc.:

NN 80%

Classification acc.:

NN 90%

Classification acc.:

NN 95%

Normal camera

Pre-designed mask

ML-optimized mask?
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Statistical Machine Learning in 30 minutes

1. Can we make sure the in-sample error Lin(y, f(x,W)) is small enough?
• Appropriate cost function
• “complex enough” model

Two competing goals in machine learning:
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1. Can we make sure the in-sample error Lin(y, f(x,W)) is small enough?
• Appropriate cost function
• “complex enough” model

2.   Can we make sure that Lout(y, f(x,W)) is close enough to Lin(y, f(x,W))? 
• Probabilistic analysis says yes!
• |Lin – Lout| bounded from above
• Bound grows with model capacity (i.e., complexity - bad)
• Bound shrinks with # of training examples (good)

Statistical Machine Learning in 30 minutes

Two competing goals in machine learning:
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Model overfitting versus underfitting – a thought exercise

x1

y

Let’s fit these “training” data points: 

10th order Polynomial Fit
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Model overfitting versus underfitting – a thought exercise

x1

y

Let’s fit these “training” data points: 

x1

y

And then here’s our testing dataset – good?

10th order Polynomial Fit
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Model overfitting versus underfitting – a thought exercise

x1

y

Let’s fit these “training” data points: 

x1

y

And then here’s our testing dataset – good?

Perfect! But lucky….

10th order Polynomial Fit
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x1

y

Let’s fit these “training” data points: 

x1

y

What if our test dataset was this :

10th order Polynomial Fit

Noisy, low 
complexity target

Model overfitting versus underfitting – a thought exercise



Machine Learning and Imaging – Roarke Horstmeyer (2024)

deep imaging

x1

y

Let’s fit these “training” data points: 

x1

y

10th order Polynomial Fit

2nd order Polynomial Fit

If our data was noisy and 
the target followed a low-
complexity model, we’d be 
better off with a second 
order fit! 

What if our test dataset was this :

Model overfitting versus underfitting – a thought exercise
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x1

y

x1

y
If our data was noisy and 
the target followed a low-
complexity model, we’d be 
better off with a second 
order fit! 

Model capacity: ability to fit a 
wide range of functions 

Training data Test data

Model overfitting versus underfitting – a thought exercise

Deep Learning, I. Goodfellow 
et al., Fig. 5.3
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x1

y

x1

y
If our data was noisy and 
the target followed a low-
complexity model, we’d be 
better off with a second 
order fit! 

Model capacity: ability to fit a 
wide range of functions 

Control capacity through model’s 
hypothesis space (set of functions 
model can take)

Hard to know ahead of time!

Training data Test data

Model overfitting versus underfitting – a thought exercise

Deep Learning, I. Goodfellow 
et al., Fig. 5.3
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# of data points, J
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ct
ed
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r

Low Capacity Model

Relatively 
high errorTraining error Lin
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Ex
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ct
ed

 E
rro

r

Low Capacity Model

Relatively 
high errorTraining error Lin

Test error Lout
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# of data points, J

Ex
pe

ct
ed

 E
rro

r
Relatively 
high errorTraining error Lin

Test error Lout

# of data points, J

Ex
pe

ct
ed

 E
rro

r

Relatively 
low error

Training error Lin

Low Capacity (complexity) Model High Capacity (complexity) Model
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# of data points, J

Ex
pe

ct
ed

 E
rro

r
Relatively 
high errorTraining error Lin

Test error Lout

# of data points, J

Ex
pe

ct
ed

 E
rro

r

Relatively 
low error

Training error Lin

Test error Lout
But harder to get 
test error down…

Low Capacity (complexity) Model High Capacity (complexity) Model
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# of data points, J

Ex
pe

ct
ed

 E
rro

r

Low Capacity (complexity) Model

Relatively 
high errorTraining error Lin

Test error Lout

# of data points, J

Ex
pe

ct
ed

 E
rro

r

High Capacity (complexity) Model

Relatively 
low error

Training error Lin

Test error Lout

Take away concepts: 

• Can’t ever really expect test error to be less than training error

• Complicated models tend to appear to “do better” during training, before trying test data

• When the model gets complicated and you don’t have enough data, challenging to get test error down

But harder to get 
test error down…
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Model bias versus variance

True model

x

y

Learned f

g

bias

“True” model 

Hypothesis space
Learned f

Bias = distance between 
true and learned model



Machine Learning and Imaging – Roarke Horstmeyer (2024)

deep imaging

Model bias versus variance

Models that tend to be “a bit too simple” 
are biased away from ”true” model 

True model

x

y

Learned f

Bias = (g(x) – f(x))2

Measures how far our learning model f is biased 
away from target function g (for perfect training 
data classification)

bias

g

“True” model 

Hypothesis space
Learned f

Bias = distance between 
true and learned model
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Model bias versus variance

More complicated datasets exhibit lots of 
variance between ideal boundary for 
training and testing

True model

x

y

Variance = Var[g(x)]

True model

x

y
Variance

g

“True” model 

Hypothesis space
Learned f

Bias = distance between 
true and learned model

f
Hypothesis space Variance
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Model bias versus variance

# of data points, J

Ex
pe

ct
ed

 E
rro

r
Error vs. # data points

Training error Lin

Test error Lout

Bias

Variance
Test Error is sum of model 
bias and variance! 

Goal is to find a model f that 
balances between these two 
quantities for a given dataset

f
Hypothesis space Variance

g

“True” model 

Hypothesis space
Learned f

Bias = distance between 
true and learned model
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• Short answer: it’s complicated…

• Related to something called the VC Dimension

• Can provide theoretical bounds on performance

• Dimensional bounds rather than scalar bounds…

• I decided not to go into it, but please do take a look at the following 
lecture material to learn more!

Learning From Data (Caltech, Prof. Y Abu-Mostafa) 
https://www.youtube.com/watch?v=Dc0sr0kdBVI#t=3m24s
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- Conclusion: you want a model that is complex enough to capture variations within high-
dimensional space, but not too complex such that it overfits the data

- Want a model with a high capacity, but can still generalize to data outside training set
• More data -> less overfitting, complex target -> more overfitting

- For simple models, we can measure complexity via degrees of freedom, the VC bound 
and so-on to help us nail down ideal models that can generalize well

Conclusions from statistical machine learning
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- Conclusion: you want a model that is complex enough to capture variations within high-
dimensional space, but not too complex such that it overfits the data

- Want a model with a high capacity, but can still generalize to data outside training set
• More data -> less overfitting, complex target -> more overfitting

- For simple models, we can measure complexity via degrees of freedom, the VC bound 
and so-on to help us nail down ideal models that can generalize well

- For DL models: this will get too hard…here’s a few counter-intuitive properties:

1. A fixed DL architecture exhibits data-dependent complexities 
• e.g., “good” DL networks achieve 0 training error on images with random labels, so 

cannot generalize at all in this case, and are too complex

2. DL networks with more hidden units leads to better generalization (the main finding of 
the last few years). So deeper models tend to be less complex, actually…

3. Complexity depends upon loss function and optimization method…

Conclusions from statistical machine learning
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• “Averaged over all possible data-generating distributions, every classification algorithm has the 
same error rate when classifying previously unobserved points.” 

• The most sophisticated DL algorithm has same average performance (averaged over all possible 
tasks) as the simplest. 

Important to remember: “No Free Lunch Theorem”
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• “Averaged over all possible data-generating distributions, every classification algorithm has the 
same error rate when classifying previously unobserved points.” 

• The most sophisticated DL algorithm has same average performance (averaged over all possible 
tasks) as the simplest. 

• Must make assumptions about probability distributions of inputs we’ll encounter in real-world

Important to remember: “No Free Lunch Theorem”

Set of 20 “images”, random Gaussian distribution Face at different orientations = 
manifold n-D space

Deep Learning, I. Goodfellow et al., Fig. 5.12-13
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• “Averaged over all possible data-generating distributions, every classification algorithm has the 
same error rate when classifying previously unobserved points.” 

• The most sophisticated DL algorithm has save average performance (averaged over all possible 
tasks) as the simplest. 

• Must make assumptions about probability distributions of inputs we’ll encounter in real-world

Important to remember: “No Free Lunch Theorem”

CT reconstructions of every brain in the 
world = kD manfold in nD space?1D Manifold in 2D space

…
Manifold 

Hypothesis

Deep Learning, I. Goodfellow et al., Fig. 5.11


