deep imaging

Lecture 5: A gentle introduction to
optimization
Machine Learning and Imaging

BME 548L
Roarke Horstmeyer

Announcements

* Lab today/Wednesday by me, new lab
notebooks for next week released soon

e Homework #1 will be assigned by Wednesday
(we’ll send out an announcement email)

* Anticipated due date: Wed Feb 14

ML+Imaging pipeline

Real World

Measurement device

Digitization

[JE=

deep imaging

Machine Learning

N

y->e€

Last Class

This Class

—A W,

— >
deep imaging

Mathematical Optimization: "Selection of a best element
(with regard to some criterion) from a set of available
alternatives”

[JE=

deep imaging

Mathematical Optimization: "Selection of a best element
(with regard to some criterion) from a set of available
alternatives"

3 elements:

1) Your desired output (a better image, a clean signal, a
classification of "cat" or "dog", etc.)

2) A model of what you are looking for - how you form the
desired output from your measured data

3) A cost function, to measure how close you're getting to the
answer (the cost function minimum)

Generalized optimization pipeline —

deep imaging

Model

N x N pixels

Input space
dimension

N2

Generalized optimization pipeline —

deep imaging

vec|[e
Output Model ;\Input: measurements

Cost
function

047 <= —
f(x)

N x N pixels
Performance Output space Input space
measure dimension dimension
1 number! M N2

How well did
we do?

Machine learning: update model to decrease error o

deep imaging

vec|[e
Output Model ;\Input: measurements

Cost
function

047 <= (&=
f(x)

N x N pixels
Performance Output space Input space
measure dimension dimension
1 number! M N2

How well did
we do?

—— >

— >

deep imaging

De-noising: "What is the closest image to what | detected,
except without so many fluctuations"?

—A W, (

—

deep imaging

Input dimension: N x N image

Output dimension: N x N image

De-noising: "What is the closest image to what | detected,
except without so many fluctuations"?

[IE=

Cost function: "Don't let nearby pixels vary deep imaging
around too much"

’ (Only showing 2 of the
N2 dimensions)

Cost function value
o
N

o) 0.5
L\'@/ V4 0

0 0.2 0.4 0.6 0.8

Pixel 2

De-noising: "What is the closest image to what | detected,
except without so many fluctuations"?

[IE=

deep imaging

()]

E 1

4y

> 0.8

C

o 06

Q o4 Cost function

‘E 0.2

8 0

@) 1 .
oy

/«\'@/

0 0 0.2 0.4 0.6 0.8 1

Pixel 2

De-noising: "What is the closest image to what | detected,
except without so many fluctuations"?

Start with a guess for desired output deep imaging

()]
=) 1
©
> 08
c
o 06
e 04 Cost function
S
=02
3 o
(@) 1§
A
/
*@/ 0 0 0.2 0.4 0.6 0.8 1
Pixel 2

<= Pixel value 1

L Pixel value 2
Noisy image

deep imaging

"Descend" to minimize cost function
(tweak values of each pixel)

o
3 1
S Note: This part
S sl computers are
*g' 04 really good at!
>
"'_: 0.2
S o
@) 1§
A 0
/
*6/7 0 0 0.2 0.4 0.6 0.8 1
Pixel 2

<= Pixel value 1

o Pixel value 2
Noisy image |

k=

deep imaging
"Descend" to minimize cost function
(tweak values of each pixel)
o
3 1
S | Note: This part
S sl computers are
S Desired output (y1, y2,...) really good at!
E 0.2
2
@) 1§
A 0
/
*6/7 0 0 0.2 0.4 0.6 0.8 1
Pixel 2 :
Desired output
<= Pixel value 1 m o gmT < Yl
o Pixel value 2 < - y2
Noisy image |

Optimization pipeline for denoising

Output Model

Cost

fly)

“Neighboring pixels

Performance Output space
measure dimension N?2

Mean-
squared
error

function g)
047 (== — QQ —
N ° _/

shouldn’t vary too rapidly”

vec[e]

—

deep imaging

/\Input: measurements

Input space

N x N pixels

dimension N2

Input image

"Cat" or "dog" cost
function

/, -l
// O
Ty >

/" \
4“ W\

Cost function value

06[n

Image Classification Problem: "Is the image of a dog or a cat"?

Output dimensions now not image pixels, but instead some “decision” axes

Cost function value

Input image
Start with a guess:
50% doQ, 50% cat

A0
55T
/’ " “ \\ '\\
/’l" . t“ .
0TI

Cost function value

Input image

eep imaging

Desired output:
70% "cat" and 30% "dog"
(So google will guess it is likely a cat)

v

Optimization pipeline for classification e

deep imaging
vec[e]
Output Model /\Input: measurements
Cost e ~N] e
function
047 <= B Q —
) ot
N _/
“Map input images of
cats/dogs to guess of]
category” — Abstract! N x N pixels
Performance Output space Input space
measure dimension 2 dimension NZ2
Mean-
squared

error

A simple example: spectral unmixing 4.

deep imaging

(For whatever reason, whenever | get confused about optimization, | think
about this example...it’s a good one)

A simple example: spectral unmixing

— >

deep imaging

(For whatever reason, whenever | get confused about optimization, | think

about this example...it’s a good one)

The setup:

measure the color (spectral)
response of a sample (e.g., how
much red, green and blue there is,
or several hundred measurements
of its different colors).

You know that the sample can only
contain 9 different fluorophores.

What % of each fluorophores is in
your sample?

spectrometer

sample

Intensity

wavelength

A simple example: spectral unmixing —»%

deep imaging

3 elements of optimization:

>
k%)
1) Desired output spectrometer | —» FC_’.
C
wavelength
2) The model

3) The cost function

sample

A simple example: spectral unmixing

3 elements of optimization:

1) Desired output

What % of each of the 9 fluorophores

2) The model

3) The cost function

spectrometer

sample

— >

deep imaging

Intensity

wavelength

A simple example: spectral unmixing

3 elements of optimization:

1) Desired output

What % of each of the 9 fluorophores
2) The model

"Dictionary" of the 9 different spectra

3) The cost function

spectrometer

sample

— >

deep imaging
>
=
7))
c
)
['}
£
wavelength

A simple example: spectral unmixing

3 elements of optimization:

1) Desired output

What % of each of the 9 fluorophores
2) The model

"Dictionary" of the 9 different spectra
3) The cost function

Minimum mean squared error (to start)

spectrometer

sample

— >

deep imaging
>
=
7))
c
)
['}
£
wavelength

Optimization pipeline for spectral unmixing

Cost
function

047 <&
fly)

Error between
measurement and
modeled mixture

Output

—

Model

\QQQ)

G

“Mix spectra of known
fluorophores to simulation

Output space

dimension 9

my measurement”

[JE=

deep imaging
>
=
7))
-
)
['}
£
wavelength

Input space
dimension N

Mathematical model for spectral unmixing —»%

deep imaging

a) First make the "dictionary":

spectrometer | —>»

Intensity

wavelength

Pacific Blue

Mathematical model for spectral unmixing A

deep imaging

a) First make the "dictionary":
Dictionary matrix A

spectrometer

Intensity

wavelength

t

Put "Pacific blue"
spectral intensities
in first column of
matrix A

Pacific Blue

Mathematical model for spectral unmixing A

deep imaging

a) First make the "dictionary":

J\

wavelength

Dictionary matrix A

spectrometer | —>»

Intensity

t

Put "GFP"
spectral
intensities in 2nd
column

GFP

Mathematical model for spectral unmixing —»%

deep imaging

b) Model the unknown sample %'s

, Dictionary matrix A
(the desired output)

spectrometer

9 possible spectra

Some mixture...
+ + +...
Unknown sample y

Mathematical model for spectral unmixing —»%

deep imaging

b) Model the unknown sample %'s Unknown

Dictionary matrix A sample %'s
(the desired output) y P y

S
9 weights
y(1)-y(9)
/

spectrometer

9 possible spectra

Each weight
erce vl + vl + vl .
Unknown sample y percentage:

Mathematical model for spectral unmixing —»%

b) Model the unknown sample %'s

Unknown sample y

spectrometer | —>

New measurement x

Intensity

wavelength

Each weight
in X is
percentage:

deep imaging

Unknown
Dictionary matrix A sample %'s 'y

S
9 weights
y(1)-y(9)
/

9 possible spectra

v(1)| + y(2)| + v(3)| +...

Mathematical model for spectral unmixing

spectrometer

Unknown sample y

[JE=

deep imaging

Unknown
Dictionary matrix A sample y

Matrix equation: x=Ay

S

9 weights
«

This is referred to as a “forward” model

Goal: Given A and x, find y

Mathematical model for spectral unmixing —»%

deep imaging

Unknown
Dictionary matrix A\ sample y

X

S

9 weights
«

spectrometer

Data in A can be thought
of , in some sense, as

Unknown sample y “training data”

—— >

Cost function for spectral unmixing

— >

deep imaging

X = Ay won't always be true, due to noise (actually, x = Ay+n)

Common cost function is minimum mean-squared error:

Cost function f(y) = = (x - Ay)?

spectral
measurements

Optimization pipeline with input and output variables

Cost
function

047 <&

fly)= 2 (x - Ay)

Output

y

—

Model

_

Forward:

X = Ay

J

[JE=

deep imaging

X/\

Intensity

wavelength

Cost function for spectral unmixing A%‘@

deep imaging

X = Ay won't always be true, due to noise (actually, x = Ay+n)

Common cost function is minimum mean-squared error:

Cost function f(y) = = (x - Ay)?

spectral
measurements

Find mixture y of known spectra A that is as close as possible
to measurement x

y* = minimize f(y) fly) y(2)

y(1)

Cost function for spectral unmixing AEV;%?@

Convex function 9eePmaging
f(y)= = (x - Ay)? iy
spectral y(2)
measurements
One minimizer y*
y(1) y

f(y) is convex, so finding y* is easy via its gradient:

—

Down the hill

Cost function for spectral unmixing A%?‘@

deep imaging

Convex function

fly) = (x - Ay)? £(y)
spectral v(2)
measurements
y(1) One minimizer y*

f(y) is convex, so finding y* is easy via its gradient:

d/dy f(y) = d/dy Z (x - Ay)?

Cost function for spectral unmixing A%?‘@

deep imaging

Convex function

fly) = (x - Ay)? £(y)
spectral v(2)
measurements
y(1) One minimizer y*

f(y) is convex, so finding y* is easy via its gradient:

d/dy f(y) = d/dy Z (x - Ay)?
df/dy =3 d/dy (x - Ay)?

Cost function for spectral unmixing A%%‘@

deep imaging

Convex function

fly) = (x - Ay)? £(y)
spectral v(2)
measurements
y(1) One minimizer y*

f(y) is convex, so finding y* is easy via its gradient:
d/dy f(y) =d/dy Z (x - Ay)?
df/dy = Z d/dy (x - Ay)?
df/dy[j] =% -2 a(:,j) * (x - Ay)

Cost function for spectral unmixing A%%‘@

deep imaging

Convex function

fly) = (x - Ay)? £(y)
spectral v(2)
measurements
y(1) One minimizer y*

f(y) is convex, so finding y* is easy via its gradient:
d/dy f(y) = d/dy 2 (x - Ay)?
df/dy =3 d/dy (x - Ay)?

df/dy[j] =2 -2 a(;,j) * (x - Ay)
df/dy = -2 AT(x - Ay)

Cost function for spectral unmixing A%?‘@

Convex function 9eePmaging
f(y)= = (x - Ay)? iy
spectral y(2)
measurements
One minimizer y*
y(1) y

Method 1: Gradient descent - follow gradient downhill to solution y*

Algorithm 4.1 An algorithm to minimize f(y) = % |Ay —x|[3 with respect to y
using gradient descent, starting from an arbitrary value of Y.

Set the step size (€) and tolerance (d) to small, positive numbers.
while ||[AT Ay — ATx||]2 > 4§ do

yy—€e(ATAy — ATX)
end while

Cost function for spectral unmixing A%?‘@

Convex function 9eePmaging
f(y)= = (x - Ay)? iy
spectral y(2)
measurements
One minimizer y*
y(1) y

Method 2: Direct solution — set derivative to O to find y* directly

df/dy = AT(x - Ay*) = 0 <— y* is where gradient of f(y) is zero
AT x =ATAy* —s

(ATA)-1 AT x =y* | "Moore-Penrose Pseudo-inverse"

(Note: setting gradient to 0 and solving is hard to do for non-linear problems...)

Example unmixing with the pseudo-inverse

[JE=

deep imaging

Moore-Penrose Pseudo-inverse:

y* = (ATA)"1 AT x

Example dictionary A

9 spectra Example detected spectra x
: ; I 07 -

o5 06|

oz} Exampley,

.l compute Ay T

05}

04F

0al "~\ 03
ozr \ oz}
01
o — = 0.4l
q 40 50 :
0.7
Compute wer
pseudo-inverse, *°|

x*=Ay* is red
curve:

Good fit!

02k

01F

04t

a

Example unmixing with the pseudo-inverse

—

deep imaging

Moore-Penrose Pseudo-inverse: | y* = (ATA)-1 AT x

Example dictionary A
9 spectra

1

07t | ,y 1A
[1'_ Yoy \
06} (1t /)
| / 'A. i fl /] |.|
= | A \
05} II / "" IR, -'J:. \
{ I/ ! \
04} il
'i 'I l.l / I -. I4
03r WA A
Tl)‘.’},.-,-’/ r 1

. | éf;__-_- . .__: -

Compute 06t
pseudo-inverse, °5¢
x*=Ay*isred "

03

curve:

02}

01F

Good fit!

30

Exampley,
compute Ay

Example detected spectra x

AN A PRV —
09} f I', ';{) x' A \"-.
08} LIALE DY LU 06 |-
VAT A \
| / \ \

05|

04t

03

|’J_2 L

0.1

0 10 20 a0 40 a0

/PROBLEM:
y*=[0.2,-1.1, -1.6, ...]

Qot physically possible...

Solution has negative weights!

\

_/

Example unmixing with the pseudo-inverse

Moore-Penrose Pseudo-inverse: | y* = (ATA)-1 AT x

n = 50; %Snumber of pixels
m = 9; %number of spectral
A=zeros(n,m); %known dictionary of spectra
for j=1:m
A(:,j) = exp(=(linspace(-1,1,n)+.5-.1%j+.2).72/(.03%j));
end
%Simulate some spectra
b = imresize(rand([5,1]1),[n 11);
x_opt = A\b; < Pseudo-inverse = one line
%Show results
figure;plot(b); hold all; plot(Axx_opt);

[JE=

deep imaging

Spectral un-mixing with a positivity constraint

— >

deep imaging

Option 1: Add a constraint

Minimize f(y) = 2 (x - Ay)? Convex cost function

Subjecttoy >=0 Convex constraint

*When you have constraints, can use CVX, convex toolbox for Matlab
http://cvxr.com/cvx/

http://cvxr.com/cvx/

Spectral un-mixing with a positivity constraint ‘%@

deep imaging

Option 1: Add a constraint

2.2.0.0.0.0.0.0.0.0.0.0.0. 0

0"0"0"0"0"0"0"0"0"0"0"0"0"0

addpath '/users/Roarke/Documents/Matlab/cvx"'; cvx_setup;
cvx_begin

variable xc(m);
minimize(norm(Axxc-b));
subject to

XC >= 0;
cvx_end
%Show results
figure;plot(b); hold all; plot(Axxc)

Spectral un-mixing with a positivity constraint

— >

deep imaging

Option 1: Add a constraint

Minimize f(y) = 2 (x - Ay)? Convex cost function
Subjecttoy>=0 Convex constraint

*When you have constraints, can use CVX, convex toolbox for Matlab
http://cvxr.com/cvx/

With CVX 0.3612

1 0.2238
0.0006
0.0000
0.7336
0.0000
0.0000
0.0000
0 10 W a0 40 s 0.0000

http://cvxr.com/cvx/

Spectral un-mixing with a positivity constraint

— >

deep imaging
Option 1: Add a constraint
Minimize f(y) = 2 (x - Ay)? Convex cost function
Subjecttoy >=0 Convex constraint
*When you have constraints, can use CVX, convex toolbox for Matlab
http://cvxr.com/cvx/
y* 1 . | y*
0.6683 | e g ' ' er 0.3612
- With CVX .
15880 o With Pseudo-inv. | 05l ith C | Oo938
5.7848 .| ol 0.0006
-11.7459 0.0000
17.9304 i 0.7336
-20.1231 oz} 02t 0.0000
18.3572 | | ol 0.0000
-10.7984 0.0000

0.2 . . L L J 0.2) A) ;
2.8557 ™ 10 0w 40 50 0 10 20 a0 40 50 0.0000

http://cvxr.com/cvx/

Spectral un-mixing with a positivity constraint

— >

deep imaging

Option 2: Modify cost function

Minimize f(z) = (x - Az?)?

z? =y is dummy variable, will change cost function and gradient

*When you don't have constraints but can find the gradient, use Minfunc

https://www.cs.ubc.ca/~schmidtm/Software/minFunc.html

https://www.cs.ubc.ca/~schmidtm/Software/minFunc.html

Spectral un-mixing with a positivity constraint

— >

deep imaging

Option 2: Modify cost function

Minimize f(z) = (x - Az?)?

z? =y is dummy variable, will change cost function and gradient

R R R R R P P P P P P e

%3. Minfunc

addpath '/users/Roarke/Documents/Matlab/minFunc_2012"';
startVec = ones(m,1);

spectrum_anonymous = @(startVec)spectrum(startVec, b, A);
%Evaluate with minfunc

[xm, msevalue, moreinfo]l = minFunc(@(startVec)spectrum_anonymous(startVec), startVec, options);
figure;plot(b); hold all; plot(Axabs(xm).”2);

Spectral un-mixing with a positivity constraint ‘%@

deep imaging

Option 2: Modify cost function

Minimize f(z) = (x - Az?)?

z2 = y is dummy variable, will change cost function and gradient
%3. Minfunc

addpath '/users/Roarke/Documents/Matlab/minFunc_2012"';
startVec = ones(m,1);

spectrum_anonymous = @(startVec)spectrum(startVec, b, A);
%Evaluate with minfunc

[xm, msevalue, moreinfo]l = minFunc(@(startVec)spectrum_anonymous(startVec), startVec, options);
figure;plot(b); hold all; plot(Axabs(xm).”2);

function [err_function, grad_function] = spectrum(input_vec, b, A)

%for direct pseudo-inverse - no constraints or dummy
%serr_function = norm(Axinput_vec - b);
%grad_function = A'x(Axinput_vec - b);

err_function = norm(Axabs(input_vec). A2 - b);

grad_function = A'x((Axabs(input_vec).”2 - b)
I

. conj (Axinput_vec));

Spectral un-mixing with a positivity constraint

—

deep imaging

Option 2: Modify cost function

Minimize f(z) = (x - Az?)?

z? =y is dummy variable, will change cost function and gradient

*When you don't have constraints but can find the gradient, use Minfunc

https://www.cs.ubc.ca/~schmidtm/Software/minFunc.html

y*

0.5013
0.3345
0.1811
0.0367
0.0132
0.0705
0.2626
0.5080
0 10 20 . 30 a0 50 0.7539

Pseudo-inverse Dummy variable w/ minfunc

1 T T T T 1

n:l _5 =

06 |

04}

02}

0

Not working too well, gradient could be wrong?

https://www.cs.ubc.ca/~schmidtm/Software/minFunc.html

Additional features that are commonly encountered

— >

deep imaging

1) Sometimes see solutions where x values get really big

Fix this with a "regularizer":

Minimize f(x) = £ (x - Ay)? +

C:‘cz (y)z

"Don't let y vary too much"

Choose constant C appropriately

— >

Additional features that are commonly encountered

— >

deep imaging

1) Sometimes see solutions where x values get really big

Fix this with a "regularizer":

Minimize f(x) = £ (x - Ay)? +

C:&—z (y)z

"Don't let y vary too much"

Choose constant C appropriately

2) If you think your signal is "sparse", then it probably has mostly zeros.
Can include this in your model with an "L1" cost function:

Minimize f(y) = 2 | x - Ay |

- An extremely simple modification with pretty strong implications

