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Lecture 24: Looking Ahead + Review

Machine Learning and Imaging

BME 548L
Roarke Horstmeyer



Announcements and schedule

deep imaging

« Today is the last lecture! (no lectures next week)

« HWA4 being graded, HW5 will be graded quickly once turned in

« Homework #5 Due Wed April 24 at 11:59pm

* Final code and presentation due via email: Thursday May 2, 5pm

« Final presentation time slots: Thursday May 2, 7pm - 10pm
« Sign up for slot at google sheets link will be shared via Ed Discussion

« Final presentation paper write-up, website template and permission form due: Saturday
May 4 at 11:59pm

* Project help:
«  We will continue lab sessions this week/next week
« Office hours Tuesday 11am — noon
« Email me if you’d like to meet another time
« Email TA’s / reach out on Canvas with questions!



Project content details -

1. Start with code-base and annotated data
- e.g., downloaded or from existing work

2. Make sure it works and gives reasonable results
- work with TA’s and others to make sure code runs successfully!

3. Main project component - experiment and explore with code and data
A. do not just randomly alter neural network architecture

B. instead, explore something meaningful about how image data was
acquired, properties of the image data, different ML-related goals for data

C. One useful direction is to incorporate “physical layers” - trainable
weights that optimize some aspect of image capture. But this is an effective
way to explore point B above!

4. Discuss insights grained from step 3

deep imaging
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Components of final project
See https://deepimaging.github.io/proj-info/
38% of total grade
1. Presentation Slides - 10%
- 7-minute presentation, 2 minute for questions
2. 4-6 page write up with at least 3 figures and 5 references - 20%
- Introduction, related work, methods, results, discussion
3. Code used for final results in folder or .ipynb’s — 4%
4. brief website template & permission to share results — 4%
5. shared annotated datasets & permissions — no grade, but would be much

appreciated if using an interesting dataset



Final project webpage
- Must be submitted
- Will share template

- Will post to
deepimaging.io with
permission

- Will also send permission
form, which must be
submitted with final
project as well

Optimizing illumination for overlapped classification

Amey A Chaware

amey.chaware@duke.edu
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from each lens

This project presents an imaging system that simultaneously captures multiple images and automatically classifies
their contents to increase detection throughput. Our optical design consists of a set of multiple lenses that each
image a unique field-of-view onto a single image sensor. The resulting “overlapped” image exhibits reduced contrast,
but includes measurements from across a proportionally larger viewing area. We then post-process this overlapped
image with a deep convolutional neural network to classify the presence or absence of certain features of interest.
We examine the specific case of detecting the malaria parasite within overlapped microscope images of blood
smears. We demonstrate that it is possible to overlap 7 unique images onto a common sensor while still offering
accurate classification of the presence or absence of the parasite, thus offering a 7x potential speed-up for
automated disease diagnosis with microscope image data. Additionally, we explore the use of supervised deep-
learning network to jointly optimize the physical setup of an optical microscope to improve automatic image
classification accuracy in overlapped imaging. We take advantage of the wide degree of flexibility available in
choosing how a sample is illuminated in a microscope to design a specific pattern of light that leads to a better
performance.

Paper:
. Paper PDF

Code and Data:

« You can provide a link to your code here: Code
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Please complete course evaluations!

Machine Learning and Imaging — Roarke Horstmeyer (2024)
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Where are things going with Machine Learning and Imaging in 10 years?



Where are things going with Machine Learning and Imaging in 10 years?

1. Proliferation of trained models, similar datasets,
and novel programming languages

Model Zoo

Discover open source deep learning code and pretrained models|

Browse Frameworks Browse Categories

OpenPose Mask R-CNN
% 14800 | 504

OpenPose represents the first real-time
multi-person system to jointly detect
human body, hand, and facial keypoints TensorFlow. The model generates
(in total 130 keypoints) on single bounding boxes and segmentation
images. masks for each instance of an object in

This is an implementation of Mask R-
CNN on Python 3, Keras, and

Welcome to the OpenAl developer platform

Start with the basics

Quickstart tutorial
Make your first Chat Completions APl request

Build an assistant

© Introduction Beta
()

Learn the basics of building an assistant

Explore the API

Text generation

Learn how to generate text and call functions

skymind i piatform

Prompt examples

Explore what OpenAl models can do with prompts

communities of knowledge +

Assistants deep dive Beta Generate
Explore how assistants work and important
concepts
I-
Learn

@ Prompt engineering
Learn best practices for prompt engineering

—tT >
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Why Skymind?  Solutions  Case Studies  Abou esources | CONTACT US

A.l. Wiki

Visipedia

Visipedia connects
machine learning

-
) = =

Annotate Architect Train

¢ )( = )

A1} Q - -
Validate Deploy Evaluate
—
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Where are things going with Machine Learning and Imaging in 10 years?

1. Proliferation of trained models, similar datasets,
and novel programming languages

Jax: Rapidly deploy the same code
on GPU’s and TPU’s

.Y,

Environment developed by Facebook (Meta) —
arguably more popular for research use

O PyTorch

-



Where are things going with Machine Learning and Imaging in 10 years? P

2. “Cameras” on many devices & new types of sensors

Standard CMOS pixel = bucket that collects electrons SPAD pixel: was there a photon or not?
VRst p*
V E=hv E=hv
DD =
e- stimulation
RST _| M"St / o l’ ir:'npac't li:onisle:rion
e
———— complete depleted
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Where are things going with Machine Learning and Imaging in 10 years? coen imaging
2. “Cameras” on many devices & new types of sensors

- Light travels 1 ftin 1 ns.

- SPADs can precisely photon arrival time to measure travel distance (TOF)

Detected photon
.

»

I 1

1 |

1 |

Pulsed laser ' .
—! — !
start-stop-time 1 ' : start-stop-time 2 :

SPAD array @ 34ns @ 4.7 ns

https://www.picoquant.com/images/uploads/page/files/7253/technote tcspc.pdf



https://www.picoquant.com/images/uploads/page/files/7253/technote_tcspc.pdf

Where are things going with Machine Learning and Imaging in 10 years? desp imaging

2. “Cameras” on many devices & new types of sensors

Background light

. 4

Figure 1: Imaging Through Thick Scattering.

Processing SPAD camera
Translator l

Field of view

Scene of interest

Pulse broadening Diffuser

Pulsed laser

G. Satat et al, https://www.nature.com/articles/srep33946

Frontal view Tilted view

D. Shen et al, https://www.nature.com/articles/ncomms12046



https://www.nature.com/articles/srep33946
https://www.nature.com/articles/ncomms12046

LIiDAR
Scanner

LiDAR (Light Detection and Ranging) is
used to determine distance by measuring
how long it takes light to reach an object
and reflect back. It is so advanced, it's
being used by NASA for the next Mars

landing mission. And it's now been
engineered to fit in the thin and light
iPad Pro.

The custom-designed LIiDAR Scanner
uses direct time of flight to measure
reflected light from up to five meters away,
both indoors and out. It works at the
photon level, operates at nanosecond
speeds, and opens up tremendous
possibilities for augmented reality

and beyond.

deep imaging



Where are things going with Machine Learning and Imaging in 10 years? deep imaging

3. Beyond convolutions - new constructs for deep networks



Where are things going with Machine Learning and Imaging in 10 years? deep imaging

3. Beyond convolutions - new constructs for deep networks

Dynamic Routing Between Capsules

Sara Sabour Nicholas Frosst

Geoffrey E. Hinton
Google Brain
Toronto
{sasabour, frosst, geoffhinton}@google.com
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Machine Learning and |



Where are things going with Machine Learning and Imaging in 10 years?

3. Beyond convolutions - new constructs for deep networks

Capsule vs. Traditional Neuron
Input from low-level
P vector(u;) scalar(zx;)
capsule/neuron
Affine -
' — - =
I'ransform Wil b
Operation g a o
Weightin -
5 5 8; = z:'- Cij Wi a; = zi w;T; + b
Sum
Nonlinear Is;I? s
p— p) J , = .
Activation | V7~ 1+lis;]I? Ts;l hj = f(a;)
Output vector(v;) scalar(h;)

3=
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ENCODER #2

ENCODER #1

Example 2: Transformers for image analysis

Transformers for text analysis/generation

- ( Softmax
Add & Normalize [ )
: ( Linear
Feed Forward Feed Forward 4
HE T > DECODER #2
Add & Normalize ) : 1t - 1+
: [y 3 P I,*( Add & Normalize )
' ( Self-Attention ) A i
& 4 7y / PRl Feed Forward Feed Forward
"""""""""""""" i ol R
( M i & L. Add & Normali
Add & Normalize ) 1 : ( ormalize )
) L) [}
Feed Forward Feed Forward ""'.‘"( Encoder-Decoder Attention )
____________________________ A T LT LT L LT EEY )
Add & Normalize »( Add & Normalize )
4 4 [} 4
( Self-Attention ( Self-Attention )

Q. ........ e )

"eNcooinG @ @
X1 Xz.
Thinking Machines
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Vision Transformer (ViT)

MLP
Head

Transformer Encoder

- @ 065 006 O )

* Extra learnable
p Linear Projection of Flattened Patches

[class] embedding
NS R I
1)

A. Dosovitsky et al, “AN IMAGE IS WORTH 16X16 WORDS:
TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE”
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A visual introduction to transformers

* https://www.youtube.com/watch?v=wjZofIX0v4M

Transformer



https://www.youtube.com/watch?v=wjZofJX0v4M
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Example 2: Diffusion models for image generation and analysis

Fixed forward diffusion process

Noise

> €g(x¢,1)

[

e e—-

Time Representation

Fully-connected
Layers
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https://research.nvidia.com/labs/toronto-ai/VideoLDM/

Machine Learning and Imaging — Roarke Horstmeyer (2024)
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Where are things going with Machine Learning and Imaging in 10 years?

4. Generative data is getting pretty realistic...

Face2Face: Real-time Face Capture and Reenactment of RGB Videos

Justus Thies ' Michael Zollhéfer 2 Marc Stamminger 3 Christian Theobalt 2 Matthias NieRner ’

1 Technical University of Munich 2 Max Planck Institute for Informatics J University of Erlangen-Nuremberg

" RGB-Input

Transfer

Example of Realistic Synthetic Photographs Generated with BigGANTaken from Large Scale GAN Training for High Fidelity So urce
Natural Image Synthesis, 2018.

Proc. Computer Vision and Pattern Recognition (CVPR), IEEE, June 2016

What are the implications of this for medical imaging?
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5. Models will no longer be created in an ad-hoc manner deep imaging

“ " Model Search

Model search (MS) is a framework that implements AutoML algorithms for model architecture search at scale. It
aims to help researchers speed up their exploration process for finding the right model architecture for their
classification problems (i.e., DNNs with different types of layers).

Input



M) Check for updates teChnOIogy feature

6. Joint optimization of
hardware and software is Smart solutions for automated imaging

pr0||ferat| ng Algorithms trained to interpret microscope data can greatly extend the information that can be derived from the
resulting images, or even optimize how imaging experiments are conducted.

Michael Eisenstein

hile buzzing about in search
of food, a fruit fly encounters
a deadly wasp. Fortunately, its

brain reacts to the threat by initiating a
cascade of responses across a network of
neurons that help it to flee. Philipp Keller’s
group at the Howard Hughes Medical
Institute’s Janelia Research Campus has
developed a variety of sophisticated
strategies for deconvolving the circuitry
underlying this and other complex functions
of the Drosophila nervous system, using a
combination of optogenetic manipulation
and cutting-edge light-sheet microscopy

to simulate various stimuli in living tissue
and analyze the response. But perhaps the
most remarkable aspect of this project is the
extent to which the instruments themselves
are running the show. “The microscope can
basically do these experiments completely
on its own,” says Keller.

This work is a particularly advanced
example of an emerging field of
computer-assisted imaging known as ‘smart
microscopy. In these configurations, the




Take-aways for the future of machine learning and imaging desp imaging

1. It’s not going away....it works, there’s a big community, and lots of funding
2. Hardware and software are rapidly evolving

3. CNN'’s work very well, but they are not the final solution...Transformer models
and Diffusion networks are using CNN'’s as building blocks

4. There is currently a lack of safeguards and not enough consideration for how
to ensure processed results are accurate, secure and trustworthy

5. Merger of hardware and software for key applications is inevitable...



Ethical questions surrounding deep convolutional networks

1. What are your expectations for an image reconstruction algorithm used in a clinical setting?

2. What types of “guarantees” should we be able to make, if any, to a patient?

3. How should we guide future development of ML software to meet any guarantees?

4. How should we guide future development of ML-designed hardware to meet any guarantees?

5. Thoughts towards a system of checks and balances?

deep imaging



[IE=

deep imaging

What was this class about?

Where your final
project is aimed

Computer-

centered hardware
+ software

Human-centered hardware design Computer-centered software design
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Bringing together physical and digital image representations deep imaging

Physical wortd | Image |y Task

7 .

g a % ] TRUCK
AN H  H e
Hardware ... = H—H
\ e [ [] — BigvcLe
CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATTEN FULLY SOFT
CONNECTED
Y S Y ¥
FEATURE LEARNING CLASS ATION

Final project: try to optimize all of this together!



ML+Imaging pipeline introduction H%

. . d i i
Machine Learning SR

Digitization

y->e

Measurement device

Real World
Optimization
v
P . Linear classification
Sampling Theorem
- Logistic classifier
Discrete math &

Black box transformations Linear algebra Neural networks

 (Convolution

Continuous  Fourier Transform
complex fields

Convolutional NN’s



Physical models for light propagation to sensor deep imaging

Interpretation #1: Radiation (Incoherent) . Real. non-negative
Model: Rays ’ 9

- .= HB S,

ﬁi*£xi SNN. « Sample absorption S
.  lllumination brightness B
- « BlurinH

Interpretation #2: Electromagnetic wave (Coherent)
Model: Waves

Complex field

double slit screen

lc= | HC SgP
d[ « Sample abs./phase S
. ))) * lllumination wave B
.  BlurinH




Mathematical model of for incoherent image formation H§

deep imaging

« All quantities are real, and non-negative

Object absorption:
So(X,y)

lllumination brightness:
B(x,y)

B S, (B Sy« h

multiplication :
convolution



Model of image formation for wave optics (coherent light):

Discrete sample 2. Compute its 2D 3- Multiply by
function s(x,y) Fourier transform aperture
(complex) 5(f,, f,) function A(fy, fy)

k1. Transmitted field
SC(X’y) = C(Xay) S(X1 )

“Fourier plane”

4. Compute
inverse Fourier

transform s’(x’,y’)
(complex)

“Blurred
image”

gt

[IE=
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5. Detector
measures

8’(X’,y")|2

-



Machine Learning %

Dlgltlzatlon deep imaging

y->e

Measurement device

Real World
Optimization
v
Linear classification
- Sampling
e Theorem Logistic classifier
Discrete math &

Black box transformations Linear algebra Neural networks

 (Convolution

Continuous  Fourier Transform
complex fields

Convolutional NN’s

IInc = HB SO

ICoh= |HCSC|2




Summary of machine learning pipeline:

1. Network Training

Training error

Output
*

y Model

Linly, W) | o0 || & | fWx) | <=

What we need for network training:

1. Labeled examples
2. A model and loss function

/E_X._[X1 ,y1] E_X-_[XK,yK]\

3. A way to minimize the loss function L

Training
Data

deep imaging



Summary of machine learning pipeline:

2. Network Testing

Test error

Lout(Y1 y*) <:

<

G

Model

\_

f(W,x)

G

/ E_X._[x|_,y|j E_X-_[XNaYN]\

N - /

What we need for network testing:

4. Unique labeled test data
5. Evaluation of model error

deep imaging

Test Data not from
Training Dataset



Let’s start with a simpler approach: linear regression

General linear model:

Assume 1 class =
1 linear fit

Use MSE error
model

Where labels
determined by
thresholding

=

deep imaging

N
1
=1
y X
N 2
B 1 #cIassesI H= W
1 il T Y .
L:N;Li(w Ti —Yi) Avar t01=] > 1
1 N
L=~ > (W —y;)? .
1=1
if z <0,
ry) sE@:i={0 ifz=0,

if x > 0.



Let’s start with a simpler approach: linear regression

General linear model:

Assume 1 class =
1 linear fit

Use MSE error
model

Where labels
determined by
thresholding

=

deep imaging

N
1
=1
y X
N 2
B 1 #cIassesI H= W
1 il T Y .
L:N;Li(w Ti —Yi) Avar t01=] > 1
1 N
L=~ > (W —y;)? .
1=1
if z <0,
ry) sE@:i={0 ifz=0,

if x > 0.
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Why does linear regression with sgn() achieve classification?

Without sgn(): regression for best fit

T
f(%i) = w X
N
y 1 2
 If y; can be anything, minimizing L
makes w the plane of best fit
-wo/ |w|




Why does linear regression with sgn() achieve classification?

+1

E—

0
o
—_

deep imaging

Without sgn(): regression for best fit

T
® f(X:) = w'x;
@ @
o o N
1
® o @ _ 2
o © N (w' z; — y;)
Project to -1 or +1 -
° i * y;canonly be -1 or +1, which
¢ ® defines its class
® o° o ©
@



—A =
S
—=>

deep imaging

Why does linear regression with sgn() achieve classification?

Without sgn(): regression for best fit

f(x:) = w'x;

1 N
—Nzw i — i)

+1

* y;canonly be -1 or +1, which
defines its class

« Can still find plane of best fit
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Why does linear regression with sgn() achieve classification?

With sgn() operation:

f(x;) = yi = sgn(w'x;)
+1
1 o ,
. =~ Z w'z; — y;)
: pa—

* Anything point to one side of y=0
intersection is class +1, anything on
the other side of intersection is
class -1

L+ 40 |- 0] paloaloid




Why does linear regression with sgn() achieve classification?

With sgn() operation:

E—

0
o
—_

deep imaging

® f(x:) = yi = sgn(w'x;)
1 o ®
® — xT 0 0
0

* yaxis isn’t really need

ed now & can

view this decision boundary in 2D
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Why does linear regression with sgn() achieve classification?

With sgn() operation:

f(x;) = y; = sgn(w" x;)

1 N
—Nzw i — i)

Linear classification
boundary

Sign operation takes linear regression
and makes it a classification operation!




How to minimize L,

For logistic regression,

Z In (1 + e_y’"'WTx”) «— iterative solution

Compare to linear regression:

N
1 9 .
Li(w) = N g WX, — Yn) «— closed-form solution
n=1



In the rest of this class: solve via gradient descent H%

deep imaging

With a matrix, compute this for each entry:

dL(W;) _ lim L(W; +h) — L(W;)
dW;  h—>0 h
Example:
=[1,2;3,4] W,+h =[1.001,2;3,4] dL(W,)/dW; = 12.8-12.79/.001

L(W, x,y) =12.79 L(Wi+h, x,y) =12.8

dL(W,)/dW, = 10

- Repeat for all entries of W, dL/dW will have NxM entries for NxM matrix



Steepest descent and the best step size € deep imaging

e N
L = N 2_: w?! Tr; —
2. Compute gradient g© = V_f(x©) - 9
VL(w) = =X (Xw—-y) =0

Y Y

1. Evaluate function f(x©) at an initial guess point, x©

3. Next point x" = x© - g0gO)

4. Repeat — x+1) = x( - gig until [x"+1-x"| < threshold t

while previous step size > precision and iters < max iters:
prev_X = cur_ X
cur x -= gamma * df(prev_x)
previous step size = abs(cur x - prev_Xx)
iters+=1



e , Iraining data
e o°
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f X deep imaging

f=W1:c

Learned f: not flexible

f = Wzma,x(lec, 0)

Learned f: a bit flexible

f = W3ma,x(0, W2I’I1&X(W1x, O))

Learned f: more flexible

J We can keep adding

Does it generalize??? these “layers”...

Machine Learning and Imaging — Roarke Horstmeyer (2024)



Before CNN’s — understand two competing goals in machine learning deep imaging

1. Can we make sure the in-sample error L,.(y, f(x,W)) is small enough?
 Appropriate cost function
 “complex enough” model

2. Can we make sure that L_(y, f(x,W)) is close enough to L, (y, f(x,W))?
« Probabilistic analysis says yes!
« |L, - L,y bounded from above
 Bound grows with model capacity (bad)
* Bound shrinks with # of training examples (good)



Gets us to Convolutional Neural Networks

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5
INPUT 6@28x28
32x32

S2: f. maps
6@14x14

| Full conrlection ’ Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection
77 conv
input g4 fitters 3x3 conv %3
g 3x3 conv 3x3 conv 3x3 conv 3x3 conv conv 3x3 conv 3x3 conv
imang Norm 64 fiiters 64 filters Norm g4fiters 64 fiiters N "“ " 128 filters 128 fiters N°"“ " 128 filters 128 filters o

Lu
Relu Norm drop ReLu Norm dr Noml Norm dr
Pool @ RelLu @om Sum RelLu ODSum drop Sum ReLu op Sum

Norm
3x3 conv 3x3 conv 3x3 conv 3x3 conv 3x3 conv 3x3 conv 3x3 conv 3x3 conv FC (84) Softmax
onn N rm Relu
256 filters 256 filters 256 filters  5pp gigars  NormS12filters 512 fiters ° 512ﬁlters s12fiters oo

Norm Norm Relu Norm Norm dr
op
Relu mdm’ Sum m Relu drop Sum Relu drop Sum ReLu i

\,/\_,/ \_//\//

—tT >
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Why should we use these convolutions? %

—v
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S Banded W X = cat image

Image interpretation

This type of matrix can dramatically reduce
the number of weights that are used while still
allowing local regions to mix:

Full matrix: O(n2)

Mix all the pixels in the
red box, with associated
weights, to form this entry
of S

Banded matrix: k-O(n)



Important components of a CNN deep imaging

CNN Architecture Loss function & optimization
« CONV size, stride, pad, depth « Type of loss function
* RelLU & other nonlinearities * Regularization
« POOL methods « Gradient descent method
« # of layers, dimensions per layer « SGD batch and step size

* Fully connected layers

Other specifics: Pre-processing, initialization, dropout, batch normalization, augmentation



Our very basic convolutional neural network

Training error

Lin(y’ f(W,X)) = <:
cross_entropy(y, f(W,x)) B

Given a new L;,,
want to update W'’s
to make L, smaller!

O

U;EU’( Model / E_x__[x1 Vi1l E_X-_[XK,yK]\
~ e
{m| y* = f(Wx) K= ]
- \= -
4 ANE ] X A
L, - max W; |max W, max
W,

N ),

Backwards pass uses new L, to update W’s — backpropagation!

[IE=

deep imaging

Training
Data



A. Baydin et al., Automatic Differentiation
in Machine Learning: a Survey

Automatic differentiation on computational graphs

deep imaging

In() +
1 >m ~/v_1\ o 4 f($1,332) = 1n($1) + T1T9 — sin(wg).

@—’ f(z1,22)

sin()

Y |
"

i) » V0 » V3

To both determine f and find df/dx; :

« Create graph of local operations
« Compute analytic (symbolic) gradient at each node (unit) in graph
« Use inter-relationships to establish final desired gradient, df/dx;

« Forward differentiation
« Backwards differentiation = Backpropagation



Let’s go through an example:

deep imaging

L = || W, ReLU(W, X) ||,2 (2-layer network with MSE where we
neglect labels y for now)

dL/dW, = ? | dL/dW,, = ?

z1 = XWq Z4 n;
hl = RGLU(Zl) wi ‘ @ y
Yy = h1Ws *
L = l© 2 e ///
Ik 97 o
0L _ 9) 0L _ 7. OW2
oWy  OWy 0 1




CNNs for classification %
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P. Eulenberg et al., “Reconstructing cell cycle and disease progression using deep learning” deep imaging
Global Average TSL\IE’_{ — . . .
CNN Feed Forward  Pooling 5 . Visualization

Detektor

Light sources
Input —_— \
— 2 \
_— S s \ \
_’. e . & \
L LN = e=a
—_— - - \

—f

Classification

i ‘ : A

Brightfield Darkfield ~ ~

Image ~ Image -~ -

L -~ \ anhas
~— Telophase

Feature Extraction Softmax N T .

G1/S/G2 Pro Meta Ana Telo

1.0
' 0.8
£ Prol 226 M 0o 0
. |
darkfield s 0.6
T Meta 26 34 8 0 o0
=1
3 0.4
Pl 5 Anal 5 5 2 3 0

0.2
Telo| 1 0 0 0

MPM2 G1/S/G2 Pro Meta Ana Telo LO.O
prediction
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Other Computer Vision Tasks

Semantic Classification Object Instance Super-
Segmentation + Localization Detection Segmentation resolution

4x SRGAN (proposed) original

Figure 1: Super-resolved image (left) is almost indistin-

< va:_z.‘ =
. guishable from original (right). [4x upscaling]

DOG, DOG, CAT

" TREE, SKY I\ e )
Y Y Y
No objects, just pixels Single Object Multiple Object Thiainagn o 560 bl doms

) )




deep imaging

Post-processing of your results: a few options at different stages

Options to examine your test data after processing:
* ROC curve, Precision-Recall

« Confusion matrix

 Sliding window visualization
» Layer visualizations

« Saliency maps etc.

 tSNE visualization
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Instead, compress x-y dimensions of input image

deep imaging
U-Net Architecture

« Compress spatial features into Y

learned filters Compress Decompress Ti1]
« Then, decompress learned filters input

back into same spatial mage fe-e »|» |+ Output

. . | all ol of o | 1

dimensions © encoder)  (decoder) 2| 5 g g imagetile
« Can be an autoencoder B gl e &8
* Analogous to image compression 5] & %’ I
« A very powerful idea... i R
U-Net: Convolutional Networks for Biomedical B E Jl;l;l

Image Segmentation ¥ o256 256 512 256 t
Olaf Ronneberger, Philipp Fischer, and Thomas Brox N% .% ’% %[!glgl -’zzg\; :}(]3’ CF\:;;U
. . . . . . a H' 512 512 1024 512 - -

Computer Science Department an OSS Centre for Biological Signalling Studies,

P ber tUninrsigrBoi Freiburgt,: Germfnyl gicel Signalling Stud %It.?- Ng\:-t-?- ' max pool 2x2

ronneber@informatik.uni-freiburg.de, 3 3 = S -
WWW home page: http://lmb.in:fomatik.ungi—freiburg.de/ &;*%*; * up-conv 2X2
« S % =» conv 1x1

o™ N



Bringing together physical and digital image representations %

deep imaging
Physical Layers Digital Layers

1 Task
. « g 1 ; £ - :Tchl\JRCK
Physical fl] | D'Qlltlzed NV R

Function I, S g% & E
s = fllg] e VAT R
S O CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING J (LATTEN CONNECTED SOFTMAX J

Y b i
FEATURE LEARNING CLASSIFICATION
Digital layers Physical layers

/ /
Task = W,, ...ReLU[W, ReLU[W, f[l.]]...]



What physical parameters effect image formation?

lllumination

« Spatial pattern

* Angle of incidence

» Color, polarization
Lens and optics

» Position/orientation

« Shape

 Focus

« Transparency
Detector

* Pixel size

» Pixel shape & fill factor

» Color filters

» Other filters

« Eto P curves

» Digitization schemes/thresholds

« Data transmission, multiplexing
Physical object

Input: physical object

[llumination

Output:
Detected image

Lens and optics

E—

0

Fo
—V=>

deep imaging

n x m pixel array

3

!

< Digitazation®  Phkotons to
eléctrons

Detector
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deep imaging

Physical Layers Digital Layers

______________________

; Digitized
Input image | - f[] Sl |
data |, |

FEATURE LEARNING CLASSIFICATION

Q: Where and how should | implement my physical layer?

A: It depends on your data and implementation

« Situation #1: Fully simulated physical layers

« Situation #2: Experimentally-driven physical layers



Situation #2: Fully simulated physical layers

Generated Labels

[IE=

deep imaging

Experimental
measurements

“Expert”
annotation

Physical Layers

______________________

Digital Layers

Pro’s of experimental measurements: Don’t need to worry about making your simulations match

the setup! (HUGE)

Con’s of experimental measurements: You’ll need to label them, limited access to desired sample

information, often need to exploit some fundamental physical property



Many-to-one recurrent neural network

»

Measurement

Backpropagate to
minimize dL/dW, dL/DU

Simple network structure:

f(xs, hi.1)

State h,

ir

Output o,

|

Label y —— Loss function L(o, y)

[IE=

deep imaging
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deep imaging

Taxonomy of Generative Models Direct
GAN

Generative models

/\

Explicit density Implicit density
Tractable density Approximate density LY
" : GSN
Fully Visible Belief Nets \
- NADE ) / .
- MADE Variational Markov Chain
- PixelRNN/CNN

. Variational Autoencoder Boltzmann Machine
Change of variables models

(nonlinear ICA)

Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Stanford CS231n, Lecture 12
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deep imaging

Example: Variational Autoencoder (VAE)

* With Gaussian PDF, can start to
add/subtract latent vector in a

Force this vector to follow a Gaussian PDF normalized vector space
Encoder Decoder
Network — = | Network
(conv) (deconv)
latent vector / variables Face without glasses

Minimize (KL) distance between latent

_ Adding new features to samples
vector and Gaussian normal

Glasses

Generative Example (once trained):

* Encode image with glasses, obtain latent vector PDF P,
* Encode image without glasses, obtain PDF Py,

* Compute diff = P,- P,

* Encode new image to obtain P, , add in diff

* Decode P, + diff to get guy with glasses!

Exploring a specific variation of input data[1]



100-d
random code

0.47

0.19

—\
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".B = G/D Game deep imaging

(64,64,3)
generated image

Generator “G”
(Neural Network)

Run Adam simultaneously on two minibatches
(true data / generated data)

Real images
(database)

Gradients Binary classification

;5 y=0 if x=G(2)

Discriminator “D”
(Neural Network)

y=1 otherwise

Probability distributions

Image space

Kian Katanforoosh, Andrew Ng, Younes Bensouda Mourri

Stanford CS230, Lecture 3



Supervised ML Reinforcement learning H%

deep imaging
]
Bl 1SS 8] [@) [ 0.0
U ”
g Outcome:
Win the game!

,.z, ‘block %

Ty e @ ” =
2] - % ‘v.‘,'-"~
forward
forward

Dynamic image sequence

7}'" /
g = -

Fixed image sequence

Goal: match to known label « Goal: get to known desired outcome

(large labeled dataset needed) (no labels needed, really...)

Output: sequence of actions

Output: label

Not possible to examine all data

Examines all data
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deep imaging

Thanks for a great semester everyone!

Machine Learning and Imaging — Roarke Horstmeyer (2024)



