deep imaging

Lecture 6: Ingredients for Machine
Learning

Machine Learning and Imaging

BME 548L
Roarke Horstmeyer

OUtline deep imaging

Review spectral unmixing (last class)

From optimization to machine learning

Ingredients for ML

Example: linear classification of images
« Train/test data
» Linear regression model

« 3 ways to solve

Last time: simple example of spectral unmixing

(For whatever reason, whenever | get confused about optimization, | think

about this example)

The setup:

measure the color (spectral)
response of a sample (e.g., how
much red, green and blue there is,
or several hundred measurements
of its different colors).

You know that the sample can only
contain 9 different fluorophores.

What % of each fluorophores is in
your sample?

spectrometer

sample

Intensity

wavelength

deep imaging

E—

0
o
—

Optimization pipeline for spectral unmixing deep imaging
Input
Output Model RN
Cost _ e ~N =
function 2
)
047 <&== X Q = || £
_ Q) wavelength
Error between “Mix spectra of known
measurement and fluorophores to simulation
modeled mixture my measurement”
Output space Input space

dimension 9 dimension N

Optimization pipeline for spectral unmixing deep imaging

Estimation error Output: concentrations Input: spectral measurements
y Model X/\
Cost i 2>
function Forward: &
o)
0.47 (== | x=Ay | || £

MSE =3 (x - Ay)?

1
_) wavelength

*Note: notation changed from last time to be consistent with we’ll use in the future

Optimization pipeline for spectral unmixing

Estimation error Output: concentrations

Cost
function

0.47 <=

y

MSE =3 (x - Ay)?

Measurement

chtlonary matrix

Input: spectral measurements

Model X 7\

G

_

Forward:

x=Ay | &=

J

A Unknown

\

concentrations y

T~

9 weights — what

,— are these?

Intensity

wavelength

[IE=

deep imaging

Cost function for spectral unmixing

deep imaging

X = Ay won't always be true, due to noise (actually, x = Ay+n)

Common cost function is minimum mean-squared error:

Cost function f(y) = = (x - Ay)?

spectral
measurements

Cost function for spectral unmixing H%

deep imaging

X = Ay won't always be true, due to noise (actually, x = Ay+n)

Common cost function is minimum mean-squared error:

Cost function f(y) = = (x - Ay)?

spectral
measurements

Find mixture y of known spectra A that is as close as possible
to measurement x

y* = minimize f(y) fly) y(2)

y(1)

Cost function for spectral unmixing %@

—v >

deep imaging
Convex function
fly) = (x - Ay)? f(y)
spectral y(2)
measurements
One minimizer y*
y(1) y

f(y) is convex, so finding y* is easy via its gradient:

Y

‘ >
(N
4
o
1‘ df
)
< / !

-

Down the hill

Cost function for spectral unmixing H%

deep imaging

Convex function

fly)= 2 (x - Ay)? (y)
spectral y(2)
measurements
y(1) One minimizer y*

f(y) is convex, so finding y* is easy via its gradient:
d/dy f(y) =d/dy 2 (x - Ay)?
df/dy = 2 d/dy (x - Ay)?

df/dy[j] =2 -2 a(;,j) * (x - Ay)
df/dy = -2 AT(x - Ay)

Cost function for spectral unmixing %

—v >

deep imaging
Convex function
fly) = £ (x - Ay)? f(y)
spectral y(2)
measurements
One minimizer y*
y(1) y

Method 2: Direct solution — set derivative to O to find y* directly

df/dy = AT(x - Ay*) = 0 <—— y*is where gradient of f(y) is zero

—v >

Cost function for spectral unmixing %

deep imaging
Convex function
fly) = (x - Ay)? f(y)
spectral y(2)
measurements
One minimizer y*
y(1) y

Method 2: Direct solution — set derivative to O to find y* directly

df/dy = AT(x - Ay*) = 0 <—— y*is where gradient of f(y) is zero

| | AT x =ATAy* ——
(Note: setting gradient

10 0 and solving Is ((ATA)"1 AT)x =y* | "Moore-Penrose Pseudo-inverse"
hard to do for non- =~ >X y
linear problems...) w

Optimization pipeline for spectral unmixing

Estimation error Output: concentrations

Cost
function

0.47 <=

y

MSE =3 (x - Ay)?

Measurement

chtlonary matrix

Model

G

_

Forward:

x=Ay | &=

J

\

A Unknown
concentrations y

Input: spectral measurements
X

[IE=

deep imaging

[IE=

Optimization pipeline for spectral unmixing deep imaging
Estimation error Output: concentrations Input: spectral measurements
y Model X
Cost el ™]
function Forward:

0.47 <: <: x:Ay <:

|| Inverse:
MSE=2 (x-A 2
Measurement DICtIOnary matrix A Unknown - Estimate Measurement

concentratlons y

<
*

Invert via pseudo-
inverse to solve for
unknown output:

»
>

— (ATA)'1AT
y* = WX

Example unmixing with the pseudo-inverse é@

—v >

deep imaging

Moore-Penrose Pseudo-inverse: | y* = (ATA)-1 AT x

Example dictionary A

9 spectra Example detected spectra x
1 N
2| 0.7
0B | ' 08|
oz} Exampley,
05}
er A compute Ay
os| \ 04}
03t '\ ”’--.K 03t
0zt \\\ — |l
01
u = = 0.1 L

Compute

pseudo-inverse,

x*=Ay* is red
curve:

Good fit!

1]

0 10 20

Example unmixing with the pseudo-inverse

Moore-Penrose Pseudo-inverse: | y* = (ATA)-1 AT x

n = 50; %Snumber of pixels
m = 9; %number of spectral
A=zeros(n,m); %known dictionary of spectra
for j=1:m
A(:,j) = exp(=(linspace(-1,1,n)+.5-.1%j+.2).72/(.03%j));
end
%Simulate some spectra
b = imresize(rand([5,1]1),[n 11);
x_opt = A\b; Pseudo-inverse = one line
%Show results
figure;plot(b); hold all; plot(Axx_opt);

[IE=

deep imaging

Example unmixing with the pseudo-inverse

Moore-Penrose Pseudo-inverse:

Example dictionary A
9 spectra

1

o0at
08
07t
06 -
05t
04F
0aF
02 -

01

y“k — (ATA)—]. AT X

Exampley,
compute Ay

Compute
pseudo-inverse,
x*=Ay* is red
curve:

Good fit!

20

30 40

Example detected spectra x

0.rF

06

05

04t

03

021

0.1t

E—

0
o
—_

deep imaging

Natural question - when can’t we exactly solve for x from Ay=x? deep imaging

Example 1: A represents an under-determined set of equations:

A=[111]
[111]

Natural question - when can’t we exactly solve for x from Ay=x? deep imaging

Example 1: A represents an under-determined set of equations:

A=[111] x=[10] Solve fora,bandc: a+b+c=1

[111] y=[abc] S+b+c=0 Infinite solutions exist

Example 2: A represents an over-determined set of equations:

Natural question — when can’t we exactly solve for x from Ay=x?

Example 1: A represents an under-determined set of equations:

A=[111]
[111]

x=[10]
y=[abc]

Solve for a, b and c: a+b+c=1
a+b+c=0

Example 2: A represents an over-determined set of equations:

-3 1
-1 1

wEEE

Infinite solutions exist

No solutions exist

3X-2

X+1

deep imaging

Natural question - when can’t we exactly solve for x from Ay=x? deep imaging

Example 1: A represents an under-determined set of equations:

A=[111] x=[10] Solve fora,bandc: a+b+c=1

[111] y=[abc] S+b+c=0 Infinite solutions exist

Example 2: A represents an over-determined set of equations:

X+1

2 1] = N\
X : ,
-3 1 [v] = | —2 No solutions exist e
-1 1] 1

General rule: If A is not invertible, it has a “nullspace” —a nonzero solution to Ay = 0 in whichy #0
If that is the case, then it is generally challenging to invert x=Ay for y, given x.

For more detail: See Introduction to Linear Algebra, Gilbert Strang, Chapters 2.3, 3.2,3.4,4.3

Example un-mixing with the pseudo-inverse

Moore-Penrose Pseudo-inverse:

Example dictionary A
9 spectra

oal I , \

i L A [\ [T \ "\" l..".
08 [A § Y 5(y

AN AR

|| at \ AV AR Y Voo

06| ([! X I Vo
| i AT \ \ \

\ \

| i ¥ [T
o5k (/] v A/

1 e —

03
02t

01

0

{] \/ v VY
nal i [A \ Voo
04 T, ."% Iy 1“ Vo Vo

y“k — (ATA)—]. AT X

Exampley,
compute Ay

Compute
pseudo-inverse, °
x*=Ay* is red
curve:

Good fit!

Example detected spectra x

0.rF

06

05

04t

03

021

0.1t

PROBLEM:
y*=[0.2,-1.1, -1.6, ...]

Solution has negative weights!

Negative light not physically possible...

E—

0
o
—_

deep imaging

Spectral un-mixing with a positivity constraint

deep imaging

Option 1: Add a constraint

Minimize f(y) = 2 (x - Ay)? Convex cost function

Subjecttoy >=0 Convex constraint

*When you have constraints, can use CVX, convex toolbox for Matlab
http://cvxr.com/cvx/

http://cvxr.com/cvx/

Spectral un-mixing with a positivity constraint ?@

—v >

deep imaging

Option 1: Add a constraint

2.2.0.0.0.0.0.0.0.0.0.0.0. 0

0"0"0"0"0"0"0"0"0"0"0"0"0"0

addpath '/users/Roarke/Documents/Matlab/cvx"'; cvx_setup;
cvx_begin

variable xc(m);
minimize(norm(Axxc-b));
subject to

XC >= 0;
cvx_end
%Show results
figure;plot(b); hold all; plot(Axxc)

Spectral un-mixing with a positivity constraint %

—v >

deep imaging

Option 1: Add a constraint

2.2.0.0.0.0.0.0.0.0.0.0.0. 0

0"0"0"0"0"0"0"0"0"0"0"0"0"0

addpath '/users/Roarke/Documents/Matlab/cvx"'; cvx_setup;
cvx_begin

variable xc(m)s
minimize{ norm(Axxc-b))); Vector Norm: v £ (Ax, — b)?

subject to

XC >= 0;
cvx_end
%Show results
figure;plot(b); hold all; plot(Axxc)

Vector Norms — a quick aside

DEF: Anorm is a function ” . H -R*” 5> R that satisfies

(1) ||z|]| > 0, and ||z|| = 0 only if z =0,

(2) lle+yll < ll=lf + [lyll,
3) llaz|l = |of liz]].

Important Norms: Example: { .]
- xX=| 5
lzll, = 2_l=l, =3
i=1 x|, = 10
e 1/2
Izll2 = (2_:1 |$i|2) =V, v, = V442549 = 6.1644
lollee = max zil v, = s
m 1/p
lel, = (k) (<p<oo) A= 4P Ty
a1

[IE=

deep imaging

Spectral un-mixing with a positivity constraint

deep imaging

Option 1: Add a constraint

Minimize f(y) = > (x - Ay)? Convex cost function

Subjecttoy>=0 Convex constraint

*When you have constraints, can use CVX, convex toolbox for Matlab
http://cvxr.com/cvx/

y* . . y*
1 . ; ; - 1 ; — ;
0.6683 . y : 0.3612
15880 ol With Pseudo-inv. | o5l With CVX | 05938
5.7848 ;| -l 0.0006
-11.7459 y _ 0.0000
17.9304 “ A 0.7336
-20.1231 ozt 02} 0.0000
18.3572 ol | ol 0.0000
-10.7984 0.0000

'I:IE l 1 _l L _ -l:|2 1 1 1 i
2.8557 ™ 10 20 0w 40 50 0 10 20 a0 40 55 0.0000

http://cvxr.com/cvx/

Spectral un-mixing with a positivity constraint

deep imaging

Option 2: Modify cost function

Minimize f(z) = Z (x - Az?)?

z? =y is dummy variable, will change cost function and gradient

*When you don't have constraints but can find the gradient, use Minfunc

https://www.cs.ubc.ca/~schmidtm/Software/minFunc.html

y*

0.5013
0.3345
0.1811
0.0367
0.0132
0.0705
0.2626
0.5080
0 10 20 , 30 a0 50 0.7539

Pseudo-inverse Dummy variable w/ minfunc

1 T T T T 1

0B

06|

04}

02}

0

Not working too well, gradient could be wrong?

https://www.cs.ubc.ca/~schmidtm/Software/minFunc.html

More typical strategy to solve for y*: gradient descent

Estimation error Output: concentrations Input: spectral measurements
y Model X
Cost i ~N]
function Forward:

0.47 <: <: x:Ay <:

MSE=3 (x - Ay)?
l _ _J

d/dy MSE =2 AT(x - Ay) -

Slope at any location y

MSEW) y(2)

One minimizer y*
y(1) y

[IE=

deep imaging

More typical strategy to solve for y*: gradient descent H%

Estimation error Output: concentrations

y

Cost -
function

047 <= (&=
MSE=3 (x - Ay)?

|

d/dy MSE =2 AT(x - Ay)

Model

_

Forward:

X = Ay

J

MSE(y)

y(1

)

—

deep imaging

Input: spectral measurements

X

1. Guess output y;

2. Evaluate slope
¥(2) 3. Ifits large, take a step:

Yis1 = Yi + eAT(X - Ay;)
One minimizer y*

Optimization pipeline for spectral unmixing

Estimation error Output: concentrations Input: spectral measurements
y Model X
Cost i e ~N N

0.47 <= @ x=Ay | &=

MSE = 5 (x A)2 i Inverse:
i Y Y =Wx)
| aob
Optimization: You only care about finding the best solution y* A and W from

first principles

deep imaging

Optimization pipeline for spectral unmixing deep imaging

Estimation error Output: concentrations Input: spectral measurements
y Model X
Cost i e ~N N

047 <= &= | x=Ay | =

I .
MSE =3 (x - Ay)2 ~ —w
Y = WX

Machine Learning: You don’t know what A and W are!

- You do not have access to known forward or inverse models
- But, example (input, output) data is available to try to figure it out

Optimization pipeline for spectral unmixing deep imaging

Estimation error Output: concentrations Input: spectral measurements
y Model X
Cost i e ~N N

047 (== m| x=Ay | (==

I .
MSE =3 (x - Ay)2 ~ —w
Y = WX

Optimization: You only care about finding the best solution y*

Machine Learning: You first care about finding the model W, then you’ll
use that to find the best solution y*

Pipeline for machine learning deep imaging

Output: Input:
X
o y Model 3
u 4)
function
Estimation error (=== | Y= Wx T
L(y, Wx) - W = 227

1\ J 1

Changes for machine learning framework:

1. Now must establish the mapping from inputs to outputs (here, matrix W)

Pipeline for machine learning deep imaging

Output: Input: Training dataset
y Model X Ex [xoyi] EX. [xo¥z] EX. Xyl
Loss - e ~N N HER
function
Estimation error (=== G f(W, x) (—
L(y, Wx) - W =222 B : .
g J

TN - -/

Changes for machine learning framework:

1. Now must establish the mapping from inputs to outputs (here, matrix W)

2. Using large set of “training” data to first determine mapping f(x, W) = Wx

Pipeline for machine learning deep imaging

Output: Input: Training dataset
y Model X /Ex. [oyi] Ex. Doyel Ex. ynl)
Loss il e ~ u
function
Training error (mmy (3 f(W, x) (==
Lin(Y, f(x, W)) : W = 222 - - B
_ J

TN - -/

Changes for machine learning framework:

1. Now must establish the mapping from inputs to outputs (here, matrix W)
2. Using large set of “training” data to first determine mapping f(x, W) = Wx

3. To do so, use a loss function L that depends upon the training inputs (x,y) and the model (W)

Pipeline for machine learning

Output:

y

Loss -
function

Training error <:
Lin(y, f(x, W) -

G

E—

0
o
—_

deep imaging
Input: Training dataset

Model X /E_X._[X1,y1] E_X-_[XZ’yZ] E_X-_[XN,m

fM! X) <: cos

W = 27?2

TN - -/

/ Training Error (“in class error”):

_

* L, compares modeled output, f(x;, W), with the correct output that has been labeled

« Assume error caused by each labeled example is equally important and sum them up:

~

ZL x’l,) yz)
/

Pipeline for machine learning deep imaging

Estimation error Output: Training dataset
y Model (Ex. Ixoya] Ex. [aya] Ex. [onyn
Loss il e ~N
function
Training error (mmy (3 f(W, x) | ==
Lin(y, f(x, W)) - W = 22? . . .
_ J/
dL/dW f N 3 -

Changes for machine learning framework:

1. Now must establish the mapping from inputs to outputs (here, matrix W)
2. Using large set of “training” data to first determine mapping f(x, W) = Wx
3. To do so, use a loss function L that depends upon the training inputs (x,y) and the model (W)

4. Find optimal mapping (W) using the training data, guided by gradient descent on L

Pipeline for machine learning deep imaging

Estimation error Output: Test dataset
y* Model (Ex. [y Ex. Ixyid
Loss - e ~N][]][]
function N
Test Error (== = |Y = f(x,W) (==
I—out(y,y*) =2 (Y - Y*)z - W optimized
_ J

o -/

In a separate step, we then need to do the following to test the network:

1. valuate model accuracy by sending new x through — need new, unique data with label

Pipeline for machine learning deep imaging

Estimation error Output: Test dataset
y* Model (Ex. Dyl Ex. byd)
Loss et e ~N][]][]
function N
Test Error (== = |Y = f(x,W) (==
Lou(Y,Y¥) =2 (y - y*)? — W optimized B R
This is what we care about! \- J K_ o /

In a separate step, we then need to do the following to test the network:

1. valuate model accuracy by sending new x through — need new, unique data with label
2. Compare output y* to known “test data” label y

3. Evaluate performance with an error equation L,

E—

0
Example: machine learning for image classification Lo

deep imaging

Correct labels for Output: Image Training data: labeled images
test images? class
| /Ex. xayi] Ex. Dayz] Ex. Douyal
y Model mlm 1 1
Training error et e ~
N o000
| —
L= N ZLi(f(xiaW)ayi) &= || & | y=f(W, x) - - -
= - N J
dL/dW f \U - -

Example: machine learning for image classification

deep imaging

Correct labels for Output: Image Training data: labeled images
test images? class
° /Ex. Ixyil Ex. [xeal Ex. [xwynl)
y Model mlm 1 1
Training error et e ~
N o000
| —
L= N ZLi(f(xiaW)ayi) &= || & | y=f(W, x) - - -
= - N J
dL/dW f \U - -

Let’s consider a simple example — image classification. What do we need for training?

N

p=il=

1. Labeled examples {(T, yz)

Example: machine learning for image classification

q

?499949%3%94n174

https://en.wikipedia.org/wiki/MNIST database

MNIST image set: http://vann.lecun.com/exdb/mnist/

http://yann.lecun.com/exdb/mnist/
https://en.wikipedia.org/wiki/MNIST_database

Example: MNIST image dataset deep imaging

X = 28x28 pixel matrix
x = vec[X] = 784-long vector

Linear model would require W = 784 element matrix

Start simple: use x = (X, X1, Xo) to describe intensity
and symmetry of image X

Linear model can now use smaller w = (wg, Wy, W)

[IE=

Example images for later in the class: blood cells deep imaging

X = 384 x 384 x 3 pixel matrix
(89 matrix dimension is Red, Green or Blue pixel values)
x = vec[M] = 442,368-long vector

Linear model would require W = 442,368 element matrix

Machine Learning and Imaging — Roarke Horstmeyer (2024)

[llustration of features H%

deep imaging

X = (1,21, T2) 21 intensity o symmetry

X5

5
S

Caltech Learning from Data: https://work.caltech.edu/telecourse.html

https://work.caltech.edu/telecourse.html

[llustration of features H%C

deep imaging

X = (1,21, T2) 21 intensity o symmetry

X1

Dataset: 1000 examples of 1’s and 5’s mapped to Xx; @(1,Xg), with associated label y; =1 or -1

This transforms wx+b into wx [WoWi W] |1 | =wg+ WX, + WrXy
X1

X3

Caltech Learning from Data: https://work.caltech.edu/telecourse.html

https://work.caltech.edu/telecourse.html

E—

0
[llustration of features Hﬁo”

deep imaging

X = (1,21, T2) 21 intensity o symmetry

Dataset: 1000 examples of 1’s and 5’s mapped to x; = (1,X1,Xp), with associated label y; = 1 or -1

[Xtrain, Ytrain] = [Xj, yj] for n=1to 750 [Xtest, Ytest] = [xj, y,] for n=751 to 1000

Labeled [

data: Training dataset I Test dataset]

n=1-750 n=751-1000

Example: machine learning for image classification

Correct labels with Output: Image
test dataset? class

Training error

L = %;Li(f(xi,W),yi) &= —

Images and class labels

/E_X._[X-] Vi1l E_X-_[szyK]\

o

‘//

Let’s consider a simple example — image classification. What do we need for training?

J 1. Labeled examples

2. A model and loss function

(&%)

N

=i |

deep imaging

Example: machine learning for image classification

Correct labels with Output: Image

-

.

test dataset? class
y Model
Training error P
Y a
N
1
L= Li(flw,W),y) &5 || &1y =Wx
=1 L] 9)
/

J 1. Labeled examples

— 2. A model and loss function

N

=i |

Images and class labels

/E_X._[X-] Vi1l E_X-_[szyK]\

o

‘//

Let’s consider a simple example — image classification. What do we need for training?

(&%)

deep imaging

Let’s start with a simpler approach: linear regression

deep imaging

Li(f(zi, W),ys)

h

[
Z| =
M=

=1

y
Li (WXZ', yi) # classes H = W

| X

General linear model: L =

=
™M=

1

~
|

Let’s start with a simpler approach: linear regression

General linear model:

Assume 1 class =
1 linear fit

L =

L =

Li(f(zi, W), yi)

2| =
™M=

1

~
|

y

Lz‘ (WXZ', yi) # cIassesI H = W

2|
™M=

~
|
—

y
Li(wTiUi , Yi) Avar 0=

2|~
™M=

1 wT

(]

| X

| % |

E—

0
o
—

deep imaging

Let’s start with a simpler approach: linear regression é@

— T

deep imaging

Li(f(zi, W), yi)

h
[
Z| =

1=1
N i -
1 _
General linear model: L = N Z L; (sz‘a yz) i cIassesI H) W
1=1
1 o y x
Assume 1 class = L = N Z Li(wTwi : yz) 1var. [[]=| | []
1 linear fit i=1 w'
1 N
T 2
rl:]s(;%g?SE error I — ~ Z(w T; — Vi) |
i=1 —1 ifx <0,
Where labels . sgn(z) :=<¢ 0 ifz =0,
determined by f(x;) =y =sgn(w" x;) 1 ifz > 0.

thresholding

—A =
S
—=>

deep imaging

Why does linear regression with sgn() achieve classification?

Without sgn(): regression for best fit

T
f(%i) = w X
N
y 1 2
 If y; can be anything, minimizing L
makes w the plane of best fit
-wo/ |w|

Why does linear regression with sgn() achieve classification?

+1

E—

0
o
—_

deep imaging

Without sgn(): regression for best fit

T
® f(X:) = w'x;
@ @
o o N
1
® o @ _ 2
o © N (w' z; — y;)
Project to -1 or +1 -
° i * y;canonly be -1 or +1, which
¢ ® defines its class
® o° o ©
@

—A =
S
—=>

deep imaging

Why does linear regression with sgn() achieve classification?

Without sgn(): regression for best fit

f(x:) = w'x;

1 N
—Nzw i — i)

+1

* y;canonly be -1 or +1, which
defines its class

« Can still find plane of best fit

E—

0
H*
—v =
deep imaging

Why does linear regression with sgn() achieve classification?

With sgn() operation:

f(x;) = yi = sgn(w'x;)
+1
1 o ,
. =~ Z w'z; — y;)
: pa—

* Anything point to one side of y=0
intersection is class +1, anything on
the other side of intersection is
class -1

L+ 40 |- 0] paloaloid

Why does linear regression with sgn() achieve classification?

With sgn() operation:

E—

0
o
—_

deep imaging

® f(x:) = yi = sgn(w'x;)
1 o ®
® — xT 0 0
0

* yaxis isn’t really need

ed now & can

view this decision boundary in 2D

E—

0
H*
—v =
deep imaging

Why does linear regression with sgn() achieve classification?

With sgn() operation:

f(x;) = y; = sgn(w" x;)

1 N
—Nzw i — i)

Linear classification
boundary

Sign operation takes linear regression
and makes it a classification operation!

Linear regression boundary ’§

deep imaging

Symmetry

Average Intensity

Caltech Learning from Data: https://work.caltech.edu/telecourse.html

https://work.caltech.edu/telecourse.html

Example: machine learning for image classification

Correct labels with Output: Image

J Model
-

test dataset? class

y

, Training error i

:%;M = |

| dL/aW

_

y = sign(wTx)

~N

J

I

Let’s consider a simple example — image classification. What do we need for training?

1. Labeled examples

/ 2. A model and loss function

3. A way to minimize the loss function L

Images and class labels

/E_X._[X-] Vi1l E_X-_[szyK]\

o

/

deep imaging

Example: machine learning for image classification

Correct labels with Output: Image

test dataset? class

y

, Training error i
1

L=+ Z(’le’z’ — yi)? -

=1
| / dL/dW

J Model
-

y = sign(wTx)

\

~N

J

\ I

1. Labeled examples

/ 2. A model and loss function

—— 3. A way to minimize the loss function L

Images and class labels

/E_X._[X-] Vi1l E_X-_[szyK]\

o

/

Let’s consider a simple example — image classification. What do we need for training?

deep imaging

deep imaging

3 methods to solve for w' in the case of linear regression:

(easier) 1. Pseudo-inverse (this is one of the few cases with a closed-form solution)
2. Numerical gradient descent

3. Gradient descent on the cost function with respect to W
(harder)

deep imaging

3 methods to solve for w' in the case of linear regression:

(easier) 1. Pseudo-inverse (this is one of the few cases with a closed-form solution)
2. Numerical gradient descent

3. Gradient descent on the cost function with respect to W
(harder)

Next class: We'll talk more about gradient descent
methods!

