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• What we have so far:
• Continuous & (possibly) complex function for images across space 
• Black-box linear transformation from one domain to the next via convolution

• Analogy:
• Time-varying voltage/current going through a circuit
• Audio signal passing through a filter

• Here, we have 2D (complex) function across space (x,y) -> spatial frequency (fx, fy)

Complex function of time -> frequency

U(x,y) Fourier 
Transform

y fy

2π/Ty

Ty

Signals in space and spatial frequency

Û(fx, fy)

fxx
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Continuous Fourier transforms – for 2D images

Decomposition of a signal into elementary functions of form, :
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Additional Details:
• Goodman Chapter 2.1
• Mathworld/Wikipedia, Fourier Transform

U is absolutely integrable & no infinite discontinuities. The inverse Fourier transform is, 

Decomposition of a signal into elementary functions of form, :

Continuous Fourier transforms – for 2D images
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A few examples of Fourier transform pairs, 1D

U(x) Û(fx)
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U1(x,y) U2(x,y)
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Û1(fx, fy)

Û2(fx, fy)
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Important properties of the Fourier transform

Additional Details:
• Goodman Chapter 2.1
• Mathworld/Wikipedia, Fourier Transform

• Linearity

• Scaling

h(x) = af(x) + bg(x) -> H(f) = aF(f) + bG(f)

h(x) = f(ax) -> H(f) = (1/a) F(f/a)
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Important properties of the Fourier transform

Additional Details:
• Goodman Chapter 2.1
• Mathworld/Wikipedia, Fourier Transform

• Linearity

• Scaling

• Shift

• Parseval’s Theorem (energy conservation)

• Fourier inversion theorem

h(x) = af(x) + bg(x) -> H(f) = aF(f) + bG(f)

h(x) = f(ax) -> H(f) = (1/a) F(f/a)

h(x) = f(x-a) -> H(f) = F(f) exp(-2πiaf)

∫ |h(x)|2 dx = ∫|H(f)|2 df
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deep imaging
Convolution - Fourier Transform relationship: Convolution Theorem

“The convolution of two functions in space can be performed by a 
multiplication in the Fourier domain (spatial frequency domain)”
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x

U2(x)=sinc(ax)

x
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Example of convolution theorem, 1D

U1(x)

F [U1]

Û1(fx)

x

U2(x)=sinc(ax)

x

•

F [U2]

fx fx

Û2(fx) = rect(fx/a)
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Example of convolution theorem, 1D

U1(x)

F [U1]

Û1(fx)

x

U2(x)=sinc(ax)

x

•

F [U2]

fx fx

Û2(fx) = rect(fx/a)

fx

=
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Example of convolution theorem, 1D

U1(x)

F [U1]

Û1(fx)

F -1[Û2Û1]

x

=

U2(x)=sinc(ax)

x

•

U1(x) * U2(x)

F [U2]

fx

x

fx

Û2(fx) = rect(fx/a)

fx

=
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Knowing the point-spread function, it is direct to model any output of the black box, given an input:

Black box transforms as convolution OR multiplication of frequencies

h (xo, yo)

Ui(xi, yi)

Point spread function
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Knowing the point-spread function, it is direct to model any output of the black box, given an input:

H (fxo, fyo)Ûi(fxi, fyi)

h (xo, yo)

Ui(xi, yi)

Black box 
Transfer Function
•

F[•]

F[•]

Point spread function

Black box transforms as convolution OR multiplication of frequencies
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Knowing the point-spread function, it is direct to model any output of the black box, given an input:

H (fxo, fyo)

Can also multiply Fourier 
transform of input with 
transfer function H to 
obtain Fourier transform 
of output

Ûi(fxi, fyi) Ûo(fxo, fyo)

h (xo, yo)

Ui(xi, yi)

Black box 
Transfer Function
•

F[•]

F[•]

Point spread function

Black box transforms as convolution OR multiplication of frequencies
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Knowing the point-spread function, it is direct to model any output of the black box, given an input:

H (fxo, fyo)

Can also multiply Fourier 
transform of input with 
transfer function H to 
obtain Fourier transform 
of output

Review: black box transforms as a convolution

Ûi(fxi, fyi) Ûo(fxo, fyo)

h (xo, yo)

Ui(xi, yi) Uo(xo, yo)

Black box 
Transfer Function
•

F[•]

F-1[•]F[•]

Point spread function
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1. Draw what you think the convolution of these two functions looks like:

U(x) h(x)

=
x0 x
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Conceptual questions:
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Conceptual questions: 

1. Draw what you think the convolution of these two functions looks like:

U(x) h(x)

=

Û(fx)

•

H(fx)

fx0

x0 x

fx

x

fx

H(fx)Û(fx)
F[•]

F-1[•]
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Conceptual questions: 

1. Draw what you think the convolution of these two functions looks like:

U(x) h(x)

=

Û(fx)

•

H(fx)

fx0

x0 x

fx

x

fx
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Conceptual questions: 

2. Repeat with wider convolution filter:

U(x) h(x)

=

Û(fx)

•

H(fx)

fx0

x0 x

fx

x

fx



Machine Learning and Imaging – Roarke Horstmeyer (2024)

deep imaging

Conceptual questions: 

2. Repeat with wider convolution filter:

U(x) h(x)

=

Û(fx)

•

H(fx)

fx0

x0 x

fx

x

fx

Flatter/more ”blurred”

NARROWER NARROWER
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The Sampling Theorem – from Goodman Section 2.4.1

Signal sampling occurs with:

- CMOS (pixel) sensors, PMTs, SPADs
- A-to-D after antennas
- A-to-D after acoustic transducers

Sampling interval width X and Y
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The Sampling Theorem – from Goodman Section 2.4.1
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The Sampling Theorem – from Goodman Section 2.4.1

Signal extends from (-Bx, -By) 
to (Bx, By) in Fourier domain
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The Sampling Theorem – from Goodman Section 2.4.1

Signal extends from (-Bx, -By) 
to (Bx, By) in Fourier domain Bandwidth (Bx, By) of signal 

Mask out copies with a rect function:
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The Sampling Theorem – from Goodman Section 2.4.1

Signal extends from (-Bx, -By) 
to (Bx, By) in Fourier domain

•
Mask out copies with a rect function:
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F [•] F [•]
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F [•]
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F [•]

Us(x,y) (from beginning) = 
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Continuous signal: 
- EM field
- Sound wave
- MR signal

Discretized signal: 
- Detected EM field
- Sampled sound wave
- Sampled MR signal

The Sampling Theorem

When sampled appropriately, a discrete signal can exactly reproduce a continuous signal:
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What does the Sampling Theorem mean for us?

Continuous fields
Discretize vectors 

(and matrices)
17

20

22

21

23

25

24

26

29

(*) Under certain 
conditions

*
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Conditions to safely apply the sampling theorem

• Sampling must be proportional to bandwidth (2Bx and 2By)
• “Nyquist” sampling: X = 1/2Bx, Y = 1/2By
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Conditions to safely apply the sampling theorem

• Sampling must be proportional to bandwidth (2Bx and 2By)
• “Nyquist” sampling: X = 1/2Bx, Y = 1/2By

x

U(x)comb(x/X)

Interval width X

X < 1/2Bx
 

Half-period ~ 1/2Bx

(Assume largest spatial 
freq. in signal here)
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Conditions to safely apply the sampling theorem

• Sampling must be proportional to bandwidth (2Bx and 2By)
• “Nyquist” sampling: X = 1/2Bx, Y = 1/2By

x

U(x)comb(x/X)

Interval width X

X = 1/2Bx
 

Half-period ~ 1/2Bx

Nyquist sampling – still 
sampling peak and trough 

(Assume largest spatial 
freq. in signal here)
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Conditions to safely apply the sampling theorem

• Sampling must be proportional to bandwidth (2Bx and 2By)
• “Nyquist” sampling: X = 1/2Bx, Y = 1/2By

x

U(x)comb(x/X)

Interval width X

X > 1/2Bx
 

Half-period ~ 1/2Bx

Can’t detect the frequency 
anymore!

(Assume largest spatial 
freq. in signal here)
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Conditions to safely apply the sampling theorem

• Sampling must be proportional to bandwidth (2Bx and 2By)
• “Nyquist” sampling: X = 1/2Bx, Y = 1/2By
• Needed to avoid aliasing

x x

U(x) U(x)comb(x/X)

Interval width X

F [ ] fx

1/X > 2Bx
 

2Bx
Û(fx)

X < 1/2Bx
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Conditions to safely apply the sampling theorem

• Sampling must be proportional to bandwidth (2Bx and 2By)
• “Nyquist” sampling: X = 1/2Bx, Y = 1/2By
• Needed to avoid aliasing

x x

U(x) U(x)comb(x/X)

Longer interval X

F [ ] fx

1/X = 2Bx
 

2Bx
Û(fx)

X = 1/2Bx
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Conditions to safely apply the sampling theorem

• Sampling must be proportional to bandwidth (2Bx and 2By)
• “Nyquist” sampling: X = 1/2Bx, Y = 1/2By
• Needed to avoid aliasing

x x

U(x) U(x)comb(x/X)

Even longer interval X

F [ ] fx

1/X < 2Bx
 

2Bx
Û(fx)

X > 1/2Bx

Problem: 
signal 
“overlaps” 
(aliasing)


