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• Lab today/Wednesday by me, new lab 
notebooks for next week released soon

• Homework #1 will be assigned by Wednesday 
(we’ll send out an announcement email)

• Anticipated due date: Wed Feb 14
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Real World
Measurement device

Digitization 
Machine Learning

ML+Imaging pipeline

γ -> e-

Last Class
This Class
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Mathematical Optimization: "Selection of a best element 
(with regard to some criterion) from a set of available 
alternatives" 

3 elements:

1) Your desired output (a better image, a clean signal, a 
classification of "cat" or "dog", etc.)

2) A model of what you are looking for - how you form the 
desired output from your measured data

3) A cost function, to measure how close you're getting to the 
answer (the cost function minimum)
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Generalized optimization pipeline

Input: measurements
vec[•]

N x N pixels

N2

Input space 
dimension

Model
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Generalized optimization pipeline

Input: measurements
vec[•]

N x N pixels

N2

Input space 
dimension

ModelOutput

M

Output space 
dimension

Cost 
function

Performance 
measure 

1 number!

0.47

How well did 
we do?
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Machine learning: update model to decrease error

Input: measurements
vec[•]

N x N pixels

N2

Input space 
dimension

ModelOutput

M

Output space 
dimension

Cost 
function

0.47

Performance 
measure 

1 number!

How well did 
we do?
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De-noising: "What is the closest image to what I detected, 
except without so many fluctuations"? 

Input dimension: N x N image

Output dimension: N x N image
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De-noising: "What is the closest image to what I detected, 
except without so many fluctuations"? 

C
os

t f
un

ct
io

n 
va

lu
e

Pixel 1
Pixel 2

Cost function: "Don't let nearby pixels vary 
around too much"

(Only showing 2 of the 
N2 dimensions)
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Cost function

De-noising: "What is the closest image to what I detected, 
except without so many fluctuations"? 

C
os

t f
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ct
io

n 
va

lu
e

Pixel 1
Pixel 2
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Noisy image

Pixel value 1
Pixel value 2

…

Cost function

C
os

t f
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ct
io

n 
va

lu
e

Pixel 1
Pixel 2
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Noisy image

Pixel value 1
Pixel value 2

…

C
os

t f
un

ct
io

n 
va

lu
e

Pixel 1
Pixel 2

"Descend" to minimize cost function
(tweak values of each pixel)

Note: This part 
computers are 
really good at!
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Noisy image

Pixel value 1
Pixel value 2

…

C
os

t f
un

ct
io

n 
va

lu
e

Pixel 1
Pixel 2

"Descend" to minimize cost function
(tweak values of each pixel)

Note: This part 
computers are 
really good at!Desired output (y1, y2,…)

…

Desired output
y1
y2…
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Optimization pipeline for denoising

Input: measurements
vec[•]

N x N pixels

N2
Input space 
dimension

ModelOutput

N2
Output space 

dimension

Cost 
function

Mean-
squared 
error

0.47

“Neighboring pixels 
shouldn’t vary too rapidly”

Performance 
measure 

f(y)
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"Cat" or "dog" cost 
function

Image Classification Problem: "Is the image of a dog or a cat"? 

Input image

Output dimensions now not image pixels, but instead some “decision” axes

y1  = % "Cat"

y2 = % "Dog"
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Start with a guess: 
50% dog, 50% cat

Input image

y1  = % "Cat"

y2 = % "Dog"
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y1  = % "Cat"

y2 = % "Dog"

Desired output:
70% "cat" and 30% "dog"
(So google will guess it is likely a cat)

Input image
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Optimization pipeline for classification

Input: measurements
vec[•]

N x N pixels

N2
Input space 
dimension

ModelOutput

2
Output space 

dimension

Cost 
function

Mean-
squared 
error

0.47

“Map input images of 
cats/dogs to guess of 
category” – Abstract!

Performance 
measure 

f(y)
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(For whatever reason, whenever I get confused about optimization, I think 
about this example...it’s a good one)
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A simple example: spectral unmixing

(For whatever reason, whenever I get confused about optimization, I think 
about this example...it’s a good one)

The setup:

- measure the color (spectral) 
response of a sample (e.g., how 
much red, green and blue there is, 
or several hundred measurements 
of its different colors). 

- You know that the sample can only 
contain 9 different fluorophores. 

- What % of each fluorophores is in 
your sample?

spectrometer

sample

wavelength

In
te

ns
ity
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A simple example: spectral unmixing

spectrometer

sample

wavelength

In
te

ns
ity

3 elements of optimization:

1) Desired output

2) The model

3) The cost function
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A simple example: spectral unmixing

spectrometer

sample

wavelength

In
te

ns
ity

3 elements of optimization:

1) Desired output

2) The model

3) The cost function

What % of each of the 9 fluorophores
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A simple example: spectral unmixing

spectrometer

sample

wavelength

In
te

ns
ity

3 elements of optimization:

1) Desired output

2) The model

3) The cost function

What % of each of the 9 fluorophores

"Dictionary" of the 9 different spectra
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A simple example: spectral unmixing

spectrometer

sample

wavelength

In
te

ns
ity

3 elements of optimization:

1) Desired output

2) The model

3) The cost function

What % of each of the 9 fluorophores

"Dictionary" of the 9 different spectra

Minimum mean squared error (to start) 
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Optimization pipeline for spectral unmixing

N

ModelOutput

9

Cost 
function

Error between 
measurement and 
modeled mixture 

0.47

“Mix spectra of known 
fluorophores to simulation 

my measurement”

Input space 
dimension

wavelength

In
te

ns
ity

Output space 
dimension

N1f(y)
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Mathematical model for spectral unmixing

spectrometer

Pacific Blue

wavelength

In
te

ns
ity

a) First make the "dictionary":
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Mathematical model for spectral unmixing

spectrometer

Pacific Blue

wavelength

In
te

ns
ity

a) First make the "dictionary":
Dictionary matrix A

Put "Pacific blue" 
spectral intensities 
in first column of 
matrix A
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Mathematical model for spectral unmixing

spectrometer

GFP

wavelength

In
te

ns
ity

a) First make the "dictionary":
Dictionary matrix A

Put "GFP" 
spectral 
intensities in 2nd 
column

…
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Mathematical model for spectral unmixing

spectrometer

b) Model the unknown sample %'s
Dictionary matrix A

Unknown sample y

9 possible spectra

Some mixture…

(the desired output)

+ + +…
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Mathematical model for spectral unmixing

spectrometer

b) Model the unknown sample %'s
Dictionary matrix A

Unknown sample y

9 possible spectra

Unknown 
sample %'s y

9 weights 
y(1)-y(9)

Each weight 
in x is 
percentage:

(the desired output)

y(1) + y(2) + y(3) +…
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Mathematical model for spectral unmixing

spectrometer

Dictionary matrix A

Unknown sample y

9 possible spectra

Unknown 
sample %'s y

9 weights 
y(1)-y(9)

y(1) + y(2) + y(3) +…

Each weight 
in x is 
percentage:

wavelength

In
te

ns
ity

New measurement x

b) Model the unknown sample %'s
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Mathematical model for spectral unmixing

spectrometer

Dictionary matrix A

Unknown sample y

Unknown 
sample y

9 weights

Matrix equation: x=Ay

x

=

Goal: Given A and x, find y

This is referred to as a “forward” model
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Mathematical model for spectral unmixing

spectrometer

Dictionary matrix A

Unknown sample y

Unknown 
sample y

9 weights

x

=

Data in A can be thought 
of , in some sense, as 
“training data”
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Cost function for spectral unmixing

x = Ay won't always be true, due to noise (actually, x = Ay+n)

Common cost function is minimum mean-squared error:

spectral 
measurements

Cost function f(y) =  Σ  ( x – Ay)2
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Optimization pipeline with input and output variables

Model
Output

Cost 
function

0.47 x = Ay

wavelength

In
te

ns
ity

x
y

f(y) =  Σ  (x – Ay)2

Forward:
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Cost function for spectral unmixing

x = Ay won't always be true, due to noise (actually, x = Ay+n)

Common cost function is minimum mean-squared error:

spectral 
measurements

Cost function f(y) =  Σ  ( x – Ay)2

Find mixture y of known spectra A that is as close as possible 
to measurement x

y(1)

y(2)
f(y)y* = minimize f(y)

y*
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Cost function for spectral unmixing

spectral 
measurements

f(y) =  Σ  (x – Ay)2

y(1)

y(2)
f(y)

One minimizer y*

f(y) is convex, so finding y* is easy via its gradient:

Convex function

Down the hill 
to the valley!
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Cost function for spectral unmixing

spectral 
measurements

f(y) =  Σ  (x – Ay)2

y(1)

y(2)
f(y)

One minimizer y*

Convex function

f(y) is convex, so finding y* is easy via its gradient:

d/dy f(y) = d/dy  Σ (x – Ay)2
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Cost function for spectral unmixing

spectral 
measurements

f(y) =  Σ  (x – Ay)2

y(1)

y(2)
f(y)

One minimizer y*

Convex function

f(y) is convex, so finding y* is easy via its gradient:

d/dy f(y) = d/dy  Σ (x – Ay)2

df/dy = Σ d/dy ( x – Ay)2
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Cost function for spectral unmixing

spectral 
measurements

f(y) =  Σ  (x – Ay)2

y(1)

y(2)
f(y)

One minimizer y*

Convex function

f(y) is convex, so finding y* is easy via its gradient:

d/dy f(y) = d/dy  Σ (x – Ay)2

df/dy = Σ d/dy ( x – Ay)2

df/dy[j] = Σ -2 a(:,j) * ( x – Ay) 
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Cost function for spectral unmixing

spectral 
measurements

f(y) =  Σ  (x – Ay)2

y(1)

y(2)
f(y)

One minimizer y*

Convex function

f(y) is convex, so finding y* is easy via its gradient:

d/dy f(y) = d/dy  Σ (x – Ay)2

df/dy = Σ d/dy ( x – Ay)2

df/dy[j] = Σ -2 a(:,j) * ( x – Ay) 

df/dy = -2 AT( x – Ay)
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Cost function for spectral unmixing

spectral 
measurements

f(y) =  Σ  (x – Ay)2

y(1)

y(2)
f(y)

One minimizer y*

Convex function

Method 1: Gradient descent – follow gradient downhill to solution y*

y y
y

y
y y

x

x
x

y

y
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Cost function for spectral unmixing

df/dy = AT( x – Ay*) = 0
AT x = ATAy*

(ATA)-1 AT x = y* "Moore-Penrose Pseudo-inverse"

y* is where gradient of f(y) is zero

Method 2: Direct solution – set derivative to 0 to find y* directly

(Note: setting gradient to 0 and solving is hard to do for non-linear problems…)

spectral 
measurements

f(y) =  Σ  (x – Ay)2

y(1)

y(2)
f(y)

One minimizer y*

Convex function
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Example unmixing with the pseudo-inverse

y* = (ATA)-1 AT xMoore-Penrose Pseudo-inverse:

Example dictionary A 
9 spectra

Example y, 
compute Ay

Example detected spectra x

Compute 
pseudo-inverse, 
x*=Ay* is red 
curve:

Good fit!
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Example unmixing with the pseudo-inverse

y* = (ATA)-1 AT xMoore-Penrose Pseudo-inverse:

Example dictionary A 
9 spectra

Example y, 
compute Ay

Example detected spectra x

Compute 
pseudo-inverse, 
x*=Ay* is red 
curve:

Good fit!

PROBLEM:

y* = [0.2, -1.1, -1.6, …]

Solution has negative weights!

Not physically possible…
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Example unmixing with the pseudo-inverse

y* = (ATA)-1 AT xMoore-Penrose Pseudo-inverse:

Pseudo-inverse = one line
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Spectral un-mixing with a positivity constraint

Minimize f(y) =  Σ  ( x – Ay)2

Subject to y >= 0

Convex cost function

Convex constraint

*When you have constraints, can use CVX, convex toolbox for Matlab

Option 1: Add a constraint

http://cvxr.com/cvx/ 

http://cvxr.com/cvx/
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Spectral un-mixing with a positivity constraint

Option 1: Add a constraint
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Spectral un-mixing with a positivity constraint

Minimize f(y) =  Σ  (x – Ay)2

Subject to y >= 0

Convex cost function

Convex constraint

*When you have constraints, can use CVX, convex toolbox for Matlab

Option 1: Add a constraint

http://cvxr.com/cvx/ 

0.3612
0.2238
0.0006
0.0000
0.7336
0.0000
0.0000
0.0000
0.0000

y*

With CVX

http://cvxr.com/cvx/
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Spectral un-mixing with a positivity constraint

Minimize f(y) =  Σ  (x – Ay)2

Subject to y >= 0

Convex cost function

Convex constraint

*When you have constraints, can use CVX, convex toolbox for Matlab

Option 1: Add a constraint

http://cvxr.com/cvx/ 

0.3612
0.2238
0.0006
0.0000
0.7336
0.0000
0.0000
0.0000
0.0000

y*

With CVXWith Pseudo-inv.0.6683
-1.5880
5.7848

-11.7459
17.9304
-20.1231
18.3572
-10.7984
2.8557

y*

http://cvxr.com/cvx/
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Spectral un-mixing with a positivity constraint

Minimize f(z) =  Σ  (x – Az2)2

z2 = y is dummy variable, will change cost function and gradient

Option 2: Modify cost function

*When you don't have constraints but can find the gradient, use Minfunc
https://www.cs.ubc.ca/~schmidtm/Software/minFunc.html

https://www.cs.ubc.ca/~schmidtm/Software/minFunc.html
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Minimize f(z) =  Σ  (x – Az2)2

z2 = y is dummy variable, will change cost function and gradient

Option 2: Modify cost function
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Spectral un-mixing with a positivity constraint

Option 2: Modify cost function

Minimize f(z) =  Σ  (x – Az2)2

z2 = y is dummy variable, will change cost function and gradient
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Spectral un-mixing with a positivity constraint

Option 2: Modify cost function

*When you don't have constraints but can find the gradient, use Minfunc
https://www.cs.ubc.ca/~schmidtm/Software/minFunc.html

Pseudo-inverse Dummy variable w/ minfunc

Not working too well, gradient could be wrong?

0.5013
0.3345
0.1811
0.0367
0.0132
0.0705
0.2626
0.5080
0.7539

y*

Minimize f(z) =  Σ  (x – Az2)2

z2 = y is dummy variable, will change cost function and gradient

https://www.cs.ubc.ca/~schmidtm/Software/minFunc.html
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Additional features that are commonly encountered

Minimize f(x) =  Σ  (x – Ay)2 +C*Σ (y)2  

1) Sometimes see solutions where x values get really big

Fix this with a "regularizer": 
"Don't let y vary too much"

Choose constant C appropriately



Machine Learning and Imaging – Roarke Horstmeyer (2024)

deep imaging

Additional features that are commonly encountered

Minimize f(x) =  Σ  (x – Ay)2 +C*Σ (y)2  

1) Sometimes see solutions where x values get really big

Fix this with a "regularizer": 
"Don't let y vary too much"

Choose constant C appropriately

2) If you think your signal is "sparse", then it probably has mostly zeros. 
Can include this in your model with an "L1" cost function:

Minimize f(y) =  Σ  | x – Ay |

- An extremely simple modification with pretty strong implications


