deep imaging

Lecture 12: CNN implementation,
visualization and analysis of results

Machine Learning and Imaging

BME 548L
Roarke Horstmeyer



Class project — what are the first steps?

> W

Th|nk abOUt |t' deep imaging
Discuss with your friends/others in the class (feel free to use Slack!) to form group

Look at previous projects: https://deepimaging.qgithub.io/proj-past/

Schedule a short 15 meeting with myself or TA’s

 Meetings will occur the week after spring break, will send out details soon

Start to write-up a proposal

 General aim: 1 paragraph, specifying physical layer or hardware analysis component

» Discussion: (a) data source(s), (b) expected simulations, (c) expected CNN, (d)
quantitative analysis of physical layer/physical component (comparison, plot, etc).

Project proposal due date: TBD (1-2 weeks)

Final project will be presented during final exam slot

(note: due to large class size, this may go a bit over 3 hours, can maybe split in 2 sessions)


https://deepimaging.github.io/proj-past/

Example project topics:

deep imaging

Can we design a new lens/transducer/antenna shape to improve classification of X?

What is the tradeoff between image resolution and accuracy for X (classification, segmentation, etc.)? What if we had access to n
low-resolution cameras — how might we position them to get the best performance?

Can we determine an optimal set of colors to improve fluorophore distinguishability?

How does classification accuracy change with sensor bit depth, down to the 1-bit level for single-photon detectors?

If we just had a few sensors, how should be arrange them e.g. a mask to be able to predict the position of X?

Is there some optimal shift-variant blur that we can to use for a particular task?

Or, given a shift-variant blurry image, can we establish a good deconvolution using locally connected layers?
What is the optimal way to layout filters on a sensor to capture a color image for classification? Or an HDR image?
HDR image generation with filters over pixels — what is optimal design?

What if we could make a sensor with different sized pixels — how should they be laid out to achieve the best X?



How does classification accuracy change with sensor bit depth, down to the 1-bit level for
single-photon detectors? deep imaging

n x m pixel sensor

Input: Cell sample

. . Saved image Classification
discretization:
i 8 bits, 7 bits, ....1 bit .
_ Malaria
B ‘: ' parasite or
none?

Physical layer test: per-pixel discretization (max. # bits/image)

~

| propose to test the classification performance of a microscope as a function of sensor bit depth (i.e., image
discretization). | will plot average classification test accuracy as a function of number of sensor bits from 1 bit to 8 bits.
| will additionally test whether the pixel discretization value can be optimized as a physical layer parameter. | will
simulate a pixel discretization value, at each pixel, by multiplying the associated raw intensity value at each pixel by a
weight, and will then using the max() operator to set a threshold. | will examine how classification accuracy varies with
this additional constraint, and will attempt to draw insights into where the network prefers to have more bits/pixel.

Dataset: 12,500 images of 4 types of blood cell https://www.kaggle.com/paultimothymooney/blood-cells

(Specify more details about simulation network, physical layer implementation and quantitative analysis)


https://www.kaggle.com/paultimothymooney/blood-cells

Our very basic convolutional neural network

Output
*

y Model / Ex. [X4,y4] EX. [XK,yK]\
Training error ~ r ~N 1T ]
Lin(Y1 f(W,X)) = <:: <: y* = f(W,X) <:
cross_entropy(y, f(W,x)) - _ y, - . :
Convolutional / /\ M X:
Neural Network I—in _ max Ws max W, max w
*
\_ y

Forward pass: from x; and current W’s, find L,

[IE=

deep imaging

Training
Data



Our very basic convolutional neural network H%

deep imaging

Output
o Uyliu Model / E_x__[x1,y1] E_X-_[XK,yK]\
Training error ~ - ~
Training
Lin(y’ f(W,X)) — <: <: y* — f(W,X) <: ves Data
cross_entropy(y, f(W,x)) - _ y, - ) a )
4 ) )
R I—in = max, W;3 max W, max W
Given a new L, !

want to update W’s R *
to make L;, smaller! \_ / } J

Backwards pass: update W from new L, via auto-differentiation




Important components of a CNN

Architecture
choices

—

CNN Architecture

CONV size, stride, pad, depth
RelLU & other nonlinearities
POOL methods

# of layers, dimensions per layer

Fully connected layers

Loss function & optimization

Type of loss function
Regularization
Gradient descent method

SGD batch and step size

deep imaging

__ Optimization
choices

N

Other specifics: Initialization, dropout, batch normalization, data normalization & augmentation

\

J

Knobs to turn to get things to work...



deep imaging

Regularization: A common pattern

Training: Add some kind Example: Batch
of randomness, Z: Normalization
y = fwl(z,2) Training:

Normalize using
stats from random

Testing: Average out randomness AN
minibatches

(sometimes approximate)

y=f(x) = E.|f(z,2)] = /p(z)f(x’z)dz Testing: Use fixed
stats to normalize

Slide from http://cs231n.stanford.edu/



http://cs231n.stanford.edu/

E—

0

Fo
—V=>

deep imaging

Regularization: A common pattern

Training: Add some kind Example: Batch
of randomness, Z: Normalization
y = fw(z, 2) Training:

Normalize using
stats from random

Testing: Average out randomness AN
minibatches

(sometimes approximate)

y=f(x) = E.|f(z,2)] = /p(z)f(l” 2)dz  Testing: Use fixed
stats to normalize

Obvious examples: Dropout, data augmentation
Advanced examples: DropConnect, Fractional Max Pooling, Stochastic Depth

Wan et al, “Regularization of Neural Networks using DropConnect”, ICML 2013

Graham, “Fractional Max Pooling”, arXiv 2014
Huang et al, “Deep Networks with Stochastic Depth”, ECCV 2016 Slide from http://cs231n.stanford.edu/



http://cs231n.stanford.edu/

—v
deep imaging

Regularization Ex. 1: Data augmentation

» Basic idea: to simulate variation that you might actually see in
real life

* It’s a form of regularization
* Not an exact science, but try it out — it’s free!

’ \ / 4

gt |
e M

L 274
5 Z g ~\.

4

V- . = [3{ X
. E M N

(== v s 7 okl SO SRS el )




Fully connected layer |

eep imaging

Regularization Ex. 2: Batch normalization (BN)

- Before BN, training very deep Batch Normalization
networks was har -

. |f u_sinfg sigmoid activations, large Batch normalization

weights could result in saturation update for inputs x: Nonlinear

. Updatingqear_lier_ layers’ weights onfinearity
causes the distribution of weights in

later layers to shift — the internal x'(i) = (x(i) = E[x(i)]) / STD[x(i)]

covariate shift

« To address this covariate shift, .
BN “resets” the layer it is applied

Mean subtract Fully connected layer

)1 * Normalize by standard
to by normalizing to 0 mean, 1 deviation
variance
* Mean and variance are computed Batch Normalization
over the batch at the current
iteration

Nonlinearity




E—

0
Fo
—_

deep imaging

Regularization Ex. 3: Dropout

* At each train iteration,
randomly delete a fraction
p of the nodes

* Prevents neurons from
being lazy

* A form of model averaging

* (related: DropConnect —

drop the connections (a) Standard Neural Net (b) After applying dropout.
instead of nodes)

{ )
S\
‘.
. A
®

\)

A

<
X
29,
NS
"’A’R
(X
<%
R
!

)
A

o
X/
X
‘ (7 \)
A
%

X
l"

/A
@
¥
\"

</
04
X1
Y%
4
"
N
\

\
(\)
X
vl
X
&
v,

’,
'5\

\)

\Ne
%
XK
0
XX
6>

4

https://medium.com/@amarbudhiraja/https-medium-com-amarbudhiraja-learning-less-to-learn-better-dropout-in-deep-machine-learning-74334da4bfc5



deep imaging

Let’s identify the following in some example code
« Structure of input/output

 Train/Validation/Test split

« Cost function

« Optimization method, steps (epochs)

« Batch size

« Data augmentation?

e Dropout?

https://deepimaging.qgithub.io/data/high level tf intro.ipynb



https://deepimaging.github.io/data/high_level_tf_intro.ipynb

What you’ll typically see...

Train Loss

17.5

15.0

125

10.0

75

5.0

25

0.0

0 2500 PpO00 7500 10000 12500 15000 17500 20000

Better optimization algorithms
help reduce training loss

—tT >

—v

deep imaging



What you’ll typically see... ﬂ%

deep imaging

Train Loss

17.5

15.0

125

10.0

75

5.0

25

0.0

0 2500 PpO00 7500 10000 12500 15000 17500 20000

Better optimization algorithms
help reduce training loss

What you can do to help out training error:
- Optimizer choice
- Optimizer step size



What you’ll typically see... ﬂ%

deep imaging
Train Loss Accuracy
175 i —e— train
15.0 +— val
125 0.8 1
10.0
0.7 1
7 £
50 06 1
25
0.0 0.5 - ..“000“0
(') 25'00 50'00 75'00 10600 125'00 15600 175'00 20600 0 25'00 50'00 75‘00 10600 125:00 15(;00 175‘00 20000
Better optimization algorithms But we really care about error on new
help reduce training loss data - how to reduce the gap?

What you can do to help out training error:
- Optimizer choice
- Optimizer step size



What you’ll typically see... ﬂ%

deep imaging

Train Loss Accuracy

175 i —e— train

15.0 +— val

125 0.8 1

10.0

0.7 -
75

5.0 06 1

25

mwM

0.0 0,5-0000".“.
6 25'00 30'00 75'00 10600 125'00 15600 175'00 20600 0 25'00 50'00 75b0 10600 125:00 15(;00 175‘00 20000
Better optimization algorithms But we really care about error on new
help reduce training loss data - how to reduce the gap?
What you can do to help out training error: What you can do to help out training error:
- Optimizer choice - More regularization!
- Optimizer step size - Dropout

- Data normalization
- Data augmentation
- A few other tricks..



deep imaging

Trick #1: Early stopping

Train

Loss Accuracy

Stop training here

lteration lteration

Stop training the model when accuracy on the validation set decreases
Or train for a long time, but always keep track of the model snapshot that worked best on val

Slide from http://cs231n.stanford.edu/



http://cs231n.stanford.edu/

Trick #2: Use Model Ensembles Geep imaging

1. Train multiple independent models
2. At test time average their results

(Take average of predicted probability distributions, then choose argmax)

Enjoy 2% extra performance
Related concept/term: majority voting

E.g., look at same dog image from test data 9X, each w/ uniquely trained model
« Get (let’s say) [6, 3] for output classification

« soguess[1,0] =it’'s adog

« Will do better than running model once!

Related technique: Test Time Augmentation
Also relevant: Dropout-type methods



Trick #3: Transfer learning

Transfer Learning with CNNs

1. Train on Imagenet

FC-4096
FC-4096

MaxPool

MaxPool

MaxPool

MaxPool

MaxPool

FC-4096

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

MaxPool

MaxPool

MaxPool

R

2. Small Dataset (C classes)

‘\\

Reinitialize
this and train

> Freeze these

Donahue et al, “DeCAF: A Deep Convolutional Activation
Feature for Generic Visual Recognition”, ICML 2014
Razavian et al, “CNN Features Off-the-Shelf: An
Astounding Baseline for Recognition”, CVPR Workshops

2014

3. Bigger dataset

F
FC-4096
FC-4096

o
6

<*— Train these

MaxPool

MaxPool

MaxPool

MaxPool

MaxPool

\

With bigger
dataset, train
more layers

> Freeze these

Lower learning rate
when finetuning;
1/10 of original LR
is good starting

] point

[IE=

deep imaging

Slide from http://cs231n.stanford.edu/



http://cs231n.stanford.edu/

E—

0
o
—_

Trick #3: Transfer learning deep imaging
: Fe1008 } very similar very different
[ Fcamse | dataset dataset
MaxPool
Conv-512
— B very little data | Use Linear You're in
T More specific Classifier on trouble... Try
Sonv-512 top layer linear classifier
—— from different
Conv-256 More generic stages
=
Conv-123 / quite a lot of | Finetune a Finetune a
= data few layers larger number
Conv-64 of layers
| Image |

Slide from http://cs231n.stanford.edu/



http://cs231n.stanford.edu/

[JE=

3ing
Transfer learning with CNNs is pervasive...
(it's the norm, not an exception)
Object Detection :
(Fast R-CNN) TR CNN pretrained Image Captioning: CNN + RNN
? 7 on ImageNet
il St T ——
External proposal ——— o
algorithm —
e.g. selective search
ConvNet
(applied to entire
START “straw” “hat”
Karpathy and Fei-Fei, “Deep Visual-Semantic Alignments for
Girshick, “Fast R-CNN”, ICCV 2015 Qenerating Image Descriptions”, CVPR 2015 :
Figure copyright Ross Girshick, 2015. Reproduced with permission. Figure copyright IEEE, 2015. Reproduced for educational purposes.

Slide from http://cs231n.stanford.edu/



http://cs231n.stanford.edu/

Trick #4: Hyperparameter optimization

@ ——

For learning_rate in range

For gradient_scheme in range(5):

Meta-learning

B. Baker et al., “Designing neural network architectures using reinforcement learning,” arXiv 2017

E. Real, ” Large-Scale Evolution of Image Classifiers,” ICML 2017



deep imaging

Visualization: a few options at different stages

During Training:
 tf.summary()
» Tensorboard
* Plots of loss/accuracy versus iteration, etc.

After Testing:

 Sliding window

ROC curve, Precision-Recall
Confusion matrix

tSNE visualization

Beyond classification:
* image-to-image similarity metrics
e segmentation accuracy and overlap metrics



TensorBoard SCALARS GRAPHS DISTRIBUTIONS HISTOGRAMS INACTIVE < (¢ * @

[[] show data download links Q Filter tags (regular expressions supported) deep Imaging
Ignore outliers in chart scaling
epoch_acc 1
Tooltip sorting method: default -
- epoch_acc
Smoothing 0.98
° 06 0975
097
0.965
Horizontal Axis 096

RELATIVE WALL 0.855

Runs -

]
&

Write a regex to filter runs

(O 1550684666.940748/train
O 1550684666.940748/validation
TOGGLE ALL RUNS

I epoch_loss 1

N

model = create_model()

model.compile(optimizer="adam',
loss="'sparse_categorical_crossentropy',
metrics=["'accuracy'])

epoch_loss

logs/fit

012

P

https://colab.research.google.com/github
/tensorflow/tensorboard/blob/master/do
cs/graphs.ipynb

log_dir="1logs/fit/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir, histogram_freq=1)

model.fit(x=x_train,
y=y_train,
epochs=5,
validation_data=(x_test, y_test),
callbacks=[tensorboard_callback])

€0

%tensorboard --logdir logs/fit

Machine Learning and Imaging — Roarke Horstmeyer (2023)




deep imaging

How to examine and present your results: a few options at different stages

Options to examine your test data after processing:
* ROC curve, Precision-Recall

« Confusion matrix

 Sliding window visualization
» Layer visualizations

« Saliency maps etc.

 tSNE visualization



Estimated label

ROC curve and confusion matrix f(x, W) deep imaging
+1 -1 Missed an event
« (Can set threshold for f(x,W) Actual label +1 | True positive [False negative
wherever

y
« Leads to sliding window between -1 |(False positive| True negative
FN and FP rate

Predict event when
there isn’t one

 Need to summarize both statistics
as a function of sliding window



_

Estimated label o JO
ROC curve and confusion matrix f(x, W) e

deep imaging

+1 -1 Missed an event

TP Rate =
Sensitivity = TP / (TP + FN) = TP / Actual positives ~ Actual label 1| True positive @@
y
-1 |(False positive| True negative
False Positive Rate = FP / (TN + FP) = FP/ Actual negatives

Predict t wh
Specificity = TN / (TN + FP) = TN / Actual negatives tggrécisﬁytegngv .
= 1 - False Positive Rate




E—

Estimated label o 2
ROC curve and confusion matrix f(x, W) S

deep imaging

+1 -1 Missed an event

TP Rate =
Sensitivity = TP / (TP + FN) = TP / Actual positives Actual label +1 | True positive (False negative

y
-1 |(False positive| True negative
False Positive Rate = FP / (TN + FP) = FP/ Actual negatives

Predict t wh
Specificity = TN / (TN + FP) = TN / Actual negatives t;grécisre]ytegngv .
= 1 - False Positive Rate

Receiver-Operator Curve

14t .~ Guessing
True
Positive
rate

0 #

O False Positive rate 1



Estimated label
ROC curve and confusion matrix f(x, W) R

+1 -1 Missed an event

TP Rate =
Sensitivity = TP / (TP + FN) = TP / Actual positives ~ Actual label 1| True positive @@
y
-1 |(False positive| True negative
False Positive Rate = FP / (TN + FP) = FP/ Actual negatives

Predict t wh
Specificity = TN / (TN + FP) = TN / Actual negatives tggrécisﬁytegngv .
= 1 - False Positive Rate

Receiver-Operator Curve

1t Guessing

True
Positive
rate

Area under the curve (AUQC): Integral of ROC curve

0 >
O False Positive rate 1



Estimated label

ROC curve and confusion matrix f(x, W) oo o
+1 -1 Missed an event

Recall =

N True positive |False negative
Sensitivity = TP / (TP + FN) = TP / Actual positives ~ ‘ctual label +1

y
-1 @p@ True negative

Predict event when
there isn’t one I

Precision = TP / (TP + FP) = TP / Estimated positives

« Sometimes, you don’t care about true negatives
(just want to find events)

* In this case, use Precision and Recall



_

Estimated label o JO
ROC curve and confusion matrix f(x, W) e

deep imaging

+1 -1 Missed an event

Recall =

N True positive |False negative
Sensitivity = TP / (TP + FN) = TP / Actual positives ~ ‘ctual label +1

y
-1 @p@ True negative

Predict event when
there isn’t one I

Precision-Recall curve Precision = TP / (TP + FP) = TP / Estimated positives

Precision

F1 Metric: (1/precision + 1/recall)

Guessing .

Recall



ROC curve and confusion matrix

Just 2 categories

Estimated label
f(x, W)

+1

-1 @p@ True negative

-1
+1 | True positive @@

Confusion Matrix: 2+ categories

Actual L

Statel (Actual)

State2 (Actual)

State3 (Actual)

Stated (Actual)

Estimated label
f(x, W)

Stated
(Predicted)

State7
(Predicted)

0.00 %

0.00 %

0.00 %

[IE=

deep imaging

State8
(Predicted)

0.00 %
0.00 %
0.00 %

0.00 %



Other performance metrics H%

deep imaging

Overlap between segmented areas: Jaccard similarity coefficient
« (also called Intersection over Union, loU)

J=|R1 nR2|/|R1UR2|

» Dice Coefficient (F1 score): 2 x (total area of overlap) / total number of pixels in both
images

« MSE, PSNR

(2410 pty + €1)(200y + c2)
(% + pg +c1)(0z + 0y +c2)

SSIM(z, y) =
» Structural Similarity (SSIM)

with:
e u, the average of z;
* u, the average of y;
e o2 the variance of z;
* o2 the variance of y;
e o, the covariance of z and y;
e c;=(k1L)?, ca=(koL)? two variables to stabilize the division with weak denominator;
« L the dynamic range of the pixel-values (typically this is 2#bits per pizel _1).
e k;=0.01 and k,=0.03 by default.



