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deep imagingAnnouncements and schedule

• Today is the last lecture! (no lectures next week)

• HW4 being graded, HW5 will be graded quickly once turned in

• Homework #5 Due Wed April 24 at 11:59pm

• Final code and presentation due via email: Thursday May 2, 5pm

• Final presentation time slots: Thursday May 2, 7pm - 10pm
• Sign up for slot at google sheets link will be shared via Ed Discussion

• Final presentation paper write-up, website template and permission form due: Saturday 
May 4 at 11:59pm

 
• Project help:

• We will continue lab sessions this week/next week
• Office hours Tuesday 11am – noon
• Email me if you’d like to meet another time
• Email TA’s / reach out on Canvas with questions! 
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1. Start with code-base and annotated data
 - e.g., downloaded or from existing work

2. Make sure it works and gives reasonable results
 - work with TA’s and others to make sure code runs successfully!

3. Main project component – experiment and explore with code and data
 A. do not just randomly alter neural network architecture
 
 B. instead, explore something meaningful about how image data was 
 acquired, properties of the image data, different ML-related goals for data
 
 C. One useful direction is to incorporate “physical layers” – trainable 

weights that optimize some aspect of image capture. But this is an effective 
way to explore point B above!

4. Discuss insights grained from step 3



Machine Learning and Imaging – Roarke Horstmeyer (2024)

deep imaging

38% of total grade

 1. Presentation Slides – 10%
  - 7-minute presentation, 2 minute for questions

 2. 4-6 page write up with at least 3 figures and 5 references – 20%
  - Introduction, related work, methods, results, discussion

 3. Code used for final results in folder or .ipynb’s – 4%

 4. brief website template & permission to share results – 4%
 5. shared annotated datasets & permissions – no grade, but would be much 

appreciated if using an interesting dataset

Components of final project

See https://deepimaging.github.io/proj-info/
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- Must be submitted 

- Will share template

- Will post to 
deepimaging.io with 
permission

- Will also send permission 
form, which must be 
submitted with final 
project as well
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Please complete course evaluations!
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Where are things going with Machine Learning and Imaging in 10 years?

1. Proliferation of trained models, similar datasets, 
and novel programming languages

Jax: Rapidly deploy the same code 
on GPU’s and TPU’sEnvironment developed by Facebook (Meta) – 

arguably more popular for research use
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2. “Cameras” on many devices & new types of sensors

Standard CMOS pixel = bucket that collects electrons SPAD pixel: was there a photon or not?

e-

e-
E=hv
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2. “Cameras” on many devices & new types of sensors

- Light travels 1 ft in 1 ns.

- SPADs can precisely photon arrival time to measure travel distance (TOF)

Detected photon

https://www.picoquant.com/images/uploads/page/files/7253/technote_tcspc.pdf

Pulsed laser

SPAD array

https://www.picoquant.com/images/uploads/page/files/7253/technote_tcspc.pdf
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2. “Cameras” on many devices & new types of sensors

G. Satat et al, https://www.nature.com/articles/srep33946

D. Shen et al, https://www.nature.com/articles/ncomms12046

https://www.nature.com/articles/srep33946
https://www.nature.com/articles/ncomms12046
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3. Beyond convolutions - new constructs for deep networks
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Example 2: Transformers for image analysis

A. Dosovitsky et al, “AN IMAGE IS WORTH 16X16 WORDS:
TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE”

Transformers for text analysis/generation
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• https://www.youtube.com/watch?v=wjZofJX0v4M

https://www.youtube.com/watch?v=wjZofJX0v4M
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Example 2: Diffusion models for image generation and analysis
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https://research.nvidia.com/labs/toronto-ai/VideoLDM/
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4. Generative data is getting pretty realistic...

What are the implications of this for medical imaging?
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6. Joint optimization of 
hardware and software is 
proliferating
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1. It’s not going away....it works, there’s a big community, and lots of funding

2. Hardware and software are rapidly evolving

3. CNN’s work very well, but they are not the final solution...Transformer models 
and Diffusion networks are using CNN’s as building blocks

4. There is currently a lack of safeguards and not enough consideration for how 
to ensure processed results are accurate, secure and trustworthy

5. Merger of hardware and software for key applications is inevitable…
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Ethical questions surrounding deep convolutional networks

1. What are your expectations for an image reconstruction algorithm used in a clinical setting?

2. What types of “guarantees” should we be able to make, if any, to a patient?

3. How should we guide future development of ML software to meet any guarantees?

4. How should we guide future development of ML-designed hardware to meet any guarantees?

5. Thoughts towards a system of checks and balances?
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Human-centered hardware design Computer-centered software design

Where your final 
project is aimed

Computer-
centered hardware 

+ software
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TaskPhysical world I0

Hardware

Image I1

Final project: try to optimize all of this together!
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Real World
Measurement device

Continuous
complex fields

Black box transformations
• Convolution
• Fourier Transform

Digitization 

Sampling Theorem

Discrete math & 
Linear algebra

Machine Learning

Optimization

Linear classification

Logistic classifier

Neural networks

Convolutional NN’s

ML+Imaging pipeline introduction

γ -> e-
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• Interpretation #1: Radiation  (Incoherent)
• Model: Rays • Real, non-negative

• Complex field
• Interpretation #2: Electromagnetic wave (Coherent)
• Model: Waves

Is = H B S0

IC = | H C SC |2

• Sample absorption S
• Illumination brightness B
• Blur in H

• Sample abs./phase S
• Illumination wave B
• Blur in H
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Mathematical model of for incoherent image formation 

Illumination brightness: S0(x,y)

B S0

Object absorption:

(B S0) * hmultiplication
convolution

• All quantities are real, and non-negative 

B(x,y)
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Discrete sample 
function s(x,y) 
(complex)

2. Compute its 2D 
Fourier transform

“Fourier plane”

ŝ(fx, fy)

2D FT

1. Transmitted field 
sc(x,y) = C(x,y) s(x,y) 

3. Multiply by 
“aperture” 
function A(fx, fy)

4. Compute 
inverse Fourier 
transform s’(x’,y’) 
(complex)

“Blurred 
image”

2D IFT

5. Detector 
measures 
|s’(x’,y’)|2 
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Real World
Measurement device

Continuous
complex fields

Black box transformations
• Convolution
• Fourier Transform

Digitization 

Sampling 
Theorem

Discrete math & 
Linear algebra

Machine Learning

Optimization

Linear classification

Logistic classifier

Neural networks

Convolutional NN’s

γ -> e-

IInc = H B S0

ICoh = | H C SC |2
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Model
Output
y* Ex. [x1,y1] Ex. [xK,yK]

…
Training 
Data

Training error

dL/dW

What we need for network training:
1. Labeled examples  
2. A model and loss function 
3. A way to minimize the loss function L

Summary of machine learning pipeline:

Lin(y, f(W,x)) f(W,x)

1. Network Training 
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Summary of machine learning pipeline:

2. Network Testing

What we need for network testing:

4. Unique labeled test data
5. Evaluation of model error

Modely* Ex. [xL,yL] Ex. [xN,yN]

… Test Data not from 
Training Dataset

Test error

Lout(y, y*) f(W,x)
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Let’s start with a simpler approach: linear regression

General linear model: W

xy

# classes

Assume 1 class = 
1 linear fit wT

xy

=

=1 var.

Use MSE error 
model

Where labels 
determined by 
thresholding
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Let’s start with a simpler approach: linear regression

General linear model: W

xy

# classes

Assume 1 class = 
1 linear fit wT

xy

=

=1 var.

Use MSE error 
model

Where labels 
determined by 
thresholding
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x1 x2

y

• If yi can be anything, minimizing L 
makes w the plane of best fit 

Without sgn(): regression for best fit

w

-w0/|w|
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x1 x2

y

• yi can only be -1 or +1, which 
defines its class

Without sgn(): regression for best fit

-1

+1

Project to -1 or +1

Why does linear regression with sgn() achieve classification?
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x1 x2

y

• yi can only be -1 or +1, which 
defines its class

• Can still find plane of best fit

Without sgn(): regression for best fit

-1

+1

Project to -1 or +1

Why does linear regression with sgn() achieve classification?
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x1 x2

y

• Anything point to one side of y=0 
intersection is class +1, anything on 
the other side of intersection is 
class -1

With sgn() operation:

-1

+1 Projected to -1 or +1

0

Intersection y=0

Why does linear regression with sgn() achieve classification?
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x1 x2

y

• y axis isn’t really needed now & can 
view this decision boundary in 2D

With sgn() operation:

-1

+1

0

Intersection y=0

Why does linear regression with sgn() achieve classification?
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x1 x2

Sign operation takes linear regression 
and makes it a classification operation!

With sgn() operation:

y=-1
y=+1Linear classification 

boundary

Why does linear regression with sgn() achieve classification?
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dL(W1)/dW1 = 12.8-12.79/.001

dL(W1)/dW1 = 10

With a matrix, compute this for each entry:

In the rest of this class: solve via gradient descent

W1+h = [1.001,2;3,4]
L(W1+h, x, y) = 12.8 

Example: 

W = [1,2;3,4]
L(W, x, y) = 12.79

- Repeat for all entries of W, dL/dW will have NxM entries for NxM matrix
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1. Evaluate function f(x(0)) at an initial guess point, x(0)

2. Compute gradient g(0) = ∇xf(x(0))

3. Next point x(1) = x(0) - ε(0)g(0)

4. Repeat – x(n+1) = x(n) - ε(n)g(n), until |x(n+1)-x(n)| < threshold t



Machine Learning and Imaging – Roarke Horstmeyer (2024)

deep imaging

x

y

Training data

x

y

Learned f: not flexible

W1

xf

=

Learned f: a bit flexible

Training data

W1

xf

= W2 • NL •

x

y

Learned f: more flexible
We can keep adding 
these “layers”…Does it generalize???
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1. Can we make sure the in-sample error Lin(y, f(x,W)) is small enough?
• Appropriate cost function
• “complex enough” model

2.   Can we make sure that Lout(y, f(x,W)) is close enough to Lin(y, f(x,W))? 
• Probabilistic analysis says yes!
• |Lin – Lout| bounded from above
• Bound grows with model capacity (bad)
• Bound shrinks with # of training examples (good)

Before CNN’s – understand two competing goals in machine learning
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W1

x = cat image

This type of matrix can dramatically reduce 
the number of weights that are used while still 
allowing local regions to mix:

Full matrix: O(n2) 

Banded matrix: k•O(n)

W1

Banded W

0

0
Image interpretationk

S

=
Sqrt(k)

Mix all the pixels in the 
red box, with associated 
weights, to form this entry 
of S 

Why should we use these convolutions?
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CNN Architecture Loss function & optimization

• CONV size, stride, pad, depth

• ReLU & other nonlinearities

• POOL methods

• # of layers, dimensions per layer

• Fully connected layers 

• Type of loss function

• Regularization

• Gradient descent method

• SGD batch and step size

Other specifics: Pre-processing, initialization, dropout, batch normalization, augmentation
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Model
Output

y* Ex. [x1,y1] Ex. [xK,yK]

…
Training 
Data

Training error

Lin(y, f(W,x)) = y* = f(W,x)
cross_entropy(y, f(W,x))

Our very basic convolutional neural network

Backwards pass uses new Lin to update W’s – backpropagation!

y*

xi
= W3 W2 W1

maxmaxmax

Given a new Lin, 
want to update W’s 
to make Lin smaller! 

Lin
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ln( )

*

+

sin( )

-

• Create graph of local operations

• Compute analytic (symbolic) gradient at each node (unit) in graph

• Use inter-relationships to establish final desired gradient, df/dx1 
• Forward differentiation
• Backwards differentiation = Backpropagation

A. Baydin et al., Automatic Differentiation 
in Machine Learning: a Survey

To both determine f and find df/dxi :
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Let’s go through an example:

L = || W2 ReLU(W1 X) ||22 (2-layer network with MSE where we 
neglect labels y for now)

dL/dW1 = ? dL/dW2 = ?

z1 h1

y L
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CNNs for classification
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Super-
resolution
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Post-processing of your results: a few options at different stages

Options to examine your test data after processing:
• ROC curve, Precision-Recall

• Confusion matrix
• Sliding window visualization

• Layer visualizations

• Saliency maps etc.
• tSNE visualization
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• Compress spatial features into 
learned filters

• Then, decompress learned filters 
back into same spatial 
dimensions

• Can be an autoencoder
• Analogous to image compression
• A very powerful idea…

Compress Decompress

U-Net Architecture 

(encoder) (decoder)
Output 
image tile
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Bringing together physical and digital image representations

Task

Physical
Function I0

Digitized 
Is

Is = f[I0]

Task = Wn …ReLU[W1 ReLU[W0 f[I0]]…]

Physical Layers Digital Layers

Physical layersDigital layers

f[ ]
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Output: 
Detected image

Photons to 
electrons

Digitazation

n x m pixel array

8 8
Input: physical object

What physical parameters effect image formation?

• Illumination
• Spatial pattern
• Angle of incidence
• Color, polarization

• Lens and optics
• Position/orientation
• Shape
• Focus
• Transparency

• Detector
• Pixel size
• Pixel shape & fill factor
• Color filters
• Other filters

• Digitization
• E to P curves
• Digitization schemes/thresholds
• Data transmission, multiplexing

• Physical object

Illumination

Lens and optics Detector

Digitization
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Task

Input image 
data I0

Digitized 
Is

Is = f[I0]

Physical Layers Digital Layers

f[ ]

Q: Where and how should I implement my physical layer?

A: It depends on your data and implementation

• Situation #1: Fully simulated physical layers
• Situation #2: Experimentally-driven physical layers
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Task

Experimental 
measurements

Digitized 
Is

Is = f[I0]

Physical Layers Digital Layers

f[ ]“Expert” 
annotation

Generated Labels

Pro’s of experimental measurements: Don’t need to worry about making your simulations match 
the setup! (HUGE)
Con’s of experimental measurements: You’ll need to label them, limited access to desired sample 
information, often need to exploit some fundamental physical property 
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M
ea

su
re

m
en

t

f(xt, ht-1)

State ht

Output ot

Many-to-one recurrent neural network

Label y Loss function L(ot, y)

Simple network structure:

ht = ReLU[Wht-1 + Uxt + b]

W W W W

U U U

Backpropagate to
minimize dL/dW, dL/DU V
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Stanford CS231n, Lecture 12
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Force this vector to follow a Gaussian PDF

• With Gaussian PDF, can start to 
add/subtract latent vector in a 
normalized vector space

Minimize (KL) distance between latent 
vector and Gaussian normal

Generative Example (once trained):
• Encode image with glasses, obtain latent vector PDF Pg
• Encode image without glasses, obtain PDF Png

• Compute diff = Pg- Png
• Encode new image to obtain Pnew , add in diff  
• Decode Pnew + diff to get guy with glasses!
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Stanford CS230, Lecture 3



Machine Learning and Imaging – Roarke Horstmeyer (2024)

deep imaging

“jump”

block

forward

“jump”

block
forward

“jump”

block
forward

Outcome: 
Win the game!

…

…

…

Supervised ML Reinforcement learning
Outcome: 
Cell type B

• Fixed image sequence • Dynamic image sequence

• Goal: match to known label • Goal: get to known desired outcome

• Output: label • Output: sequence of actions

(no labels needed, really…)

• Examines all data • Not possible to examine all data

(large labeled dataset needed)
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Thanks for a great semester everyone!


