deep imaging

Lecture 5: A gentle introduction to
optimization
Machine Learning and Imaging

BME 548L
Roarke Horstmeyer



Announcements

* Lab today/Wednesday by me, new lab
notebooks for next week released soon

e Homework #1 will be assigned by Wednesday
(we’ll send out an announcement email)

* Anticipated due date: Wed Feb 14
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Mathematical Optimization: "Selection of a best element
(with regard to some criterion) from a set of available
alternatives”
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Mathematical Optimization: "Selection of a best element
(with regard to some criterion) from a set of available
alternatives"

3 elements:

1) Your desired output (a better image, a clean signal, a
classification of "cat" or "dog", etc.)

2) A model of what you are looking for - how you form the
desired output from your measured data

3) A cost function, to measure how close you're getting to the
answer (the cost function minimum)
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Generalized optimization pipeline —
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Machine learning: update model to decrease error o

deep imaging
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De-noising: "What is the closest image to what | detected,
except without so many fluctuations"?
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Input dimension: N x N image

Output dimension: N x N image

De-noising: "What is the closest image to what | detected,
except without so many fluctuations"?
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Cost function: "Don't let nearby pixels vary deep imaging
around too much"

’ (Only showing 2 of the
N2 dimensions)

Cost function value
o
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De-noising: "What is the closest image to what | detected,
except without so many fluctuations"?
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De-noising: "What is the closest image to what | detected,
except without so many fluctuations"?



Start with a guess for desired output deep imaging
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deep imaging

"Descend" to minimize cost function
(tweak values of each pixel)

o
3 1
S Note: This part
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"Descend" to minimize cost function
(tweak values of each pixel)
o
3 1
S | Note: This part
S sl computers are
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Optimization pipeline for denoising
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Input image

"Cat" or "dog" cost
function
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Image Classification Problem: "Is the image of a dog or a cat"?

Output dimensions now not image pixels, but instead some “decision” axes



Cost function value

Input image
Start with a guess:
50% doQ, 50% cat
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Cost function value

Input image

eep imaging

Desired output:
70% "cat" and 30% "dog"
(So google will guess it is likely a cat)

v



Optimization pipeline for classification e
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A simple example: spectral unmixing 4.

deep imaging

(For whatever reason, whenever | get confused about optimization, | think
about this example...it’s a good one)



A simple example: spectral unmixing
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(For whatever reason, whenever | get confused about optimization, | think

about this example...it’s a good one)

The setup:

measure the color (spectral)
response of a sample (e.g., how
much red, green and blue there is,
or several hundred measurements
of its different colors).

You know that the sample can only
contain 9 different fluorophores.

What % of each fluorophores is in
your sample?

spectrometer

sample

Intensity

wavelength



A simple example: spectral unmixing —»%
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3 elements of optimization:

>
k%)
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2) The model

3) The cost function
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A simple example: spectral unmixing

3 elements of optimization:

1) Desired output

What % of each of the 9 fluorophores

2) The model

3) The cost function

spectrometer

sample
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Intensity

wavelength



A simple example: spectral unmixing

3 elements of optimization:

1) Desired output

What % of each of the 9 fluorophores
2) The model

"Dictionary" of the 9 different spectra

3) The cost function

spectrometer

sample
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A simple example: spectral unmixing

3 elements of optimization:

1) Desired output

What % of each of the 9 fluorophores
2) The model

"Dictionary" of the 9 different spectra
3) The cost function

Minimum mean squared error (to start)

spectrometer

sample
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Optimization pipeline for spectral unmixing

Cost
function
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Mathematical model for spectral unmixing —»%
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a) First make the "dictionary":

spectrometer | —>»

Intensity

wavelength

Pacific Blue



Mathematical model for spectral unmixing A

deep imaging

a) First make the "dictionary":
Dictionary matrix A

spectrometer

Intensity

wavelength

t

Put "Pacific blue"
spectral intensities
in first column of
matrix A

Pacific Blue



Mathematical model for spectral unmixing A
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a) First make the "dictionary":

J\

wavelength

Dictionary matrix A

spectrometer | —>»

Intensity

t

Put "GFP"
spectral
intensities in 2nd
column

GFP



Mathematical model for spectral unmixing —»%
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b) Model the unknown sample %'s

, Dictionary matrix A
(the desired output)

spectrometer

9 possible spectra

Some mixture...
+ + +...
Unknown sample y



Mathematical model for spectral unmixing —»%
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b) Model the unknown sample %'s Unknown

Dictionary matrix A sample %'s
(the desired output) y P y

S
9 weights
y(1)-y(9)
/

spectrometer

9 possible spectra

Each weight
erce vl + vl + vl .
Unknown sample y percentage:



Mathematical model for spectral unmixing —»%

b) Model the unknown sample %'s

Unknown sample y

spectrometer | —>

New measurement x

Intensity

wavelength

Each weight
in X is
percentage:

deep imaging

Unknown
Dictionary matrix A sample %'s 'y

S
9 weights
y(1)-y(9)
/

9 possible spectra

v(1)| + y(2)| + v(3)| +...



Mathematical model for spectral unmixing

spectrometer

Unknown sample y
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Unknown
Dictionary matrix A sample y

Matrix equation: x=Ay

S

9 weights
«

This is referred to as a “forward” model

Goal: Given A and x, find y



Mathematical model for spectral unmixing —»%
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Unknown
Dictionary matrix A\ sample y

X

S

9 weights
«

spectrometer

Data in A can be thought
of , in some sense, as

Unknown sample y “training data”
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X = Ay won't always be true, due to noise (actually, x = Ay+n)

Common cost function is minimum mean-squared error:

Cost function f(y) = = ( x - Ay)?

spectral
measurements



Optimization pipeline with input and output variables

Cost
function
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Cost function for spectral unmixing A%‘@
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X = Ay won't always be true, due to noise (actually, x = Ay+n)

Common cost function is minimum mean-squared error:

Cost function f(y) = = ( x - Ay)?

spectral
measurements

Find mixture y of known spectra A that is as close as possible
to measurement x

y* = minimize f(y) fly) y(2)

y(1)



Cost function for spectral unmixing AEV;%?@

Convex function 9eePmaging
f(y)= = (x - Ay)? iy
spectral y(2)
measurements
One minimizer y*
y(1) y

f(y) is convex, so finding y* is easy via its gradient:

—

Down the hill




Cost function for spectral unmixing A%?‘@

deep imaging

Convex function

fly) =  (x - Ay)? £(y)
spectral v(2)
measurements
y(1) One minimizer y*

f(y) is convex, so finding y* is easy via its gradient:

d/dy f(y) = d/dy Z (x - Ay)?



Cost function for spectral unmixing A%?‘@
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Convex function

fly) =  (x - Ay)? £(y)
spectral v(2)
measurements
y(1) One minimizer y*

f(y) is convex, so finding y* is easy via its gradient:

d/dy f(y) = d/dy Z (x - Ay)?
df/dy =3 d/dy ( x - Ay)?



Cost function for spectral unmixing A%%‘@
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Convex function

fly) =  (x - Ay)? £(y)
spectral v(2)
measurements
y(1) One minimizer y*

f(y) is convex, so finding y* is easy via its gradient:
d/dy f(y) =d/dy Z (x - Ay)?
df/dy = Z d/dy ( x - Ay)?
df/dy[j] =% -2 a(:,j) * (x - Ay)



Cost function for spectral unmixing A%%‘@
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Convex function

fly) =  (x - Ay)? £(y)
spectral v(2)
measurements
y(1) One minimizer y*

f(y) is convex, so finding y* is easy via its gradient:
d/dy f(y) = d/dy 2 (x - Ay)?
df/dy =3 d/dy ( x - Ay)?

df/dy[j] =2 -2 a(;,j) * ( x - Ay)
df/dy = -2 AT( x - Ay)



Cost function for spectral unmixing A%?‘@

Convex function 9eePmaging
f(y)= = (x - Ay)? iy
spectral y(2)
measurements
One minimizer y*
y(1) y

Method 1: Gradient descent - follow gradient downhill to solution y*

Algorithm 4.1 An algorithm to minimize f(y) = % |Ay —x|[3 with respect to y
using gradient descent, starting from an arbitrary value of Y.

Set the step size (€) and tolerance (d) to small, positive numbers.
while ||[AT Ay — ATx||]2 > 4§ do

yy—€e(ATAy — ATX)
end while




Cost function for spectral unmixing A%?‘@

Convex function 9eePmaging
f(y)= = (x - Ay)? iy
spectral y(2)
measurements
One minimizer y*
y(1) y

Method 2: Direct solution — set derivative to O to find y* directly

df/dy = AT( x - Ay*) = 0 <— y* is where gradient of f(y) is zero
AT x =ATAy* —s

(ATA)-1 AT x =y* | "Moore-Penrose Pseudo-inverse"

(Note: setting gradient to 0 and solving is hard to do for non-linear problems...)



Example unmixing with the pseudo-inverse
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Moore-Penrose Pseudo-inverse:

y* = (ATA)"1 AT x

Example dictionary A

9 spectra Example detected spectra x
: ; I 07 -

o5 06|

oz} Exampley,

.l compute Ay T
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04F

0al "~\ 03
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01
o — = 0.4l
q 40 50 :
0.7
Compute wer
pseudo-inverse, *°|

x*=Ay* is red
curve:

Good fit!

02k

01F

04t
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Example unmixing with the pseudo-inverse
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Moore-Penrose Pseudo-inverse: | y* = (ATA)-1 AT x

Example dictionary A
9 spectra

1

07t | ,y 1A
[ 1'_ Yoy \
06} (1t / )
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Compute 06t
pseudo-inverse, °5¢
x*=Ay*isred "

03

curve:

02}

01F

Good fit!

30

Exampley,
compute Ay

Example detected spectra x
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/PROBLEM:
y*=[0.2,-1.1, -1.6, ...]

Qot physically possible...

Solution has negative weights!
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Example unmixing with the pseudo-inverse

Moore-Penrose Pseudo-inverse: | y* = (ATA)-1 AT x

n = 50; %Snumber of pixels
m = 9; %number of spectral
A=zeros(n,m); %known dictionary of spectra
for j=1:m
A(:,j) = exp(=(linspace(-1,1,n)+.5-.1%j+.2).72/(.03%j));
end
%Simulate some spectra
b = imresize(rand([5,1]1),[n 11);
x_opt = A\b; < Pseudo-inverse = one line
%Show results
figure;plot(b); hold all; plot(Axx_opt);

[JE=

deep imaging



Spectral un-mixing with a positivity constraint
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Option 1: Add a constraint

Minimize f(y) = 2 ( x - Ay)? Convex cost function

Subjecttoy >=0 Convex constraint

*When you have constraints, can use CVX, convex toolbox for Matlab
http://cvxr.com/cvx/



http://cvxr.com/cvx/

Spectral un-mixing with a positivity constraint ‘%@
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Option 1: Add a constraint

2.2.0.0.0.0.0.0.0.0.0.0.0. 0

0"0"0"0"0"0"0"0"0"0"0"0"0"0

addpath '/users/Roarke/Documents/Matlab/cvx"'; cvx_setup;
cvx_begin

variable xc(m);
minimize( norm(Axxc-b) );
subject to

XC >= 0;
cvx_end
%Show results
figure;plot(b); hold all; plot(Axxc)



Spectral un-mixing with a positivity constraint
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Option 1: Add a constraint

Minimize f(y) = 2 (x - Ay)? Convex cost function
Subjecttoy>=0 Convex constraint

*When you have constraints, can use CVX, convex toolbox for Matlab
http://cvxr.com/cvx/

With CVX 0.3612

1 0.2238
0.0006
0.0000
0.7336
0.0000
0.0000
0.0000
0 10 W a0 40 s 0.0000
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Spectral un-mixing with a positivity constraint
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Option 1: Add a constraint
Minimize f(y) = 2 (x - Ay)? Convex cost function
Subjecttoy >=0 Convex constraint
*When you have constraints, can use CVX, convex toolbox for Matlab
http://cvxr.com/cvx/
y* 1 . | y*
0.6683 | e g ' ' er 0.3612
- With CVX .
15880 o With Pseudo-inv. | 05l ith C | Oo938
5.7848 .| ol 0.0006
-11.7459 0.0000
17.9304 i 0.7336
-20.1231 oz} 02t 0.0000
18.3572 | | ol 0.0000
-10.7984 0.0000

0.2 . . L L J 0.2 ) A ) ;
2.8557 ™ 10 0w 40 50 0 10 20 a0 40 50 0.0000


http://cvxr.com/cvx/

Spectral un-mixing with a positivity constraint
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Option 2: Modify cost function

Minimize f(z) =  (x - Az?)?

z? =y is dummy variable, will change cost function and gradient

*When you don't have constraints but can find the gradient, use Minfunc

https://www.cs.ubc.ca/~schmidtm/Software/minFunc.html



https://www.cs.ubc.ca/~schmidtm/Software/minFunc.html

Spectral un-mixing with a positivity constraint
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Option 2: Modify cost function

Minimize f(z) =  (x - Az?)?

z? =y is dummy variable, will change cost function and gradient

R R R R R P P P P P P e

%3. Minfunc

addpath '/users/Roarke/Documents/Matlab/minFunc_2012"';
startVec = ones(m,1);

spectrum_anonymous = @(startVec)spectrum(startVec, b, A);
%Evaluate with minfunc

[xm, msevalue, moreinfo]l = minFunc(@(startVec)spectrum_anonymous(startVec), startVec, options);
figure;plot(b); hold all; plot(Axabs(xm).”2);



Spectral un-mixing with a positivity constraint ‘%@
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Option 2: Modify cost function

Minimize f(z) =  (x - Az?)?

z2 = y is dummy variable, will change cost function and gradient
%3. Minfunc

addpath '/users/Roarke/Documents/Matlab/minFunc_2012"';
startVec = ones(m,1);

spectrum_anonymous = @(startVec)spectrum(startVec, b, A);
%Evaluate with minfunc

[xm, msevalue, moreinfo]l = minFunc(@(startVec)spectrum_anonymous(startVec), startVec, options);
figure;plot(b); hold all; plot(Axabs(xm).”2);

function [err_function, grad_function] = spectrum(input_vec, b, A)

%for direct pseudo-inverse - no constraints or dummy
%serr_function = norm(Axinput_vec - b);
%grad_function = A'x(Axinput_vec - b);

err_function = norm(Axabs(input_vec). A2 - b);

grad_function = A'x((Axabs(input_vec).”2 - b)
I

. conj (Axinput_vec));



Spectral un-mixing with a positivity constraint
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Option 2: Modify cost function

Minimize f(z) =  (x - Az?)?

z? =y is dummy variable, will change cost function and gradient

*When you don't have constraints but can find the gradient, use Minfunc

https://www.cs.ubc.ca/~schmidtm/Software/minFunc.html

y*

0.5013
0.3345
0.1811
0.0367
0.0132
0.0705
0.2626
0.5080
0 10 20 . 30 a0 50 0.7539

Pseudo-inverse Dummy variable w/ minfunc

1 T T T T 1

n:l _5 =

06 |

04}

02}

0

Not working too well, gradient could be wrong?


https://www.cs.ubc.ca/~schmidtm/Software/minFunc.html

Additional features that are commonly encountered

— >

deep imaging

1) Sometimes see solutions where x values get really big

Fix this with a "regularizer":

Minimize f(x) = £ (x - Ay)? +

C:‘cz (y)z

"Don't let y vary too much"

Choose constant C appropriately
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Additional features that are commonly encountered

— >
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1) Sometimes see solutions where x values get really big

Fix this with a "regularizer":

Minimize f(x) = £ (x - Ay)? +

C:&—z (y)z

"Don't let y vary too much"

Choose constant C appropriately

2) If you think your signal is "sparse", then it probably has mostly zeros.
Can include this in your model with an "L1" cost function:

Minimize f(y) = 2 | x - Ay |

- An extremely simple modification with pretty strong implications



