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Machine Learning and Imaging
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Roarke Horstmeyer
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« What we have so far:
« Continuous & (possibly) complex function for images across space
* Black-box linear transformation from one domain to the next via convolution
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Signals in space and spatial frequency

deep imaging

« What we have so far:
« Continuous & (possibly) complex function for images across space
* Black-box linear transformation from one domain to the next via convolution

* Analogy:
« Time-varying voltage/current going through a circuit

- Audio signal passing through a filter Complex function of time -> frequency

+ Here, we have 2D (complex) function across space (x,y) -> spatial frequency (fy, f,)
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« What we have so far:
« Continuous & (possibly) complex function for images across space
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Signals in space and spatial frequency

deep imaging

« What we have so far:
« Continuous & (possibly) complex function for images across space
* Black-box linear transformation from one domain to the next via convolution

* Analogy:
« Time-varying voltage/current going through a circuit _ _
» Audio signal passing through a filter Complex function of time -> frequency

+ Here, we have 2D (complex) function across space (x,y) -> spatial frequency (fy, f,)
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Continuous Fourier transforms - for 2D images

deep imaging

Decomposition of a signal into elementary functions of form, exp (—2mi(fzz + fyy)) :

F{UG,9)} = O(fesfy) = | / (2, ) exp (~2mi(fo + fyy)) da dy



Continuous Fourier transforms - for 2D images

deep imaging

Decomposition of a signal into elementary functions of form, exp (—2mi(fzz + fyy)) :

F{UG,9)} = O(fesfy) = | / (2, ) exp (~2mi(fo + fyy)) da dy

U is absolutely integrable & no infinite discontinuities. The inverse Fourier transform is,
FUO o £} =Ula) = [ O f)ex @il + fy0) e,

Additional Details:
« Goodman Chapter 2.1
« Mathworld/Wikipedia, Fourier Transform



A few examples of Fourier transform pairs, 1D %@g :

deep imaging
Rectangle function Sinc function
1 _‘Avdlacv
U(X) -1’ Rect (x) ; sine (u)= sin Ty U(fX)

Triangle function

1 1
2 2

Exponential
j’\" /\\* (2e0)?
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Gaussian
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U 1 (fx, fy)

magnitude of cheetah

N\

U2(fx, fy)

magnitude of zebra phase of zebra




Important properties of the Fourier transform

* Linearity h(x) = af(x) + bg(x) -> H(f) = aF(f) + bG(f)

« Scaling h(x) = f(ax) -> H(f) = (1/a) F(f/a)

Additional Details:
« Goodman Chapter 2.1
« Mathworld/Wikipedia, Fourier Transform
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Important properties of the Fourier transform

* Linearity h(x) = af(x) + bg(x) -> H(f) = aF(f) + bG(f)
* Scaling h(x) = f(ax) -> H(f) = (1/a) F(f/a)
e Shift

h(x) = f(x-a) -> H(f) = F(f) exp(-2miaf)

Parseval’s Theorem (energy conservation) [ |h(x)|2 dx = [|H(f)|2 df

Fourier inversion theorem

Additional Details:
« Goodman Chapter 2.1
« Mathworld/Wikipedia, Fourier Transform

deep imaging



Convolution - Fourier Transform relationship: Convolution Theorem

deep imaging

Convolution theorem. If F{g(x, y)) = G(fx, fr)and F{h(x,y)} = H(fx, fr), then

F

A\

“ o€, ) hx — £ y — m) dEdn s = G(fx fv) H(fxr fo).

S

“The convolution of two functions in space can be performed by a
multiplication in the Fourier domain (spatial frequency domain)”




Example of convolution theorem, 1D

deep imaging

»(X)=sinc(ax)

AV,
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Example of convolution theorem, 1D

deep imaging
=sinc(ax) U4(x) * Us(X)
% x
J F [U4] F[Uz] ’ F -7[0,04]

ZaN

U,(f,) = rect(f,/a)




Black box transforms as convolution OR multiplication of frequencies

deep imaging

Knowing the point-spread function, it is direct to model any output of the black box, given an input:

Point spread function

h (X5, Yo)
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Black box transforms as convolution OR multiplication of frequencies %%Q

deep imaging

Knowing the point-spread function, it is direct to model any output of the black box, given an input:

Point spread function

h (X5, Yo)

F[*]

Black box
F[] Transfer Function

Ui(x;, y) — Ui(fxi’ 1:yi) * H(f, fyo) - L’Jo(fxo’ fyo)

Uo(fm, fy) — Uz(f:va fy)H(fa:; fy)

Can also multiply Fourier
transform of input with
transfer function H to
obtain Fourier transform
of output



\:
Review: black box transforms as a convolution ‘.%@

deep imaging

Knowing the point-spread function, it is direct to model any output of the black box, given an input:

Point spread function

h (X5, Yo)

F[*]

Black box
F[] Transfer Function F1[]

N\

Ui, yi) — Oi(fxi’ fyi) * H(fo fyo) — U, (fxos fyo) — U(Xos Vo)

Can also multiply Fourier
~ ~ transform of input with
Uo(fa:, fy) — Uz(fa:, fy)H(fm> fy) transfer function H to
obtain Fourier transform
of output



Conceptual questions :

1. Draw what you think the convolution of these two functions looks like:

U(x) h(x)
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Conceptual questions:

1. Dri

A

In [1l]: import numpy as np

In [50]: x = np.linspace(0,1,1000)

In [72]: U=np.sin(40*np.square(x))
V=np.exp(-300*np.square(x-0.5))

In [73]: W=np.convolve(U,V)

In [74]: import matplotlib.pylab as plt

In [75]: plt.plot(np.linspace(0,1,1999),W)

Out[75]: [<matplotlib.lines.Line2D at 0x108£42828>]

In [76]: plt.show()

3z

deep imaging

v



Conceptual questions: g<1:
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1. Draw what you think the convolution of these two functions looks like:

U(x) h(x)

H(F ORIHE) s




Conceptual questions:

1. Draw what you think the convolution of these two functions looks like:

U(x) h(x)

A
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Conceptual questions:

2. Repeat with wider convolution filter:

U(x)

H(f,)

v

A

deep imaging

v

A

v

v



Conceptual questions: §8<

i | Rieeg

deep imaging

2. Repeat with wider convolution filter:

U(x) h(x)
\ |
U | — Flatter/more ”blurred”
‘ X X X
H(f,)
NARROWER NARROWER

v
A
v
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The Sampling Theorem - from Goodman Section 2.4.1

deep imaging

Us(z,y) = comb(z/X)comb(y/Y)U(x,y)

Signal sampling occurs with:

- CMOS (pixel) sensors, PMTs, SPADs
- A-to-D after antennas
- A-to-D after acoustic transducers

Sampling interval width X and Y




The Sampling Theorem - from Goodman Section 2.4.1

deep imaging

Us(z,y) = comb(z/X)comb(y/Y)U(x,y)

Signal sampling occurs with:

- CMOS (pixel) sensors, PMTs, SPADs
- A-to-D after antennas
- A-to-D after acoustic transducers

Sampling interval width X and Y

Us(for fy) = F [comb(z/X)comb(y/Y)] * U(fa, fy)
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The Sampling Theorem - from Goodman Section 2.4.1

deep imaging

Us(fz, fy) = F [comb(z/X)comb(y/Y)] * U(fs, fy)

F [comb(z/X )comb(y/Y)] Z Z ( X %)

n=—00 Mm=—00

oo oo

Oulfet) = 330 U(s —%»fy—g)

n=—00 MmM=—00



The Sampling Theorem - from Goodman Section 2.4.1

deep imaging

F [comb(z/X )comb(y/Y)] Z Z ( ‘%’fy_g)

n=—oo m=—

ﬁs(fwafy): Z Z ﬁ(fa:_%afy_g)

& /ll ' \\
% m. .\,t ,
4l

(b)

Signal extends from (-B, -B,)
to (Bx, B,) in Fourier domain



The Sampling Theorem - from Goodman Section 2.4.1

deep imaging

F [comb(z/X )comb(y/Y)] = Z Z 0 (f“’ - %’fy B %)

n=—oo m=—0o0

S Y 0(f-%hi- )

Mask out copies with a rect function:

O\ ’,\
\A
Q'QI'O.Q

o‘s i
\ ”".\\\QMI“((' f f
’ ‘t\ “ .
\""’ ‘ \\\ €T y -
N rect [ == | rect ( ==~ | Us(fz, fy) = U (fa f
f,f'fn."wm':\'»n Hm. 9B, 2B, (fz, fy) = U(fz, fy)

/’,' \\\:. .‘ \\s’
2 4 ,,'.”Q‘Ql 7/”", ~\.

(b)

Signal extends from (-B, -B,)
to (Bx, B,) in Fourier domain Bandwidth (B,, B,) of signal



%zo

The Sampling Theorem - from Goodman Section 2.4.1 %%@

F [comb(xz/X)comb(y/Y)]| =

n=—oo m=——00

Us(for f) =% > ﬁ(fm-%,fy_gj

"' 0 AT\
\w' 'l «’ n

x\\

"\ 'N \\
”' .p f ‘ \\\ /” .

(b)

Signal extends from (-B, -B,)
to (Bx, B,) in Fourier domain

> > (%

deep imaging

n m
X ¥)

Mask out copies with a rect function:

fac f 3 .
rect (E) rect (ﬁ) Us(fmafy) — U(fma fy)



I3

rect ( fw ) rect (A) ﬁs(fm, fy) = ﬁ(‘fw, fy) deep imaging

2B 2B
L i
F o] F[e]

Machine Learning and Imaging — Roarke Horstmeyer (2024)



I3

fm f 2 T o
rect (QBm) rect (ﬁ) Us (fa:a ‘fy) = U(fm, fy) deep imaging
F[e]

U(x,y)comb(x/X)comb(y/Y)

Machine Learning and Imaging — Roarke Horstmeyer (2024)



It

fa: f z T o
rect (sz> rect (ﬁ) Us(fa:a fy) — U(fm, fy) deep imaging

F[o] h(z,y) = 4B Bysinc(2B,x)sinc(2B,y)



[|Ez=

x 2 2 *’%Q
rect (2];33) rect (;%y) Us(fa:a fy) — U(fm, fy) deep imaging
F[e] h(z,y) = 4B, Bysinc(2B,x)sinc(2By,y)

h(x,y) * (U(x,y)comb(xz/X)comb(y/Y)) =U(z,y)



[|E=

fa: f z T o
rect (QB:B) rect (ﬁ) Us(fa:a fy) — U(fm, fy) deep imaging

F[o] h(z,y) = 4B Bysinc(2B,x)sinc(2B,y)

h(x,y) * (U(x,y)comb(xz/X)comb(y/Y)) =U(z,y)

U(x,y)comb(z/X)comb(y/Y) = XY Z Z UnX,mY)i(x —nX,y—mY)

n=—oo m=—0o0



fo fu \ g ¢ N
rect (QB:B) rect (ﬁ) Us(fa:a fy) = U(fa;, fy) deep imaging

F[e] h(z,y) = 4B, Bysinc(2B,x)sinc(2By,y)
h(x,y) * (U(x,y)comb(xz/X)comb(y/Y)) =U(z,y)

U.(x,y) (from beginning) = o
U(z,y)comb(z/X)comb(y/Y) = XY 3y Y UnX,mY)é(z—nX,y—my)

n=—oo m=—0o0

U(z,y) =4B,B,XY » Y U(nX,mY)sinc[2B,(z — nX)]sinc[2B,(y — mY)]

n=—a m=——0&0



The Sampling Theorem %%@

deep imaging

When sampled appropriately, a discrete signal can exactly reproduce a continuous signal:

U(z,y) =4B, B, XY Z Z U(nX,mY )sinc [2B,(x — nX)]sinc 2B, (y — mY)]

n=—oo m=—0oo

Continuous signal: Discretized signal:
- EM field - Detected EM field
- Sound wave - Sampled sound wave

- MR signal - Sampled MR signal



What does the Sampling Theorem mean for us? ‘.%Q

deep imaging

Discretize vectors
Continuous fields (and matrices)

17
20

=) 22

21
(*) Under certain 23
conditions

25
24
26
29




Conditions to safely apply the sampling theorem

deep imaging

U(z,y) =4B,B,XY » Y U(nX,mY)sinc[2B,(x — nX)]sinc [2B,(y — mY)]

n=—o&o m=—0&0

« Sampling must be proportional to bandwidth (2B, and 2B,)
* “Nyquist” sampling: X = 1/2B,, Y = 1/2B,
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U(z,y) =4B,B,XY » Y U(nX,mY)sinc[2B,(x — nX)]sinc [2B,(y — mY)]

n=—o&o m=—0&0

+ Sampling must be proportional to bandwidth (2B, and 2B,)
* “Nyquist” sampling: X = 1/2B,, Y = 1/2B,

Half-period ~ 1/2B,  |nterval width X

(Assume largest spatial
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U(x)comb(xD()




Conditions to safely apply the sampling theorem

deep imaging

U(z,y) =4B,B,XY » Y U(nX,mY)sinc[2B,(x — nX)]sinc [2B,(y — mY)]

+ Sampling must be proportional to bandwidth (2B, and 2B,)
* “Nyquist” sampling: X = 1/2B,, Y = 1/2B,

Half-period ~ 1/2B,  |nterval width X

(Assume largest spatial /\ B
freq. in signal here) \/\/\/ X=1/2B, &

Nyquist sampling — still
sampling peak and trough

U(x)comb(xD()



Conditions to safely apply the sampling theorem

deep imaging

U(z,y) =4B,B,XY » Y U(nX,mY)sinc[2B,(x — nX)]sinc [2B,(y — mY)]

+ Sampling must be proportional to bandwidth (2B, and 2B,)
* “Nyquist” sampling: X = 1/2B,, Y = 1/2B,

Half-period ~ 1/2B,  |nterval width X

(Assume largest spatial /\ X >1/2B
freq. in signal here) § X

« ” Can’t detect the frequency
anymore!

X

U(x)comb(x/X)



Conditions to safely apply the sampling theorem

deep imaging

U(z,y) =4B,B,XY » Y U(nX,mY)sinc[2B,(x — nX)]sinc [2B,(y — mY)]

n=—o&o m=—0&0

« Sampling must be proportional to bandwidth (2B, and 2B,)
* “Nyquist” sampling: X = 1/2B,, Y = 1/2B,
* Needed to avoid aliasing

Interval width X
e 1/X>2B,  X<1/2B,

N
7N <+—>
’ \ P
/ \ AN
/ v 1 \
/ v ! ] \
/ /A . X
/ |I\ [ A N
1 vhaap ~
’ 1 N
)
v|v!
4
< < >
+“—r f
ZB X

- - FI

U(x) U(x)comb(x/X) U(f,)



Conditions to safely apply the sampling theorem

deep imaging

U(z,y) =4B,B,XY » Y U(nX,mY)sinc[2B,(x — nX)]sinc [2B,(y — mY)]

n=—o&o m=—0&0

« Sampling must be proportional to bandwidth (2B, and 2B,)
* “Nyquist” sampling: X = 1/2B,, Y = 1/2B,
* Needed to avoid aliasing

L int | X
onger interva 1/X = 2B,

\ N
I \,\I
v !
4
> < > F[]

X = 1/2B,



Conditions to safely apply the sampling theorem

deep imaging

U(z,y) =4B,B,XY » Y U(nX,mY)sinc[2B,(x — nX)]sinc [2B,(y — mY)]

n=—o&o m=—0&0

« Sampling must be proportional to bandwidth (2B, and 2B,)
* “Nyquist” sampling: X = 1/2B,, Y = 1/2B,
* Needed to avoid aliasing

Even longer interval X
J 1/X<2B,  X>1/2B,

7N
4 \ “—>
’ \ -
’ \ AN
/ v ! \
// \ :“ 1 \
N\
Y/ A4 |I\ n l’ N
/ I\'| N .
\ I N r m
(WA -
v !
J
< < >
+“—r f
2B §

> < > F [ ] S|gna|
“overlaps”

U(x) U(x)comb(x/X) 0, (aliasing)



