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This lecture uses material from:
• A. Baydin et al., Automatic Differentiation in Machine Learning: a Survey
• Stanford CS231n
• Deep Learning by I. Goodfellow
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CNN Architecture Loss function & optimization

• CONV size, stride, pad, depth

• ReLU & other nonlinearities

• POOL methods

• # of layers, dimensions per layer

• Fully connected layers 

• Type of loss function

• Regularization

• Gradient descent method

• SGD batch and step size

Other specifics: Pre-processing, initialization, dropout, batch normalization, augmentation

Architecture 
choices

Optimization 
choices

How does the optimizer actually work???
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Model
Output

y* Ex. [x1,y1] Ex. [xK,yK]

…
Training 
Data

Training error

Lin(y, f(W,x)) = y* = f(W,x)
cross_entropy(y, f(W,x))

Our very basic convolutional neural network

Forward pass: from xi and current W’s, find Lin

y*

xi
= W3 W2 W1

maxmaxmaxLin
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Model
Output

y* Ex. [x1,y1] Ex. [xK,yK]

…
Training 
Data

Training error

Lin(y, f(W,x)) = y* = f(W,x)
cross_entropy(y, f(W,x))

Our very basic convolutional neural network

Backwards pass: from new Lin, need to update W’s! How?

y*

xi
= W3 W2 W1

maxmaxmax

Given a new Lin, 
want to update W’s
to make Lin smaller! 

Lin
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• Here, let’s assume we’ll use the steepest descent algorithm to “go down the hill”:
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Input: labeled training examples [xi,yi] for i=1 to N, initial guess of W’s

while loss function is still decreasing:
Compute loss function L(W,xi,yi)
Update W to make L smaller: 

dL/dW = evaluate_gradient(W,xi,yi,L)
W = W – step_size * dL/dW

• Here, let’s assume we’ll use the steepest descent algorithm to “go down the hill”:
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Input: labeled training examples [xi,yi] for i=1 to N, initial guess of W’s

while loss function is still decreasing:
Compute loss function L(W,xi,yi)
Update W to make L smaller: 

dL/dW = evaluate_gradient(W,xi,yi,L)
W = W – step_size * dL/dW

Options to evaluate dL/dW:
1. Numerical gradient
2. Analytic gradient
3. Automatic differentiation

Review: how can we determine the optimal W?

• Here, let’s assume we’ll use the steepest descent algorithm to “go down the hill”:



Machine Learning and Imaging – Roarke Horstmeyer (2023)

deep imaging

Input: labeled training examples [xi,yi] for i=1 to N, initial guess of W’s

while loss function is still decreasing:
Compute loss function L(W,xi,yi)
Update W to make L smaller: 

dL/dW = evaluate_gradient(W,xi,yi,L)
W = W – step_size * dL/dW

Options to evaluate dL/dW:
1. Numerical gradient
2. Analytic gradient
3. Automatic differentiation

*Note: Other gradient 
descent methods require 
the same fundamental 
calculation. So how 
gradient is computed is 
a different problem then 
how it is used

Review: how can we determine the optimal W?

• Here, let’s assume we’ll use the steepest descent algorithm to “go down the hill”:
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dL(W1)/dW1 = 12.8-12.79/.001
dL(W1)/dW1 = 10

With a matrix, compute this for each entry:

1. Numerical gradient, a simple example

W1+h = [1.001,2;3,4]
L(W1+h, x, y) = 12.8 

Example: 

W = [1,2;3,4]
L(W, x, y) = 12.79

Pros: Simple! Easy to code up!

Cons: Slow…really slow. And approximate

”Go down the hill”
L(W)

L(W+h)
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2. Analytic gradient, a simple example

x1 x2

y=-1
y=+1Linear classification 

boundary

Evaluate this function and use to iterative 
update weights W

Pros: Fast and exact

Cons: Error prone, especially with deep networks…

Analytically compute 
new function



Machine Learning and Imaging – Roarke Horstmeyer (2023)

deep imaging3. Automatic differentiation – what we’ll use without knowing it 

Resources:

- Stanford CS231n, Lecture 4 notes and resources
- http://cs231n.stanford.edu/syllabus

- I. Goodfellow et al., Deep Learning Chapter 6 Section 5
- https://www.deeplearningbook.org/contents/mlp.html

- A. Baydin et al., “Automatic differentiation in machine learning: a survey”
- https://arxiv.org/pdf/1502.05767.pdf

http://cs231n.stanford.edu/syllabus
https://www.deeplearningbook.org/contents/mlp.html
https://arxiv.org/pdf/1502.05767.pdf
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A. Baydin et al., Automatic Differentiation 
in Machine Learning: a Survey

3. Automatic differentiation –
what is it?

• Not solely numerical or analytic

• Use insights into formation of final 
function 

• Split into elementary operations

• Perform analytic (symbolic) 
differentiation at elementary 
operation level

• Keep intermediate numeric results

• Repeat process in lock-step with 
evaluation of final function
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3. Automatic differentiation –
what is it?

• Not solely numerical or analytic

• Use insights into formation of final 
function 

• Split into elementary operations

• Perform analytic (symbolic) 
differentiation at elementary 
operation level

• Keep intermediate numeric results

• Repeat process in lock-step with 
evaluation of final function
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*

+

sin( )

-

A. Baydin et al., Automatic Differentiation 
in Machine Learning: a Survey
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ln( )

*

+

sin( )

-

• Create graph of local operations

• Compute analytic (symbolic) gradient at each node (unit) in graph

• Use inter-relationships to establish final desired gradient, df/dx1
• Forward differentiation
• Backwards differentiation = Backpropagation

A. Baydin et al., Automatic Differentiation 
in Machine Learning: a Survey

To both determine f and find df/dxi :
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ln( )

*

+

sin( )

-

A. Baydin et al., Automatic Differentiation 
in Machine Learning: a Survey
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+

-

Set to 1 because 
we want df/dx1

1

0

ln( )

*

sin( )

A. Baydin et al., Automatic Differentiation 
in Machine Learning: a Survey
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ln( )

*

+

sin( )

-

Compute local 
derivative for all
inputs and 
accumulate with 
chain rule

A. Baydin et al., Automatic Differentiation 
in Machine Learning: a Survey
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ln( )

*

+

sin( )

-

Leads to final 
desired df/dx1

A. Baydin et al., Automatic Differentiation 
in Machine Learning: a Survey
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ln( )

*

+

sin( )

-

Problem:
- For N inputs, need to 

compute this N times, 
setting xi to 1 each 
time…

Forward automatic differentiation
A. Baydin et al., Automatic Differentiation 
in Machine Learning: a Survey
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ln( )

*

+

sin( )

-

Problem:
- For N inputs, need to 

compute this N times, 
setting xi to 1 each 
time…

Solution:
Work backwards from 
end to start with back-
propagation

Forward automatic differentiation
A. Baydin et al., Automatic Differentiation 
in Machine Learning: a Survey
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Treat intermediate nodes like a dummy variable z, for L(w1)

Key Idea: dL/dw1 = (dL/dz)(dz/dw1)
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Backpropagation explanation from Stanford CS231N Slides

Go over slides 12-44 here: http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture4.pdf

Other useful info here: http://cs231n.github.io/optimization-2/

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture4.pdf
http://cs231n.github.io/optimization-2/
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come into an operation?

Answer:
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prop?

Answer: It is a bit complicated

Here is some helpful information: 
https://www.tensorflow.org/guide/intro_to_graphs

Can use
- tf.function
- Tf.graph

To visualize and understand graph structure

https://www.tensorflow.org/guide/intro_to_graphs
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Last thing – matrix and vector derivatives

• When confused, write out one entry, solve derivative and generalize

• Use dimensionality to help (if x has N elements, and y has M, then dy/dx must be NxM
• Take advantage of The Matrix Cookbook:

• https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf

Here’s a review:
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Let’s go through an example:

L = || W2 ReLU(W1 X) ||22 (2-layer network with MSE where we 
neglect labels y for now)

dL/dW1 = ? dL/dW2 = ?



Machine Learning and Imaging – Roarke Horstmeyer (2023)

deep imaging
Let’s go through an example:

L = || W2 ReLU(W1 X) ||22 (2-layer network with MSE where we 
neglect labels y for now)

dL/dW1 = ? dL/dW2 = ?

Z1 = XW1 h1 = ReLU(z1)

Forward pass: solve for z1, h1, ŷ and L

ŷ = h1W2 L = || ŷ ||22
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Let’s go through an example:

L = || W2 ReLU(W1 X) ||22 (2-layer network with MSE where we 
neglect labels y for now)

dL/dW1 = ? dL/dW2 = ?

Backpropagation from L to W2

Z1 = XW1 h1 = ReLU(z1)

ŷ = h1W2 L = || ŷ ||22
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Let’s go through an example:

L = || W2 ReLU(W1 X) ||22 (2-layer network with MSE where we 
neglect labels y for now)

dL/dW1 = ? dL/dW2 = ?

Gradients for scalar L will have 
same shape as denominator  

Z1 = XW1 h1 = ReLU(z1)

ŷ = h1W2 L = || ŷ ||22
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Let’s go through an example:

L = || W2 ReLU(W1 X) ||22 (2-layer network with MSE where we 
neglect labels y for now)

dL/dW1 = ? dL/dW2 = ?

Z1 = XW1 h1 = ReLU(z1)

ŷ = h1W2 L = || ŷ ||22

dh1
W2

T
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Let’s go through an example:

L = || W2 ReLU(W1 X) ||22 (2-layer network with MSE where we 
neglect labels y for now)

dL/dW1 = ? dL/dW2 = ?

Z1 = XW1 h1 = ReLU(z1)

ŷ = h1W2 L = || ŷ ||22

dh1
W2

T= 2ŷW2
T

dh1
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Let’s go through an example:

L = || W2 ReLU(W1 X) ||22 (2-layer network with MSE where we 
neglect labels y for now)

dL/dW1 = ? dL/dW2 = ?

Z1 = XW1 h1 = ReLU(z1)

ŷ = h1W2 L = || ŷ ||22

2ŷW2
T
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Let’s go through an example:

L = || W2 ReLU(W1 X) ||22 (2-layer network with MSE where we 
neglect labels y for now)

dL/dW1 = ? dL/dW2 = ?

Z1 = XW1 h1 = ReLU(z1)

ŷ = h1W2 L = || ŷ ||22

dh1
dz

dL
2ŷW2

T
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Let’s go through an example:

L = || W2 ReLU(W1 X) ||22 (2-layer network with MSE where we 
neglect labels y for now)

dL/dW1 = ? dL/dW2 = ?

Z1 = XW1 h1 = ReLU(z1)

ŷ = h1W2 L = || ŷ ||22

dL 2ŷW2
T
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Let’s go through an example:

L = || W2 ReLU(W1 X) ||22 (2-layer network with MSE where we 
neglect labels y for now)

dL/dW1 = ? dL/dW2 = ?

Z1 = XW1 h1 = ReLU(z1)

ŷ = h1W2 L = || ŷ ||22

2ŷW2
TdLdL

dW1
= dL

dz1
dz1
dW1
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L = || W2 ReLU(W1 X) ||22 (2-layer network with MSE where we 
neglect labels y for now)

dL/dW1 = ? dL/dW2 = ?

Z1 = XW1 h1 = ReLU(z1)
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Let’s go through an example:

L = || W2 ReLU(W1 X) ||22 (2-layer network with MSE where we 
neglect labels y for now)

dL/dW1 = ? dL/dW2 = ?

Z1 = XW1 h1 = ReLU(z1)

ŷ = h1W2 L = || ŷ ||22

2xTŷW2
TdL

dW1
=
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L = || W2 ReLU(W1 X) ||22

dL/dW1 = ?

2xTŷW2
TdL

dW1
=
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• Tensorflow: define variables, series of operations & a cost function

• When you hit enter, Tensorflow effectively forms two graphs

• Forward graph to evaluate function at each node

• Backprop: Backwards graph that includes local derivatives of 
each operation as symbolic functions, as well as connections

• Tensorflow will go through the forward graph & save numerical results, 
then the backwards graph, to update weights via local operations, to 
minimize cost function

• Uses more impressive operations to do this with vectors and matrices 
efficiently


