
Machine Learning and Imaging – Roarke Horstmeyer (2024)
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• Light as a continuous wave
• Light transformations as a black box
• Linear black-box systems
• Convolutions in 1D and 2D
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Recall: what is an image?

2. “Physical” Interpretation

Physical world
(Object plane)

Electromagnetic 
radiation

“Collection” 
Element

Image plane

Continuous signal:
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3. “Digital” Interpretation

Discrete signalPhotons to 
electrons

Digitazation

n x m array

Recall: what is an image?
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Images unrolled into vectors
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Quick break:

A. Please create a 5x5 matrix with integer values that represent a “smiley face”

B. Please transform your matrix from (A) into a column vector
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Real World
Measurement device

Digitization 
Machine LearningML+Imaging pipeline introduction

γ -> e-
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Continuous
complex fields

(this class)

Black box transformations
• Convolution
• Fourier Transform

(this class, next class)

ML+Imaging pipeline introduction

Real World
Measurement device

Digitization 
Machine Learning

γ -> e-
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(this class) (next 
class)

ML+Imaging pipeline introduction

Real World
Measurement device

Digitization 
Machine Learning

γ -> e-

(this class, next class)
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Start at the beginning: Electromagnetic waves

From: https://www.miniphysics.com/electromagnetic-spectrum_25.html

https://www.miniphysics.com/electromagnetic-spectrum_25.html
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Start at the beginning: Electromagnetic waves

Maxwell’s 
equations 

Free-space 
propagation Scalar solution, 1 freq.

A(r1) cos(kr1 – ωt)

From: https://www.miniphysics.com/electromagnetic-spectrum_25.html

https://www.miniphysics.com/electromagnetic-spectrum_25.html
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The general idea:
1. We will treat light as a wave (an 

“optical field”)

Start at the beginning: EM fields and the black box
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The general idea:
1. We will treat light as a wave (an 

“optical field”)

U(r1) = A(r1) cos(kr1 – ωt)

(We will get into the details of 
optical fields in a few weeks)

r1=(x1,y1,z1)

Start at the beginning: EM fields and the black box
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The general idea:
1. We will treat light as a wave (an 

“optical field”)

2. It enters an optical system, which 
we treat as a black box

3. This black box has a number of 
useful properties

Optical 
system

r1=(x1,y1,z1)

U(r1) = A(r1) cos(kr1 – ωt)

Start at the beginning: EM fields and the black box
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The general idea:
1. We will treat light as a wave (an 

“optical field”)

2. It enters an optical system, which 
we treat as a black box

3. This black box has a number of 
useful properties

4. The black box outputs an optical 
field

A(r1) cos(kr1 – ωt)

Optical 
system

A(r2) cos(kr2 – ωt)

Start at the beginning: EM fields and the black box
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The general idea:
1. We will treat light as a wave (an 

“optical field”)

2. It enters an optical system, which 
we treat as a black box

3. This black box has a number of 
useful properties

4. The black box outputs an optical 
field, which then enters another 
optical system or a digital system

5. We can cascade these boxes…A(r1) cos(kr1 – ωt)

Optical 
system

A(r2) cos(kr2 – ωt)

Optical
or

Digital 
system

Start at the beginning: EM fields and the black box



Machine Learning and Imaging – Roarke Horstmeyer (2024)

deep imaging
Linear systems and the black box

Simplification #1: Let’s forget about light changing as a function of time. It does so either 
way too fast, or way too slow:

A(r) cos(kr – ωt) -> A(r) cos(kr) 
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Linear systems and the black box

A(r) cos(kr – ωt) -> A(r) cos(kr) 

Simplification #2: We’ll use complex numbers when required, it’ll make our lives easier. This 
leads to the complex field, U(r):

A(r) cos(kr) <-> A(r) eik•r = U(r)

Simplification #1: Let’s forget about light changing as a function of time. It does so either 
way too fast, or way too slow:
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Some things you need to recall about complex numbers

U = x + i y, i =√-1 

Real

Imag.

x

y
P (U = 𝑥 + 𝑦𝑖)
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Some things you need to recall about complex numbers

U = x + i y, i =√-1 

Real

Imag.

x

y θ

P (U = 𝑥 + 𝑦𝑖)
A

A = √(x2 + y2) 

θ = atan(y/x)
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Some things you need to recall about complex numbers

U = x + i y, i =√-1 

Real

Imag.

x

y θ

P (U = 𝑥 + 𝑦𝑖)

More useful representation:

U = A eiθ

x = A cosθ 
y = A sinθ 
U = A (cosθ + i sinθ)A

A = √(x2 + y2) 

θ = atan(y/x)

A = Amplitude of field

θ  = Phase of field
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Linear systems and the black box

A(r) cos(kr – ωt) -> A(r) cos(kr) 

Simplification #2: We’ll use complex numbers when required, it’ll make our lives easier. This 
leads to the complex field, U(r):

A(r) cos(kr) <-> A(r) eik•r = U(r)

Simplification #1: Let’s forget about light changing as a function of time. It does so way too 
fast, and way too slow:

We’ll work with complex signals of this form
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Linear systems and the black box

Simplification #3: Just consider mappings between planes across space. This is a critically 
important way of thinking for optics. Think “index card 1 to index card 2”.

Ui(xi, yi) Uo(xo, yo)

U(r) -> U(x,y)

A(r) cos(kr – ωt) -> A(r) cos(kr) 

Simplification #2: We’ll use complex numbers when required, it’ll make our lives easier. This 
leads to the complex field, U(r):

A(r) cos(kr) <-> A(r) eik•r = U(r)

Simplification #1: Let’s forget about light changing as a function of time. It does so way too 
fast, and way too slow:
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Linear systems and the black box

Simplification #3: Just consider mappings between planes across space. This is a critically 
important way of thinking for optics. Think “index card 1 to index card 2”.

Ui(xi, yi) Uo(xo, yo)

U(r) -> U(x,y)

Propagation
Lens focusingDiffraction Grating
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Linear systems and the black box

The “optical” black box system:

An optical black box system maps an input function Ui(xi,yi) to an output function Uo(xo,yo) via a transform T:

 Uo(xo,yo) = T [ Ui(xi,yi) ]

Where T[ ] denotes the optical black box transformation 

Ui(xi, yi) Uo(xo, yo)

xi

yi

xo

yo

T
(physical 
or digital)
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Linear systems and the black box

Important properties of linear systems:

1. Homogeneity and additivity (superposition):

T [aU1(x,y) + bU2(x,y)] = aT [U1(x,y)] + bT [U2(x,y)] 

The “optical” black box system:

An optical black box system maps an input function Ui(xi,yi) to an output function Uo(xo,yo) via a transform T:

 Uo(xo,yo) = T [ Ui(xi,yi) ]

Where T[ ] denotes the optical black box transformation 
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Linear systems and the black box

Important properties of linear systems:

1. Homogeneity and additivity (superposition):

T [aU1(x,y) + bU2(x,y)] = aT [U1(x,y)] + bT [U2(x,y)] 
2. Shift invariance: for shift distances dx and dy, we assume that, 

Uo(xo - dx,yo- dy) = T [Ui(xi-dx, yi-dy)]

The “optical” black box system:

An optical black box system maps an input function Ui(xi,yi) to an output function Uo(xo,yo) via a transform T:

 Uo(xo,yo) = T [ Ui(xi,yi) ]

Where T[ ] denotes the optical black box transformation 
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Assuming 1) linearity and 2) shift-invariance, we can model any black box with 1 piece of information:

Black box transforms as a convolution

Input Dirac delta function into the black box:
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Assuming 1) linearity and 2) shift-invariance, we can model any black box with 1 piece of information:

Black box transforms as a convolution

∂(xi,yi)

LSI 
system

h (xo,yo)

A “perfect” 
point 
source

h(xo,yo) = T [ ∂(xi,yi) ]

Input Dirac delta function into the black box:
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Assuming 1) linearity and 2) shift-invariance, we can model any black box with 1 piece of information:

Black box transforms as a convolution

∂(xi-dx,yi-dy)

LSI 
system

h (xo-dy,yo-dy)

A “perfect” 
point 
source

h(xo-dy,yo-dy) = T [ ∂(xi-dx,yi-dy) ]

We know the system is shift invariant: 
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Assuming 1) linearity and 2) shift-invariance, we can model any black box with 1 piece of information:

Black box transforms as a convolution

∂(xi,yi)

LSI 
system

h (xo,yo)

A “perfect” 
point 
source

h(xo,yo) = T [ ∂(xi,yi) ]

Input Dirac delta function into the black box:

h(xo,yo) is the 
system’s point-
spread function

Point-spread function
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Knowing the point-spread function, it is direct to model any output of the black box, given an input:

h (xo, yo)

Output of linear 
system is a 
convolution of the 
input with its point-
spread function

Convolve = “smear and multiply”

Black box transforms as a convolution

Ui(xi, yi) Uo(xo, yo)
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Uo(xo,yo) = T [ Ui(xi,yi) ]

Uo(xo,yo) = T [∫∫ Ui(xi,yi) ∂(xi-xo, yi-yo) dxo dyo]

Uo(xo,yo) = ∫∫ Ui(xi,yi) T[∂(xi-xo, yi-yo)] dxo dyo

Uo(xo,yo) = ∫∫ Ui(xi,yi) h(xi-xo, yi-yo) dxo dyo

Quick proof: The point-spread function forms any output via a 
convolution in a black-box model

Sifting property of delta function

Linearity

Shift Invariance
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1D convolution example

Steps to perform a convolution:
 
1. Flip one signal (the second one = the PSF)

2. Position PSF right before overlap

With incremental steps:

3. Step PSF over to position xo

4. Compute area of overlap of two functions

5. Convolution value at xo= area of overlap

6. Repeat 3-5 until signals do not overlap
https://en.wikipedia.org/wiki/Convolution

https://en.wikipedia.org/wiki/Convolution
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U1(x,y) U0(x,y)

=

2D convolution example

• Direct extension of 1D concept to 2D functions 

• Note – it is effectively the same with discrete functions = matrices

x

y

x

y

x2

y2
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U1(x,y) U0(x,y)

=

2D convolution example

Blur caused by camera lens

x

y

x

y

x2

y2

High-res. real-world object Image at camera sensor plane
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Optical modification Ex. #1: The cubic phase mask

Standard camera 
Point-spread function

in focus
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Optical modification Ex. #1: The cubic phase mask

Standard camera: 
Limited depth-of-field

in focus defocused
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Optical modification Ex. #1: The cubic phase mask

Standard camera: 
Limited depth-of-field

in focus defocused defocused
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Optical modification Ex. #1: The cubic phase mask
Fourier plane

Blur proportional to Fourier 
transform of shape of aperture
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Optical modification Ex. #1: The cubic phase mask

Standard camera: 
Limited depth-of-field

in focus defocused defocused

Insert CPM

Cubic phase mask: 
extended depth-of-
field

Blurry at focal plane

CPM Phase profile

E. Dowski and W. T Cathey, "Extended depth of field through wave-front coding," Appl Opt. 1994  
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Optical modification Ex. #1: The cubic phase mask

Standard camera: 
Limited depth-of-field

in focus defocused defocused

Insert CPM

Cubic phase mask: 
extended depth-of-
field

Same blur!

CPM Phase profile

E. Dowski and W. T Cathey, "Extended depth of field through wave-front coding," Appl Opt. 1994  
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Optical modification Ex. #1: The cubic phase mask

Standard camera: 
Limited depth-of-field

in focus defocused defocused

Insert CPM

Cubic phase mask: 
extended depth-of-
field

Same blur!

CPM Phase profile

E. Dowski and W. T Cathey, "Extended depth of field through wave-front coding," Appl Opt. 1994  
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Optical modification Ex. #1: The cubic phase mask

Insert CPM

Uniformly 
Blurry image

Simple image 
deblurring 
(deconv.)

All in-focus image

E. Dowski and W. T Cathey, "Extended depth of field through wave-front coding," Appl Opt. 1994  
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Optical modification Ex. #1: The cubic phase mask

Insert CPM

Uniformly 
Blurry image

Standard camera 
image

CPM image, 
raw

CPM image, 
deconvolved

Simple image 
deblurring 
(deconv.)

All in-focus image

E. Dowski and W. T Cathey, "Extended depth of field through wave-front coding," Appl Opt. 1994  
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Optical modification Ex. #1b: Double helix mask

Insert DHM

Depth-varying 
image

Depth detection
in focus defocused defocused

Jia et al., Nature Photonics 2014

Moerner Lab
Nobel Prize in 
Chemistry, 2014 
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deep imagingUseful properties of the convolution

U(x)	*	h(x)	=	h(x)	*	U(x)

U(x)	*	[V(x)	*	W(x)]	=	[U(x)	*	V(x)]	*	W(x)]

U(x)	*	[h1(x)	*	h2(x)]	=	U(x)	*	h1(x)	+	U(x)*	h2(x)	
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deep imagingUseful properties of the convolution

U(x)	*	h(x)	=	h(x)	*	U(x)

U(x)	*	[V(x)	*	W(x)]	=	[U(x)	*	V(x)]	*	W(x)]

U(x)	*	[h1(x)	*	h2(x)]	=	U(x)	*	h1(x)	+	U(x)*	h2(x)	
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deep imagingUseful properties of the convolution

U(x)	*	h(x)	=	h(x)	*	U(x)

U(x)	*	[V(x)	*	W(x)]	=	[U(x)	*	V(x)]	*	W(x)]

U(x)	*	[h1(x)	*	h2(x)]	=	U(x)	*	h1(x)	+	U(x)*	h2(x)	+
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Next : Analyzing light and image formation via Fourier transforms!


