deep imaging

Lecture 14: Object detection and
Segmentation

Machine Learning and Imaging

BME 548L
Roarke Horstmeyer



Training error

Lo(y, FOW,X) = |¢em H@
cross_entropy(y, f(W,x))

dL/dW

Dimensional analysis for classification:

Input x: ~R1000
Output y*: ~R2 - R0
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Training
Data



Training error

Lin(Y1 f(W!X)) —
cross_entropy(y, f(W,x))

Model
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Dimensional analysis for classification:

Input x: ~R1000
Output y*: ~R2 - R0

T

/ E_X._[X~| Vi1l E_X-_[XK,YK]\
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This class - let’s make y* bigger!

Object detection
Segmentation
Creating 3D volumes
Better resolution
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deep imaging

Training
Data



Over-determined, under-determined and balanced inverse equations o

deep imaging

W X

| <

\ 4

y is what you Balanced equation

measure (the image) - Invertible if W is “nice”
- Hard to invert otherwise

x=W-Ty

X is what you want to figure out
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Over-determined, under-determined and balanced inverse equations

deep imaging

y W X y W X

Balanced equation
- Invertible if W is “nice”
- Hard to invert otherwise

x=W-Ty

Over-determined equation

- Unique solution can exist

- If not, it’s easy to get close

- Good place — more
measurements than unknowns

x =Wty




Over-determined, under-determined and balanced inverse equations o

y

Over-determined equation

Y X y W

Unique solution can exist
If not, it’s easy to get close -
Good place — more Under-determined equation
measurements than unknowns - No unique solution for x!

- Hard to invert

- Not a good place to be

deep imaging

Balanced equation
- Invertible if W is “nice”
- Hard to invert otherwise

x=W-Ty
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Other Computer Vision Tasks

Semantic Classification Object Instance Super-
Segmentation + Localization Detection Segmentation resolution

4x SRGAN (proposed) original

d 'P'_ ) " \ =
: S AT AN g 4 ._;ﬁl l_‘l = L j ;_ Figure 1: Super-resolved image (left) is almost indistin-
- e . =— = guishable from original (right). [4x upscaling]
GRASS, CAT, CAT DOG, DOG, CAT  DOG, DOG, CAT
_ TREE, SKY L FEY )
Y Y Y
No objects, just pixels Single Object Multiple Object T s GCb oublcdomd
Balanced Over- Over- Over- Under-
equation determined determined determined determined

Stanford CS231n - http://cs231 n.stanfprd.edu
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Other Computer Vision Tasks

Semantic
Segmentation

Classification
+ Localization

Object
Detection

v =
S e — -

Instance
Segmentation

GRASS, CAT, CAT DOG, DOG, CAT  DOG, DOG, CAT
\ TREE, SKY ] Y,
Y Y Y
No objects, just pixels Single Object Multiple Object Tisimage s CCD publi domain
Balanced Over- Over- Over-
equation determined determined determined

Stanford CS231
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deep imaging

Super-
resolution

4x SRGAN (proposed) original

Figure 1: Super-resolved image (left) is almost indistin-
guishable from original (right). [4x upscaling]

Under-
determined

n - http://cs231 n.stanfgrd.edu
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Approach #1: Sliding window + occlusion map

(last lecture)

128 2

lense

128 Max

pooling 294 2048

128 2

Zeiler and Fergus, “Visualizing and Understanding Convolutional
Networks”, ECCV 2014

lense

128 Max

pooling 294

Boat image is CCO public domain
Elephant image is CCO public domain

Go-Karts image is_CCO public domain

schooner
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) imaging

Stanford CS231n - http://cs231 n.stanf,grd.edu
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schooner »§

Approach #1: Sliding window + occlusion map

0.98 b] |mag|ng
(last lecture)
Problem: Inefficient — not sharing information between
different sliding window positions (even w/ lots of overlap)
Boat image is CCO public domain -
Zeiler and Fergus, “Visualizing and Understanding Convolutional Elephantimage is CCOQ public domain - =
Networks", ECCV 2014 Go-Karts image is_CCO public domain 5h 4 -

Stanford CS231n - http://cs231 n.stanlfoord.edu
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deep imaging

Classification + Localization

Class Scores
Fully Cat: 0.9

Connected: Dog: 0.05
4096 to 1000 Car 0.0

192 128 E‘l a8
1 \ [\13
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o B 2l Max 2 Max pooling 204 s
N e\ S, NUor 4 pooling
R RO N s NP 3 @
&% Mo tb \ [ 44 i | A
Vector: Fully
B M " Connected:

4096 4006104  BoOX
Coordinates
(X, y,w,h)

Treat localization as a
regression problem!

Stanford CS231n - http://cs231 n.stanlflord.edu
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imaging

Classification + Localization Correct label:
Class Scores l
Fully Cat: 0.9 .. Softmax
Connected: Dog: 0.05 Loss
4096 to 1000 Car: 0.01

- FN
Vector: Connected:

40% 4006104  Box
Coordinates —» L2 Loss

(X’ Yy, W, h) ?

Treat localization as a

regression problem! Correct box:
(X, y, w, h)

Stanford CS231n - http://cs231 n.stanlfzord.edu



http://cs231n.stanford.edu/

[

maging

Classification + Localization Comactlabet
Class Scores l
Fully Cat: 0.9 ,. Softmax
Connected: Dog: 0.05 Loss

4096 to 1000

Car: 0.01 l

N Multitask LOSS 4= —»>Loss

! FN
Vector: Connected: I

409 4096104  Box
Coordinates —» L2 Loss

(Xv y, w, h) ?

Treat localization as a

regression problem! Correct box:
(X, y, w, )

Stanford CS231n - http://cs231 n.stanlfgord.edu
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[ IE=

ing

Classification + Localization Corectlabel
Class Scores l
Fully Cat: 0.9 .. Softmax
Connected: Dog: 0.05 Loss
4096 to 1000 Car: 0.01 l

111111

xxxx
pppppp

Treat localization as a

Often pretrained on ImageNet
(Transfer learning)

2= —>Loss

: FMA
Vector: Connected: I

409 4096104  Box
Coordinates —» L2 Loss

(X, y, w, h) i

regression problem! Correct box:

(X, y', w', ')

Stanford CS231n - http://cs231 n.stanjgrd.edu



http://cs231n.stanford.edu/

Other Computer Vision Tasks

Semantic
Segmentation

Classification
+ Localization

GRASS, ;
_ TREEJHO’</\\
No objects, just pixels Single Object
Balanced Over-
equation determined

Object
Detection

S > =
5 = -

=

deep imaging

Super-
resolution

Instance
Segmentation

4x SRGAN (proposed) original

: e j ;_ Figure 1: Super-resolved image (left) is almost indistin-
= = S “E guishable from original (right). [4x upscaling]
DOG, DOG, CAT DOG, DOG, CAT

- /)
Mu'tipmbjec.t This image is CCO public domain
Over- Over- Under-
determined determined determined

Stanford CS231n - http://cs231 n.stanjgrd.edu
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Each image needs a naging

. ] " I?
Object Detection as Regression”. TSR SR U]

CAT: (X, ¥,W,h) 4 numbers

DOG: (x,y, w, h)

DOG: (x,y,w, h) 16 numbers
CAT: (x, y, w, h)

DUCK: (x, ¥, w, h) Many
DUCK: (X, ¥, W, h) numbers!

Stanford CS231n - http://cs231 n.stanlfgrd.edu
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deep imaging

Object Detection as Classification: Sliding Window

Apply a CNN to many different crops of the
image, CNN classifies each crop as object
or background

i } Dog? NO
} Cat? NO
Background? YES

Stanford CS231n - http://cs231 n.stanlfprd.edu
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—v =
deep imaging

Object Detection as Classification: Sliding Window

Apply a CNN to many different crops of the
image, CNN classifies each crop as object
or background

=L, XX Dog? YES

w kel b Background? NO

Stanford CS231n - http://cs231 n.stanjgrd.edu
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—v =
deep imaging

Object Detection as Classification: Sliding Window

Apply a CNN to many different crops of the
image, CNN classifies each crop as object
or background

Dog? NO
Cat? YES
Background? NO

111111

Stanford CS231n - http://cs231 n.stanlf,jord.edu
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Object Detection as Classification: Sliding Window

&% 2 —~

o TS

<l

-

Apply a CNN to many different crops of the
image, CNN classifies each crop as object
or background

Y ‘ =" ><ﬂ;><: Dog? NO
== - Cat? YES
e Background? NO

Problem: Need to apply CNN to huge
number of locations, scales, and aspect
ratios, very computationally expensive!

Stanford CS231n - http://cs231 n.stang‘é)rd.edu
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Solution: First apply a fixed ROl scheme to pull out “blobs” of interest deep imaging

(Image source: van de Sande et al. ICCV"11)

Stanford CS231n - http://cs231 n.stanzflord.edu
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Region Proposals / Selective Search

e Find “blobby” image regions that are likely to contain objects

e Relatively fast to run; e.g. Selective Search gives 2000 region
proposals in a few seconds on CPU

Alexe et al, “Measuring the objectness of image windows”, TPAMI 2012 N Ote: Tral n I n g d ataset h as m arked boxes y SO d O n ,t
Uijlings et al, “Selective Search for Object Recognition”, IJCV 2013 . . .

C_hepg et al, “BING: Binarized normed_gradignts for objectness estimation at 300fps”, CVPR 2014 necessarl Iy need to do Sel eCtlve SearCh fo r tral n | ng y
Zitnick and Dollar, “Edge boxes: Locating object proposals from edges”, ECCV 2014

just evaluation/testing

Stanford CS231n - http://cs231 n.stang‘zord.edu
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R-CNN

Bbox reg || SVMs

et

Bbox reg || SVMs
Bbox reg SVMs ‘
ConvN
et
ConvN

ConvN

et

[E=

Linear Regression for bounding box offsets rep imaging

Classify regions with
SVMs

Forward each
region through
ConvNet

& Warped image regions

Regions of Interest
(Rol) from a proposal
method (~2k)

Girshick et al, “Rich feature hierarchies for accurate object detection and
semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

Stanford CS231n - http://cs231 n.stang‘sord.edu
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Fast R-CNN

Regions of
Interest (Rols)
from a proposal
method

ANTIERLNY

ConvNet

e

deep imaging

“Rol Pooling” layer

y 2 ; &ﬁ/ “conv5” feature map of image

Forward whole image through ConvNet (Main features first,
instead of repeating
2000X)

Input image

Girshick, “Fast R-CNN”, ICCV 2015.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

Stanford CS231n - http://cs231 n.stang‘grd.edu
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deep imaging

Fast R-CNN: Rol Pooling

Divide projected

Project proposal proposal into 7x7
onto features / grid, max-pool Fully-connected
within each cell layers
CNN |:|
Hi-res input image: Hi-res conv features: Rol conv features:  Fully-connected layers expect
3 X 640 x.480 512 x 20 x 15; 512x7x7 low-res conv features:
with region for region proposal 512x 7 x7
proposal Projected region
proposal is e.g.
512x18x 8

(VarIeS per pl'OpOS&|) Girshick, “Fast R-CNN”, ICCV 2015.

Stanford CS231n - http://cs231 n.stan;:prd.edu



http://cs231n.stanford.edu/

Fast R-CNN

(Training)

Log loss + Smooth L1 loss

o

L}

softmax ,
Linear
FCs
A & &

ConvNet

AL

Input image

[E=

deep imaging

Multi-task loss

Girshick, “Fast R-CNN”, ICCV 2015.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

Stanford CS231n - http://cs231 n.stang‘grd.edu
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R-CNN vs SPP vs Fast R-CNN

i Test time (seconds)
Tral ni ng tl me (HOU rS) B Including Region propos... [l Excluding Region Propo...

R-CNN R-CNN

SPP-Net
SPP-Net

Fast R-CNN 8.75

p 2
Fast R-CNN l 3
0 25 50 75 100 0.32

Girshick et al, “Rich feature hierarchies for accurate object detection and semantic segmentation”, CVPR 2014.
He et al, “Spatial pyramid pooling in deep convolutional networks for visual recognition”, ECCV 2014
Girshick, “Fast R-CNN”, ICCV 2015

Stanford CS231n - http://cs231 n.stang‘prd.edu
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Faster R-CNN:

Make CNN do proposals!

Insert Region Proposal | '
Network (RPN) to predict , Rol pooling

proposals from features

| proposzy
Jointly train with 4 losses:

1. RPN classify object / not object Region Proposal Network /¢
2. RPN regress box coordinates H
3. Final classification score (object Tt g -

classes)
4. Final box coordinates

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015 LT LA = A
Figure copyright 2015, Ross Girshick; reproduced with permission

Stanford CS231n - http://cs231 n.stanzgord.edu
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Faster R-CNN:

Make CNN do proposals!

Insert Region Proposal Classification Bounding-box
Network (RPN) to prediCt loss regression loss

proposals from features "R p Y
SN &
. /propOSaIs M
R-CNN Test-Time Speed /
Al Region Proposal Network ',

SPP-Net

feature map
Fast R-CNN 2.3 2

Faster R-CNN| 0.2
0 15 30 45 CNN

) V4

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015 o2 7
Figure copyright 2015, Ross Girshick; reproduced with permission 5

Stanford CS231n - http://cs231 n.stang‘gord.edu
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Detection without Proposals: YOLO / SSD

Go from input image to tensor of scores with one big convolutional network! >

Within each grid cell:

- Regress from each of the B
base boxes to a final box with
5 numbers:
(dx, dy, dh, dw, confidence)

- Predict scores for each of C
classes (including
background as a class)

Input image Divide image into grid Output:

3XHxW 7x7 IXTxB*B+C)
Image a set of base boxes
Redmon et al, “You Only Look Once: centered at each grld cell
Unified, Real-Time Object Detection”, CVPR 2016 H ere B — 3
Liu et al, “SSD: Single-Shot MultiBox Detector”, ECCV 2016

Stanford CS231n - http://cs231 n.stan_jgrd.edu
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Object Detection: Impact of Deep Learning

mean Average Precision (mAP)

80%

70%

60%

50%

40%

30%

20%

10%

0%

Figure copyright Ross Girshick, 2015.

Reproduced with permission.

2006

PASCALVOC

Before deep convnets

A

A

2007 2008 2009 2010 2011
year

| \ J
A Y
Using deep convnets

2012 2013 2014 2015 2016

Stanford CS231n - http://cs231 n.stan_jlord.edu
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Other Computer Vision Tasks

Classification
+ Localization

Semantic
Segmentation

v
T &
= e L

=

deep imaging

Super-
resolution

Instance

Object
Segmentation

Detection

4x SRGAN (proposed) original

= e j ;_ Figure 1: Super-resolved image (left) is almost indistin-
- =— = “E guishable from original (right). [4x upscaling]
GRASS, CAT, DOG, DOG, CAT  DOG, DOG, CAT
\_ TREE, SKY ) rFaY )
Y Y
No objects, just pixels Single Object Multiple Object Tis i is OG0 publc domai
Balanced Over- Over- Over- Under-
equation determined determined determined determined

Stanford CS231n - http://cs231 n.stanjzcnrd.edu
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deep imaging

Semantic Segmentation

This image is CCO public domain

Label each pixel in the
image with a category
label

Don’t differentiate
instances, only care about
pixels

Stanford CS231n - http://cs231 n.stan_jg)rd.edu
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Convolutional neural

networks for automated
annotation of cellular

cryo-electron tomograms

Muyuan Chen!2, Wei Dai*4, Stella Y Sun?,

Darius Jonasch?, Cynthia Y He3, Michael F Schmid?,

Wah Chiu? & Steven J Ludtke2®

Trained
neural
b Positive examples Negative examples network
2D patches s ; ) Input 7y
from ot e .
tomogram  [88 L0, Train :
Corresponding /
manual / Target | :
annotation output H
Neural
network
=
Neural Output
network Output

output

deep imaging
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deep imaging

Other possible examples:
Retinal Prostate CT

»*
¥ bud neck
cell periphery
bud neck actin bud neck

cell periphery cell periphery 5
cytoplasm
cell periphel o &) )
bud lp '
Il periph
it cell periphery cytoplasm endosome
g G

L3
L
™

all Jacobian maps thresholded cell outlines

)

Oren Z. Kraus et al., “Classifying and Segmenting Microscopy Images
Using Convolutional Multiple Instance Learning,” arXiv 2015

M. Drozdzal et al., Learning Normalized Inputs for Iterative Estimation
in Medical Image Segmentation (2017)

(a) Input image (b) FC-ResNet with dropout at test (c) Segmentation result of our ] ) . ]
time [17] pipeline Z. Zhang et al., Recent Advances in the Applications of Convolutional

Neural Networks to Medical Image Contour Detection (201
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deep imaging

Semantic Segmentation Idea: Fully Convolutional ?

Design a network as a bunch of convolutional layers
to make predictions for pixels all at once!

Conv Conv argmax

—_— —

Input: .

3xHxW Y Scores: Predictions:

CxHxW HxW

Problem: Ut t Convolutions:
roblem: convolutions a DxHxW

original image resolution will
be very expensive ...

Stanford CS231n - http://cs231 n.stan_joprd.edu
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Instead, compress x-y dimensions of input image

deep imaging
U-Net Architecture
. . 1 64 64
» Compress spatial features into
. 128 64 64 2
learned filters ‘
. Com press Decom press
« Then, decompress learned filters input
. . . output
back into same spatial Image e+ 1™ ™| segmentation
dimensions 2| 8 8§ map
' 128 128 I
256 128
U-Net: Convolutional Networks for Biomedical % % % Jl;l;l
Image Segmentation ¥ 256 256 512 256 t
Ll > . U ->I
Olaf Ronneberger, Philipp Fischer, and Thomas Brox § ol © é[l Ngl Ng =>conv 3x3, ReLU
T s o t ST copy and crop
Computer Science Depart{}f;:,i ;::g, Boi(éfzbii:rg ;'(r)rrn fril;logical Signalling Studies, ?‘8.?- ?- %\:1024- tS-lZ ?- ' max po ol 2x2
ronneber@informatik.uni-freiburg.de, e 3 ’ 1024 ‘ = S * up-conv 2X2
WWW h : http://1lmb.inf tik.uni-freib .de/ o
ome page P mp. 1. ormatil uni reliburg.ae g-?%_?g_ » Conv lxl

37
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Semantic Segmentation ldea: Fully Convolutional
Downsampling: Design network as a bunch of convolutional layers, with Upsampling:
Pooling, strided downsampling and upsampling inside the network! 277
SoRvBtion Med-res: Med-res:
D, x H/4 x W/4 D,x H/4 x W/4
( y r (
Low-res: q
D,x H/4 x W/4
Input: High-res: High-res: Predictions:
3xHxW D, x H/2 x W/2 D, x H/2 x W/2 Lise

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015
Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015

38
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In-Network upsampling: “Unpooling”
Nearest Neighbor N P “Bed of Nails” 1 ola2 o
12 1. 1|22 2 0/0]0 0
3 4 o 33|44 3 4 3,04 0
3 3|4 4 0 0|0 O
Input: 2 x 2 Output: 4 x 4 Input: 2 x 2 Output: 4 x 4

Stanford CS231n - http://cs231 n.stang‘gord.edu
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In-Network upsampling: "Max Unpooling” —

Max Pooling

. Max Unpoolin
Remember which element was max! P 9

Use positions from

172186 3 pooling layer 0o 0 2 0
3512 1 5 6 1 2 - 0O 1 0 0
112121 718 Rest of the network > |4 010100
7 3|4 8 3 0 0 4
Input: 4 x 4 Output: 2 x 2 Input: 2 x 2 Output: 4 x 4

Corresponding pairs of
downsampling and
upsampling layers

Stanford CS231n - http://cs231 n.stanjgrd.edu
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e
Learnable Upsampling: Transpose Convolution

Recall: Normal 3 x 3 convolution, stride 2 pad 1

>

Dot product
between filter
and input

Input: 4 x 4 Output: 2 x 2

Stanford CS231n - http://cs231 n.stanjlord.edu


http://cs231n.stanford.edu/

g
Learnable Upsampling: Transpose Convolution

Recall: Normal 3 x 3 convolution, stride 2 pad 1

> Filter moves 2 pixels in

Dot product the input for every one

between filter pixel in the output

and input
Stride gives ratio between
movement in input and
output

Input: 4 x 4 Output: 2 x 2

Stanford CS231n - http://cs231 n.stanjgrd.edu
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Learnable Upsampling: Transpose Convolution

3 x 3 transpose convolution, stride 2 pad 1

Input gives
weight for
filter

Input: 2 x 2 Output: 4 x 4

Stanford CS231n - http://cs231 n.stanL]fSord.edu
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Learnable Upsampling: Transpose Convolution

Sum where

3 X 3 transpose convolution, stride 2 pad 1 output overlaps

Filter moves 2 pixels in

Input gives the output for every one
weight for pixel in the input
filter
Stride gives ratio between
movement in output and
input
Input: 2 x 2 Output: 4 x 4

Stanford CS231n - http://cs231 n.stanjgrd.edu
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Learnable Upsampling: 1D Example

Output
In pUt Filter Output contains
aX copies of the filter
— yveighted by _the
- X ay Input, summing at
) where at overlaps in
the output
y az H|bx

b Need to crop one
—_ pixel from output to
< / by make output exactly
2x input
bz

Stanford CS231n - http://cs231 n.stanj_:prd.edu
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Convolution as Matrix Multiplication (1D Example)

(i e R o

= i

We can express convolution in
terms of a matrix multiplication

C s T R

rxa=Xa

e 8 O S
> = e o

N e O

O 80 O O

ay + bz
ar + by + cz
bx 4+ cy + dz

cx + dy

Example: 1D conv, kernel
size=3, stride=1, padding=1

40
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Convolution as Matrix Multiplication (1D Example)

S D S 5

= = R

We can express convolution in
terms of a matrix multiplication

R -

e O

Fha=X

o
0 0] |a
0 Of (b
& 0 &
gy w®| |d

__O_

-

a

ay + bz
axr + by + cz
bx + cy + dz

cx + dy

Example: 1D conv, kernel
size=3, stride=1, padding=1

Convolution transpose multiplies by the
transpose of the same matrix:

ral g=X"¢

ax

a ay + bx

b az + by + cx

c bz + cy + dx

d cz + dy
dz

o R o B M

0
0
*
Y
2
0

o - A o i oo i eo

- e NS o

When stride=1, convolution transpose is
just a regular convolution (with different
padding rules)

47
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Convolution as Matrix Multiplication (1D Example)

We can express convolution in
terms of a matrix multiplication

rxa=Xa

:I:y:BOOO]

| ay+bz
0 0 z vy x O -

bx + cy + dz

O QAU O TR O

Example: 1D conv, kernel
size=3, stride=2, padding=1

48
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Convolution as Matrix Multiplication (1D Example)

We can express convolution in
terms of a matrix multiplication

- [bx—l—cy—l—dz

Example: 1D conv, kernel
size=3, stride=2, padding=1

ay + bz

|

Convolution transpose multiplies by the
transpose of the same matrix:

74t g=X4qd

C oo R S =
onNMe 8 9 O

When stride>1, convolution transpose is

no longer a normal convolution!

49



Segmentation: need a map of classes for label

Input =% “
image
.ln". "'i\;;“:

U-Net: Convolutional Networks for Biomedical
Image Segmentation

Olaf Ronneberger, Philipp Fischer, and Thomas Brox

Computer Science Department and BIOSS Centre for Biological Signalling Studies,
University of Freiburg, Germany
ronneber@informatik.uni-freiburg.de,

WWW home page: http://1lmb. informatik.uni-freiburg.de/

572 x 572

'.,

1 64 64
»
Off ©
~fil ©
To] WY?)
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Instead, compress x-y dimensions of input image
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U-Net Architecture
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Instead, compress x-y dimensions of input image
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Another example: Denoising Autoencoder
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Code review: See the following:

Jupyter Notebook: A simple Autoencoder in Tensorflow/Keras

https://deepimaging.github.io/lectures/
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https://deepimaging.github.io/lectures/
https://deepimaging.github.io/data/Simple_Autoencoder.ipynb
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Example: Variational Autoencoder (VAE)

Force this vector to follow a Gaussian PDF

=

* Good generative model

Encoder Decoder - . .
Network | = = | Network * Have a clean probability distribution to
(conv) (iccony) select from to generate new examples

latent vector / variables

Minimize (KL) distance between latent
vector and Gaussian normal

VAE reconstruction




Example: Variational Autoencoder (VAE)

Force this vector to follow a Gaussian PDF

=

Encoder
Network

(conv)

— —

Minimize (KL) distance between latent

Decoder
Network

(deconv)

latent vector / variables

vector and Gaussian normal

deep imaging
* With Gaussian PDF, can start to

add/subtract latent vector in a
normalized vector space

Face without glasses

Adding new features to samples
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Example: Variational Autoencoder (VAE)

* With Gaussian PDF, can start to
add/subtract latent vector in a

Force this vector to follow a Gaussian PDF normalized vector space
Encoder Decoder
Network — = | Network
(conv) (deconv)
latent vector / variables Face without glasses

Minimize (KL) distance between latent

_ Adding new features to samples
vector and Gaussian normal

Glasses

Generative Example (once trained):

* Encode image with glasses, obtain latent vector PDF P,
* Encode image without glasses, obtain PDF Py,

* Compute diff = P,- P,

* Encode new image to obtain P, , add in diff

* Decode P, + diff to get guy with glasses!

Exploring a specific variation of input data[1]



