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Class project – what are the first steps? 

1. Think about it!

2. Discuss with your friends/others in the class (feel free to use Slack!) to form group

3. Look at previous projects: https://deepimaging.github.io/proj-past/ 

4. Schedule a short 15 meeting with myself or TA’s 

• Meetings will occur the week after spring break, will send out details soon

5. Start to write-up a proposal

• General aim: 1 paragraph, specifying physical layer or hardware analysis component

• Discussion: (a) data source(s), (b) expected simulations, (c) expected CNN, (d) 

quantitative analysis of physical layer/physical component (comparison, plot, etc).

• Project proposal due date: TBD (1-2 weeks)

• Final project will be presented during final exam slot

• (note: due to large class size, this may go a bit over 3 hours, can maybe split in 2 sessions)

https://deepimaging.github.io/proj-past/
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Example project topics:

Can we design a new lens/transducer/antenna shape to improve classification of X?

What is the tradeoff between image resolution and accuracy for X (classification, segmentation, etc.)? What if we had access to n 
low-resolution cameras – how might we position them to get the best performance?

Can we determine an optimal set of colors to improve fluorophore distinguishability?

How does classification accuracy change with sensor bit depth, down to the 1-bit level for single-photon detectors?

If we just had a few sensors, how should be arrange them e.g. a mask to be able to predict the position of X?

Is there some optimal shift-variant blur that we can to use for a particular task? 

Or, given a shift-variant blurry image, can we establish a good deconvolution using locally connected layers?

What is the optimal way to layout filters on a sensor to capture a color image for classification? Or an HDR image?

HDR image generation with filters over pixels – what is optimal design?

What if we could make a sensor with different sized pixels – how should they be laid out to achieve the best X?
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How does classification accuracy change with sensor bit depth, down to the 1-bit level for 
single-photon detectors?

n x m pixel sensorInput: Cell sample
discretization: 
8 bits, 7 bits, ....1 bit

Saved image Classification

Malaria 
parasite or 
none?

I propose to test the classification performance of a microscope as a function of sensor bit depth (i.e., image 
discretization). I will plot average classification test accuracy as a function of number of sensor bits from 1 bit to 8 bits. 
I will additionally test whether the pixel discretization value can be optimized as a physical layer parameter. I will 
simulate a pixel discretization value, at each pixel, by multiplying the associated raw intensity value at each pixel by a 
weight, and will then using the max() operator to set a threshold. I will examine how classification accuracy varies with 
this additional constraint, and will attempt to draw insights into where the network prefers to have more bits/pixel.

Physical layer test: per-pixel discretization (max. # bits/image)

Dataset: 12,500 images of 4 types of blood cell https://www.kaggle.com/paultimothymooney/blood-cells

(Specify more details about simulation network, physical layer implementation and quantitative analysis)

https://www.kaggle.com/paultimothymooney/blood-cells
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Model
Output
y* Ex. [x1,y1] Ex. [xK,yK]

…
Training 
Data

Training error

Lin(y, f(W,x)) = y* = f(W,x)
cross_entropy(y, f(W,x))

Our very basic convolutional neural network

Forward pass: from xi and current W’s, find Lin 

y*

xi
= W3 W2 W1

maxmaxmaxLin
Convolutional 
Neural Network
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Model
Output

y* Ex. [x1,y1] Ex. [xK,yK]

…
Training 
Data

Training error

Lin(y, f(W,x)) = y* = f(W,x)
cross_entropy(y, f(W,x))

Our very basic convolutional neural network

Backwards pass: update W from new Lin via auto-differentiation

y*

xi
= W3 W2 W1

maxmaxmax

Given a new Lin, 
want to update W’s 
to make Lin smaller! 

Lin
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CNN Architecture Loss function & optimization

• CONV size, stride, pad, depth

• ReLU & other nonlinearities

• POOL methods

• # of layers, dimensions per layer

• Fully connected layers 

• Type of loss function

• Regularization

• Gradient descent method

• SGD batch and step size

Other specifics: Initialization, dropout, batch normalization, data normalization & augmentation

Architecture 
choices

Optimization 
choices

Knobs to turn to get things to work… 
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Slide from http://cs231n.stanford.edu/

, z:

http://cs231n.stanford.edu/
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Obvious examples: Dropout, data augmentation
Advanced examples:  DropConnect, Fractional Max Pooling, Stochastic Depth
Wan et al, “Regularization of Neural Networks using DropConnect”, ICML 2013
Graham, “Fractional Max Pooling”, arXiv 2014
Huang et al, “Deep Networks with Stochastic Depth”, ECCV 2016 Slide from http://cs231n.stanford.edu/

, z:

http://cs231n.stanford.edu/
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Regularization Ex. 1: Data augmentation

• Basic idea: to simulate variation that you might actually see in 
real life
• It’s a form of regularization
• Not an exact science, but try it out – it’s free!

augment
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• Before BN, training very deep 
networks was hard
• If using sigmoid activations, large 

weights could result in saturation
• Updating earlier layers’ weights 

causes the distribution of weights in 
later layers to shift – the internal 
covariate shift

• To address this covariate shift, 
BN “resets” the layer it is applied 
to by normalizing to 0 mean, 1 
variance
• Mean and variance are computed 

over the batch at the current 
iteration

Fully connected layer

Batch Normalization 

Nonlinearity

Fully connected layer

Batch Normalization 

Nonlinearity

x’(i) = (x(i) – E[x(i)]) / STD[x(i)]

Batch normalization 
update for inputs x:

• Mean subtract
• Normalize by standard 

deviation
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• At each train iteration, 
randomly delete a fraction 
p of the nodes
• Prevents neurons from 

being lazy
• A form of model averaging
• (related: DropConnect –

drop the connections 
instead of nodes)

https://medium.com/@amarbudhiraja/https-medium-com-amarbudhiraja-learning-less-to-learn-better-dropout-in-deep-machine-learning-74334da4bfc5
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Let’s identify the following in some example code
• Structure of input/output

• Train/Validation/Test split

• Cost function
• Optimization method, steps (epochs)

• Batch size
• Data augmentation?

• Dropout?

https://deepimaging.github.io/data/high_level_tf_intro.ipynb

https://deepimaging.github.io/data/high_level_tf_intro.ipynb
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What you’ll typically see…
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What you’ll typically see…

What you can do to help out training error:
- Optimizer choice
- Optimizer step size
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What you can do to help out training error:
- Optimizer choice
- Optimizer step size

What you’ll typically see…
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What you can do to help out training error:
- Optimizer choice
- Optimizer step size

What you can do to help out training error:
- More regularization!

- Dropout
- Data normalization
- Data augmentation
- A few other tricks..

What you’ll typically see…
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Trick #1: Early stopping 

Slide from http://cs231n.stanford.edu/

http://cs231n.stanford.edu/
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Related concept/term: majority voting 

Trick #2: Use Model Ensembles

E.g., look at same dog image from test data 9X, each w/ uniquely trained model 
• Get (let’s say) [6, 3] for output classification
• so guess [1,0] = it’s a dog
• Will do better than running model once!

Related technique: Test Time Augmentation
Also relevant: Dropout-type methods
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Slide from http://cs231n.stanford.edu/

http://cs231n.stanford.edu/
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Slide from http://cs231n.stanford.edu/

http://cs231n.stanford.edu/
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Slide from http://cs231n.stanford.edu/

http://cs231n.stanford.edu/
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For learning_rate  in range(9):

For gradient_scheme in range(5):

…

B. Baker et al., “Designing neural network architectures using reinforcement learning,” arXiv 2017 

Meta-learning

E. Real, ” Large-Scale Evolution of Image Classifiers,” ICML 2017
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Visualization: a few options at different stages

During Training:
• tf.summary()
• Tensorboard

• Plots of loss/accuracy versus iteration, etc.

After Testing:
• Sliding window
• ROC curve, Precision-Recall
• Confusion matrix
• tSNE visualization

• Beyond classification: 
• image-to-image similarity metrics
• segmentation accuracy and overlap metrics
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https://colab.research.google.com/github
/tensorflow/tensorboard/blob/master/do
cs/graphs.ipynb
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How to examine and present your results: a few options at different stages

Options to examine your test data after processing:
• ROC curve, Precision-Recall

• Confusion matrix
• Sliding window visualization

• Layer visualizations

• Saliency maps etc.
• tSNE visualization
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f(x, W)

y
+1

-1

+1 -1

True positive

True negative

Predict event when 
there isn’t one

False negative

False positive

ROC curve and confusion matrix

Actual label 

Estimated label 

Missed an event

• Can set threshold for f(x,W) 
wherever

• Leads to sliding window between 
FN and FP rate

• Need to summarize both statistics 
as a function of sliding window
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f(x, W)

y
+1

-1

+1 -1

True positive

True negative

Predict event when 
there isn’t one

False negative

False positive

ROC curve and confusion matrix

Actual label 

Estimated label 

Missed an event

Sensitivity = TP / (TP + FN) = TP / Actual positives

Specificity = TN / (TN + FP) = TN / Actual negatives
    = 1 – False Positive Rate

False Positive Rate = FP / (TN + FP) = FP/ Actual negatives

TP Rate = 
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f(x, W)

y
+1

-1

+1 -1

True positive

True negative

Predict event when 
there isn’t one

False negative

False positive

ROC curve and confusion matrix

Actual label 

Estimated label 

Missed an event

Sensitivity = TP / (TP + FN) = TP / Actual positives

Specificity = TN / (TN + FP) = TN / Actual negatives
    = 1 – False Positive Rate

False Positive Rate = FP / (TN + FP) = FP/ Actual negatives

TP Rate = 

Receiver-Operator Curve

True 
Positive 
rate

Guessing

0

1

False Positive rate0 1



Machine Learning and Imaging – Roarke Horstmeyer (2023)

deep imaging
f(x, W)

y
+1

-1

+1 -1

True positive

True negative

Predict event when 
there isn’t one

False negative

False positive

ROC curve and confusion matrix

Actual label 

Estimated label 

Missed an event

Sensitivity = TP / (TP + FN) = TP / Actual positives

Specificity = TN / (TN + FP) = TN / Actual negatives
    = 1 – False Positive Rate

False Positive Rate = FP / (TN + FP) = FP/ Actual negatives

TP Rate = 

Receiver-Operator Curve

True 
Positive 
rate

0 1

Guessing

0

1

Area under the curve (AUC): Integral of ROC curve

False Positive rate
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f(x, W)

y
+1

-1

+1 -1

True positive

True negative

Predict event when 
there isn’t one

False negative

False positive

ROC curve and confusion matrix

Actual label 

Estimated label 

Missed an event

• Sometimes, you don’t care about true negatives 
(just want to find events)

• In this case, use Precision and Recall

Precision = TP / (TP + FP) = TP / Estimated positives

Sensitivity = TP / (TP + FN) = TP / Actual positives
Recall = 



Machine Learning and Imaging – Roarke Horstmeyer (2023)

deep imaging
f(x, W)

y
+1

-1

+1 -1

True positive

True negative

Predict event when 
there isn’t one

False negative

False positive

ROC curve and confusion matrix

Actual label 

Estimated label 

Missed an event

Precision = TP / (TP + FP) = TP / Estimated positives

Sensitivity = TP / (TP + FN) = TP / Actual positives
Recall = 

Precision-Recall curve

Precision

Recall0 1

Guessing

0

1

F1 Metric: (1/precision + 1/recall)-1
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f(x, W)

y
+1

-1

+1 -1

True positive

True negative

False negative

False positive

ROC curve and confusion matrix

Estimated label 

Just 2 categories

f(x, W)
Estimated label 

y

Confusion Matrix: 2+ categories
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Other performance metrics

• Overlap between segmented areas: Jaccard similarity coefficient 
• (also called Intersection over Union, IoU)

 J = |R1  ∩ R2| / |R1 U R2|

• Dice Coefficient (F1 score): 2 x (total area of overlap) / total number of pixels in both 
images

• MSE, PSNR

• Structural Similarity (SSIM)


