deep imaging

Lecture 2: Mathematical preliminaries
for continuous functions

Machine Learning and Imaging

BME 548L
Roarke Horstmeyer

« Light as a continuous wave

» Light transformations as a black box
« Linear black-box systems

« Convolutions in 1D and 2D



Recall: what is an image?
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Recall: what is an image?

n x m array 3. “Digital” Interpretation
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Images unrolled into vectors
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Quick break:

deep imaging

A. Please create a 5x5 matrix with integer values that represent a “smiley face”

B. Please transform your matrix from (A) into a column vector



Machine Learning

ML+Imaging pipeline introduction
Digitization — VR
deep imaging

y->e

Measurement device

Real World

R




ML+Imaging pipeline introduction o
Digitization

y->e

Measurement device

Real World

R

Black box transformations

 Convolution
Continuous  Fourier Transform
complex fields

(this class) » (this class, next class)

deep imaging



ML+Imaging pipeline introduction Machine Learning

Digitization — V-
deep imaging

y->e

Measurement device

Real World
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(this class, next class) ——» (next
class)
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Start at the beginning: Electromagnetic waves

- Energy increases ng

Short wavelength Long wavelength
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From: https://www.miniphysics.com/electromagnetic-spectrum 25.htmi



https://www.miniphysics.com/electromagnetic-spectrum_25.html

Start at the beginning: Electromagnetic waves
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Start at the beginning: EM fields and the black box

deep imaging

The general idea:
1. We will treat light as a wave (an
“optical field”)



Start at the beginning: EM fields and the black box

deep imaging

The general idea:
1. We will treat light as a wave (an
“optical field”)

r1=(X1,Y1,21)

U(ry) = A(r4) cos(kry — wt)

(We will get into the details of
optical fields in a few weeks)



Start at the beginning: EM fields and the black box
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The general idea:
1. We will treat light as a wave (an

“optical field”)
r=(X1,y1,21) 2. It enters an optical system, which
we treat as a black box
. Optical
system 3. This black box has a number of

useful properties

U(ry) = A(r4) cos(kry — wt)



Start at the beginning: EM fields and the black box

deep imaging

The general idea:
1. We will treat light as a wave (an

“optical field”)

2. It enters an optical system, which
we treat as a black box

Optical

system 3. This black box has a number of

useful properties

4. The black box outputs an optical
field

A(ry) cos(kry — wt) A(r,) cos(kr, — wt)



Start at the beginning: EM fields and the black box

deep imaging

The general idea:
1. We will treat light as a wave (an

“optical field”)
2. It enters an optical system, which
Optical we treat as a black box
Optical N or
] system | Digitaa | 3. This black box has a number of
system useful properties

4. The black box outputs an optical
field, which then enters another
optical system or a digital system

A(ry) cos(kry — wt) A(r,) cos(kr, — wt)

5. We can cascade these boxes...



Linear systems and the black box

deep imaging

Simplification #1: Let’s forget about light changing as a function of time. It does so either
way too fast, or way too slow:

A(r) cos(kr — wt) -> A(r) cos(kr)



Linear systems and the black box

deep imaging

Simplification #1: Let’s forget about light changing as a function of time. It does so either
way too fast, or way too slow:

A(r) cos(kr — wt) -> A(r) cos(kr)

Simplification #2: We’ll use complex numbers when required, it’ll make our lives easier. This
leads to the complex field, U(r):

A(r) cos(kr) <-> A(r) ek = U(r)



Some things you need to recall about complex numbers

deep imaging
U=x+iy,i={/-1
Imag. 4
P U =x+ yi)
y

A

X  Real




Some things you need to recall about complex numbers

deep imaging
U=x+iy,i={/-1
Imag. 4
A oP (U=x+yi)
y 6
) X Réal
A= (X2 +y?)

0 = atan(y/x)



Some things you need to recall about complex numbers

U=x+iy,i=y-1 More useful representation:
Imag. 4 X = A cosB
P (U =x+ yi) y = A sin@ o
A e U = A (cosB + i sinB)
y B
) X  Real U=Ae®

A = Amplitude of field

0 = Phase of field
A= (x2+y?)

0 = atan(y/x)

deep imaging



Linear systems and the black box

deep imaging

Simplification #1: Let’s forget about light changing as a function of time. It does so way too
fast, and way too slow:

A(r) cos(kr — wt) -> A(r) cos(kr)

Simplification #2: We’ll use complex numbers when required, it’ll make our lives easier. This
leads to the complex field, U(r):

A(r) cos(kr) <->A(r) ek = U(r)

We’ll work with complex signals of this form



Linear systems and the black box
deep imaging

Simplification #1: Let’s forget about light changing as a function of time. It does so way too
fast, and way too slow:

A(r) cos(kr — wt) -> A(r) cos(kr)

Simplification #2: We’ll use complex numbers when required, it’ll make our lives easier. This
leads to the complex field, U(r):

A(r) cos(kr) <->A(r) ek = U(r)

Simplification #3: Just consider mappings between planes across space. This is a critically
important way of thinking for optics. Think “index card 1 to index card 2”.

U(r) -> U(x,y)

Ui(xi, yi) Uo(Xo’ YO)



Linear systems and the black box

grating

- -
| \
J \
e —— = I e—
o

Propagation

screen

Diffraction Grating

Lens focusing

Simplification #3: Just consider mappings between planes across space. This is a critically
important way of thinking for optics. Think “index card 1 to index card 2”.

U(r) -> U(x,y)

Ui(x;, i) Uo(Xos Yo)




Linear systems and the black box

deep imaging

The “optical” black box system:

An optical black box system maps an input function Uj(x;,y;) to an output function Uy(X,,Yo) Via a transform T:

Us(XosYo) = T [ Ui(X;,y)) |

Where T[ ] denotes the optical black box transformation

Ui(xi, yi) T Uo(xo’ YO)

(physical
or digital)

Yi Yo
X Xo




Linear systems and the black box

deep imaging

The “optical” black box system:
An optical black box system maps an input function Uj(x;,y;) to an output function Uy(X,,Yo) Via a transform T:

Us(XosYo) = T [ Ui(X;,y)) |

Where T[ ] denotes the optical black box transformation

Important properties of linear systems:

1. Homogeneity and additivity (superposition):

T [aU;(x,y) + bUa(x,y)] = aT [U(x,y)] + BT [Ux(x,y)]



Linear systems and the black box

deep imaging

The “optical” black box system:
An optical black box system maps an input function Uj(x;,y;) to an output function Uy(X,,Yo) Via a transform T:

Us(XosYo) = T [ Ui(X;,y)) |

Where T[ ] denotes the optical black box transformation

Important properties of linear systems:
1. Homogeneity and additivity (superposition):

T [aU;(x,y) + bUa(x,y)] = aT [U(x,y)] + BT [Ux(x,y)]

2. Shift invariance: for shift distances dy and d,, we assume that,

UO(XO B dX!yo_ dy) =T [Ui(xi_dx7 yi_dy)]



Black box transforms as a convolution

deep imaging

Assuming 1) linearity and 2) shift-invariance, we can model any black box with 1 piece of information:

Input Dirac delta function into the black box: 5(:1:) = { 0 ’ 8
x #-
?



Black box transforms as a convolution

deep imaging

Assuming 1) linearity and 2) shift-invariance, we can model any black box with 1 piece of information:

Input Dirac delta function into the black box: 5(;1;) — oo, z=0
0, x # 0
A “perfect”
point LS|
source e
system
a(x;,yi) h (Xo,Yo)

N(Xo,Yo) = T [ A(X;,y)) ]



Black box transforms as a convolution

deep imaging

Assuming 1) linearity and 2) shift-invariance, we can model any black box with 1 piece of information:

We know the system is shift invariant:

A “perfect”
point \ LS| \
source
., System
a(Xi_dX’yi_dy) h (Xo_dy,yo_dy)

N(Xo-dy,Yo-dy) = T [ d(xi-dy,yi-dy) |



Black box transforms as a convolution

deep imaging

Assuming 1) linearity and 2) shift-invariance, we can model any black box with 1 piece of information:

Input Dirac delta function into the black box: d(x) = { 8_’00’ i ; 8
A “.perfect” h(x,,y,) is the
point LSI system’s point-
source — — )
system spread function
a(Xi’yi) h (Xo’yo)

Point-spread function T[9a(x,y) ]



\:
Black box transforms as a convolution ‘,%Q

deep imaging

Knowing the point-spread function, it is direct to model any output of the black box, given an input:

I Convolve = “smear and multiply”

U i(Xi, yi) Uo(xo’ yo)

Output of linear
o0 system is a
Uo(Zo,Yo) = U;(xi,yi)h(To — i, Yo — Yi)dx;dy;  convolution of the
— 00 input with its point-
spread function



Quick proof: The point-spread function forms any output via a
convolution in a black-box model deep imaging

Uo(xo,yo) =T [ Ui(xi,Yi) ]
Uo(Xo,Yo) = T [JJ Ui(Xi,Yi) 9(Xi-Xos Yi-Yo) dXo dYo] Sifting property of delta function
Uo(XosYo) = [T Ui(Xi,Yi) T[O(Xi~Xo, Yi-Yo)] X, dYo Linearity

Uo(xo,yo) = ” Ui(xi,yi) h(xi'xo, yi'yo) dxo dyo Shift Invariance



1D convolution example
deep imaging

Steps to perform a convolution:

Convolution
f : : _
I_l 1. Flip one signal (the second one = the PSF)
9 [\ o .
2. Position PSF right before overlap

13 With incremental steps:
A1 | A .

b Pq 3. Step PSF over to position x,

_l4 .

ot 4. Compute area of overlap of two functions
g
[N N 5. Convolution value at x_,= area of overlap

N N -

N 6. Repeat 3-5 until signals do not overlap

https://en.wikipedia.org/wiki/Convolution



https://en.wikipedia.org/wiki/Convolution

2D convolution example

« Direct extension of 1D concept to 2D functions

* Note - it is effectively the same with discrete functions = matrices

U1(X!y)

deep imaging




2D convolution example

High-res. real-world object

U1(X!y)

Blur caused by camera lens

deep imaging

Image at camera sensor plane

UO(X’y)




Optical modification Ex. #1: The cubic phase mask

Standard camera
Point-spread function

in focus

=

deep imaging



Optical modification Ex. #1: The cubic phase mask

Il

Standard camera:
Limited depth-of-field

=

in focus defocused

deep imaging



Optical modification Ex. #1: The cubic phase mask

Standard camera:
Limited depth-of-field

in focus

defocused

defocused

=

deep imaging



Optical modification Ex. #1: The cubic phase mask

ggQ\:
Fourier plane deep imaging

Blur proportional to Fourier
transform of shape of aperture




Optical modification Ex. #1: The cubic phase mask

deep imaging
Insert CPM

Blurry at focal plane

E

in focus defocused defocused

Standard camera:
Limited depth-of-field

CPM Phase profile

QU

Cubic phase mask:
extended depth-of-
field

E. Dowski and W. T Cathey, "Extended depth of field through wave-front coding," Appl Opt. 1994



Optical modification Ex. #1: The cubic phase mask

deep imaging
Insert CPM
Same blur!

|| 1E

in focus defocused defocused

- CPM Phase profile

E. Dowski and W. T Cathey, "Extended depth of field through wave-front coding," Appl Opt. 1994

Standard camera:
Limited depth-of-field

extended depth-of-
field

Cubic phase mask: -



Optical modification Ex. #1: The cubic phase mask

deep imaging
Insert CPM
Same blur!

1] E

in focus defocused defocused

Standard camera:
Limited depth-of-field

CPM Phase profile

Cubic phase mask: =
extended depth-of-
field

E. Dowski and W. T Cathey, "Extended depth of field through wave-front coding," Appl Opt. 1994



Optical modification Ex. #1: The cubic phase mask

deep imaging
Insert CPM

Uniformly
Blurry image

J

= —
(—

Simple image
deblurring
(deconv.)

!

All in-focus image

E. Dowski and W. T Cathey, "Extended depth of field through wave-front coding," Appl Opt. 1994



Optical modification Ex. #1: The cubic phase mask

\:
deep imaging
Insert CPM

Uniformly
Blurry image

J

2 !

= —
u (—

* Simple image
Standard camera CPM image, CPM image,

* * deblurring
(deconv.)
image raw deconvolved

S~

W |

All in-focus image

E. Dowski and W. T Cathey, "Extended depth of field through wave-front coding," Appl Opt. 1994



Optical modification Ex. #1b: Double helix mask

deep imagin
Insert DHM P Ing

Depth-varying
image

J

= —
(—

in focus defocused defocused

Depth detection

Nobel Prize in
Chemistry, 2014

Jia et al., Nature Photonics 2014




Useful properties of the convolution

deep imaging

I.Commutativity  [J(x) *h(x) = h(x) * U(x)

— You can choose which signal to “flip”




Useful properties of the convolution
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I.Commutativity  [J(x) *h(x) = h(x) * U(x)
— You can choose which signal to “flip”

2. Associativity Ux) * [V(x) *W(x)] = [U(x) *V(x)] * W(x)]

— Can change order — sometimes one order 1s easier than another




Useful properties of the convolution

deep imaging

I.Commutativity  [J(x) *h(x) = h(x) * U(x)
— You can choose which signal to “flip”

2. Associativity Ux) * [V(x) *W(x)] = [U(x) *V(x)] * W(x)]

— Can change order — sometimes one order 1s easier than another

3. Distributivity ~ U(x) */B,(x) + h(x)] = U(x) *h,(x) + U(x)* h,(x)
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Next : Analyzing light and image formation via Fourier transforms!

Machine Learning and Imaging — Roarke Horstmeyer (2024)



