
Machine Learning and Imaging – Roarke Horstmeyer (2024)

deep imaging

Machine Learning and Imaging

BME 548L
Roarke Horstmeyer

Lecture 6: Ingredients for Machine 
Learning



Machine Learning and Imaging – Roarke Horstmeyer (2024)

deep imaging

• Review spectral unmixing (last class)
• From optimization to machine learning

• Ingredients for ML

• Example: linear classification of images
• Train/test data

• Linear regression model
• 3 ways to solve 

Outline
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(For whatever reason, whenever I get confused about optimization, I think 
about this example)

The setup:

- measure the color (spectral) 
response of a sample (e.g., how 
much red, green and blue there is, 
or several hundred measurements 
of its different colors). 

- You know that the sample can only 
contain 9 different fluorophores. 

- What % of each fluorophores is in 
your sample?

spectrometer

sample

wavelength

In
te

ns
ity
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N

Model

9

Cost 
function

Error between 
measurement and 
modeled mixture 

0.47

“Mix spectra of known 
fluorophores to simulation 

my measurement”

Input space 
dimension

wavelength

In
te

ns
ity

Output space 
dimension

N1

Output
Input
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Model
Output: concentrations

Cost 
function

wavelength

In
te

ns
ity

N1

x = Ay

xy
Input: spectral measurements

0.47

Estimation error

Forward:

*Note: notation changed from last time to be consistent with we’ll use in the future

MSE = Σ  (x – Ay)2
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Model
Cost 

function

wavelength

In
te

ns
ity

N1

0.47

Dictionary matrix A Unknown 
concentrations yx

=
9 weights – what 
are these?

Output: concentrations Input: spectral measurementsEstimation error

Forward:

x = Ay

xy

MSE = Σ  (x – Ay)2

Measurement 
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Cost function for spectral unmixing

x = Ay won't always be true, due to noise (actually, x = Ay+n)

Common cost function is minimum mean-squared error:

spectral 
measurements

Cost function f(y) =  Σ  ( x – Ay)2
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Cost function for spectral unmixing

x = Ay won't always be true, due to noise (actually, x = Ay+n)

Common cost function is minimum mean-squared error:

spectral 
measurements

Cost function f(y) =  Σ  ( x – Ay)2

Find mixture y of known spectra A that is as close as possible 
to measurement x

y(1)

y(2)
f(y)y* = minimize f(y)

y*
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Cost function for spectral unmixing

spectral 
measurements

f(y) =  Σ  (x – Ay)2

y(1)

y(2)
f(y)

One minimizer y*

f(y) is convex, so finding y* is easy via its gradient:

Convex function

Down the hill 
to the valley!
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Cost function for spectral unmixing

spectral 
measurements

f(y) =  Σ  (x – Ay)2

y(1)

y(2)
f(y)

One minimizer y*

Convex function

f(y) is convex, so finding y* is easy via its gradient:

d/dy f(y) = d/dy  Σ (x – Ay)2

df/dy = Σ d/dy ( x – Ay)2

df/dy[j] = Σ -2 a(:,j) * ( x – Ay) 

df/dy = -2 AT( x – Ay)
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Cost function for spectral unmixing

df/dy = AT( x – Ay*) = 0 y* is where gradient of f(y) is zero

Method 2: Direct solution – set derivative to 0 to find y* directly

spectral 
measurements

f(y) =  Σ  (x – Ay)2

y(1)

y(2)
f(y)

One minimizer y*

Convex function
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Cost function for spectral unmixing

df/dy = AT( x – Ay*) = 0
AT x = ATAy*

(ATA)-1 AT x = y* "Moore-Penrose Pseudo-inverse"

y* is where gradient of f(y) is zero

Method 2: Direct solution – set derivative to 0 to find y* directly

(Note: setting gradient 
to 0 and solving is 
hard to do for non-
linear problems…)

spectral 
measurements

f(y) =  Σ  (x – Ay)2

y(1)

y(2)
f(y)

One minimizer y*

Convex function

W
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Model
Cost 

function
0.47

Output: concentrations Input: spectral measurementsEstimation error

Forward:

x = Ay

xy

MSE = Σ  (x – Ay)2

Dictionary matrix A Unknown 
concentrations yx

=

Measurement 
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Model
Cost 

function
0.47

Output: concentrations Input: spectral measurementsEstimation error

Forward:

x = Ay

xy

MSE = Σ  (x – Ay)2

Estimate
y* x

Measurement 

W

Inverse:
y* = Wx

=

Dictionary matrix A Unknown 
concentrations yx

=

Measurement 

Invert via pseudo-
inverse to solve for 
unknown output: 

W = (ATA)-1AT 
y* = Wx
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Example unmixing with the pseudo-inverse

y* = (ATA)-1 AT xMoore-Penrose Pseudo-inverse:

Example dictionary A 
9 spectra

Example y, 
compute Ay

Example detected spectra x

Compute 
pseudo-inverse, 
x*=Ay* is red 
curve:

Good fit!
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Example unmixing with the pseudo-inverse

y* = (ATA)-1 AT xMoore-Penrose Pseudo-inverse:

Pseudo-inverse = one line
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Example unmixing with the pseudo-inverse

y* = (ATA)-1 AT xMoore-Penrose Pseudo-inverse:

Example dictionary A 
9 spectra

Example y, 
compute Ay

Example detected spectra x

Compute 
pseudo-inverse, 
x*=Ay* is red 
curve:

Good fit!



Machine Learning and Imaging – Roarke Horstmeyer (2024)

deep imagingNatural question – when can’t we exactly solve for x from Ay=x?

Example 1: A represents an under-determined set of equations:

A = [1 1 1]
       [1 1 1]
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Example 1: A represents an under-determined set of equations:

A = [1 1 1]
       [1 1 1]

Example 2: A represents an over-determined set of equations:

x = [1 0]
y = [a b c]

a + b + c = 1
a + b + c = 0

Solve for a, b and c: Infinite solutions exist

Natural question – when can’t we exactly solve for x from Ay=x?
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Example 1: A represents an under-determined set of equations:

A = [1 1 1]
       [1 1 1]

Example 2: A represents an over-determined set of equations:

x = [1 0]
y = [a b c]

a + b + c = 1
a + b + c = 0

Solve for a, b and c: Infinite solutions exist

No solutions exist

Natural question – when can’t we exactly solve for x from Ay=x?
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Example 1: A represents an under-determined set of equations:

A = [1 1 1]
       [1 1 1]

Example 2: A represents an over-determined set of equations:

General rule: If A is not invertible, it has a “nullspace” – a nonzero solution to Ay = 0 in which y ≠ 0

If that is the case, then it is generally challenging to invert x=Ay for y, given x.

For more detail: See Introduction to Linear Algebra, Gilbert Strang, Chapters 2.3, 3.2, 3.4, 4.3

x = [1 0]
y = [a b c]

a + b + c = 1
a + b + c = 0

Solve for a, b and c: Infinite solutions exist

No solutions exist

Natural question – when can’t we exactly solve for x from Ay=x?
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Example un-mixing with the pseudo-inverse

y* = (ATA)-1 AT xMoore-Penrose Pseudo-inverse:

Example dictionary A 
9 spectra

Example y, 
compute Ay

Example detected spectra x

Compute 
pseudo-inverse, 
x*=Ay* is red 
curve:

Good fit!

PROBLEM:

y* = [0.2, -1.1, -1.6, …]

Solution has negative weights!

Negative light not physically possible…
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Spectral un-mixing with a positivity constraint

Minimize f(y) =  Σ  ( x – Ay)2

Subject to y >= 0

Convex cost function

Convex constraint

*When you have constraints, can use CVX, convex toolbox for Matlab

Option 1: Add a constraint

http://cvxr.com/cvx/ 

http://cvxr.com/cvx/
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Spectral un-mixing with a positivity constraint

Option 1: Add a constraint
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Spectral un-mixing with a positivity constraint

Option 1: Add a constraint

Vector Norm: √ Σ ( Axc – b)2  
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Vector Norms – a quick aside

Important Norms: 
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Spectral un-mixing with a positivity constraint

Minimize f(y) =  Σ  (x – Ay)2

Subject to y >= 0

Convex cost function

Convex constraint

*When you have constraints, can use CVX, convex toolbox for Matlab

Option 1: Add a constraint

http://cvxr.com/cvx/ 

0.3612
0.2238
0.0006
0.0000
0.7336
0.0000
0.0000
0.0000
0.0000

y*

With CVXWith Pseudo-inv.0.6683
-1.5880
5.7848

-11.7459
17.9304
-20.1231
18.3572
-10.7984
2.8557

y*

http://cvxr.com/cvx/
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Spectral un-mixing with a positivity constraint

Option 2: Modify cost function

*When you don't have constraints but can find the gradient, use Minfunc
https://www.cs.ubc.ca/~schmidtm/Software/minFunc.html

Pseudo-inverse Dummy variable w/ minfunc

Not working too well, gradient could be wrong?

0.5013
0.3345
0.1811
0.0367
0.0132
0.0705
0.2626
0.5080
0.7539

y*

Minimize f(z) =  Σ  (x – Az2)2

z2 = y is dummy variable, will change cost function and gradient

https://www.cs.ubc.ca/~schmidtm/Software/minFunc.html
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y(1)

y(2)
MSE(y)

One minimizer y*

Model
Cost 

function
0.47

Output: concentrations Input: spectral measurementsEstimation error
xy

MSE = Σ  (x – Ay)2

d/dy MSE = 2 AT(x – Ay)

Forward:

x = Ay

More typical strategy to solve for y*: gradient descent

Slope at any location y
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y(1)

y(2)
MSE(y)

One minimizer y*

Model
Cost 

function
0.47

Output: concentrations Input: spectral measurementsEstimation error
xy

MSE = Σ  (x – Ay)2

1. Guess output yi

2. Evaluate slope

3. If its large, take a step:

yi+1 = yi + εAT(x – Ayi)

Forward:

x = Ay

d/dy MSE = 2 AT(x – Ay)

More typical strategy to solve for y*: gradient descent
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Model
Cost 

function
0.47

Output: concentrations Input: spectral measurementsEstimation error

Forward:

x = Ay

xy

MSE = Σ  (x – Ay)2
Inverse:

y = Wx

A and W from 
first principles

Optimization: You only care about finding the best solution y*
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Model
Cost 

function
0.47

Output: concentrations Input: spectral measurementsEstimation error

Forward:

x = Ay

xy

MSE = Σ  (x – Ay)2
Inverse:

y = Wx

Machine Learning: You don’t know what A and W are!

- You do not have access to known forward or inverse models
- But, example (input, output) data is available to try to figure it out
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Model
Cost 

function
0.47

Output: concentrations Input: spectral measurementsEstimation error

Forward:

x = Ay

xy

MSE = Σ  (x – Ay)2
Inverse:

y = Wx

Optimization: You only care about finding the best solution y*

Machine Learning: You first care about finding the model W, then you’ll 
use that to find the best solution y*
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Model
Loss 

function

Output: Input:

Estimation error

xy

L(y, Wx)
y = Wx

Changes for machine learning framework:

1. Now must establish the mapping from inputs to outputs (here, matrix W)

W = ???
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deep imagingPipeline for machine learning

Model
Loss 

function

Output: Input:
xy

Changes for machine learning framework:

1. Now must establish the mapping from inputs to outputs (here, matrix W)
2. Using large set of “training” data to first determine mapping f(x, W) = Wx

Training dataset 

Ex. [x1,y1] Ex. [x2,y2]

…

Ex. [xN,yN]

Estimation error

L(y, Wx)
f(W, x)

W = ???
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Model
Loss 

function

Output: Input:
xy

Changes for machine learning framework:

1. Now must establish the mapping from inputs to outputs (here, matrix W)
2. Using large set of “training” data to first determine mapping f(x, W) = Wx
3. To do so, use a loss function L that depends upon the training inputs (x,y) and the model (W)

Ex. [x1,y1] Ex. [x2,y2]

…

Ex. [xN,yN]

Training dataset 

Training error f(W, x)
Lin(y, f(x, W)) W = ???
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Model
Loss 

function

Output: Input:
xy Ex. [x1,y1] Ex. [x2,y2]

…

Ex. [xN,yN]

Training dataset 

Training error

Training Error (“in class error”):

• Lin compares modeled output, f(xi, W), with the correct output that has been labeled

• Assume error caused by each labeled example is equally important and sum them up:

Lin(y, f(x, W))
f(W, x)

W = ???
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Model
Loss 

function

Output:Estimation error

y Ex. [x1,y1] Ex. [x2,y2]

…

Ex. [xN,yN]

Training dataset 

dL/dW

Training error

Lin(y, f(x, W))
f(W, x)

Changes for machine learning framework:

1. Now must establish the mapping from inputs to outputs (here, matrix W)
2. Using large set of “training” data to first determine mapping f(x, W) = Wx
3. To do so, use a loss function L that depends upon the training inputs (x,y) and the model (W)

4. Find optimal mapping (W) using the training data, guided by gradient descent on L 

W = ???
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Model
Loss 

function

Output:Estimation error

y*

Lout(y,y*) = Σ  (y – y*)2
y*= f(x,W)

In a separate step, we then need to do the following to test the network:

1. valuate model accuracy by sending new x through – need new, unique data with label

W optimized

Ex. [x1,y1] Ex. [xK,yK]

…

Test dataset 

Test Error
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Model
Loss 

function

Output:Estimation error

y*

Lout(y,y*) = Σ  (y – y*)2
y*= f(x,W)

In a separate step, we then need to do the following to test the network:

1. valuate model accuracy by sending new x through – need new, unique data with label
2. Compare output y* to known “test data” label y
3. Evaluate performance with an error equation Lout

W optimized

Ex. [x1,y1] Ex. [xK,yK]

…

Test dataset 

Test Error

This is what we care about!
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Example: machine learning for image classification

Model

Output: Image 
class

# Correct labels for 
test images?

y

y=f(W, x)

Training error

dL/dW

Ex. [x1,y1] Ex. [x2,y2]

…

Ex. [xN,yN]

Training data: labeled images
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Example: machine learning for image classification

Model

Output: Image 
class

y

y=f(W, x)

Training error

dL/dW

Let’s consider a simple example – image classification. What do we need for training? 

1. Labeled examples  

Ex. [x1,y1] Ex. [x2,y2]

…

Ex. [xN,yN]

Training data: labeled images# Correct labels for 
test images?
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MNIST image set: http://yann.lecun.com/exdb/mnist/

https://en.wikipedia.org/wiki/MNIST_database

http://yann.lecun.com/exdb/mnist/
https://en.wikipedia.org/wiki/MNIST_database
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X = 28x28 pixel matrix

x = vec[X] = 784-long vector

Linear model would require W = 784 element matrix

Start simple:  use x = (x0, x1, x2) to describe intensity 
and symmetry of image X

Linear model can now use smaller w = (w0, w1, w2)
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X = 384 x 384 x 3 pixel matrix

(3rd matrix dimension is Red, Green or Blue pixel values)

x = vec[M] = 442,368-long vector

Linear model would require W = 442,368 element matrix
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x2

x1

Caltech Learning from Data: https://work.caltech.edu/telecourse.html

https://work.caltech.edu/telecourse.html
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x2

x1

This transforms wx+b into wx

Dataset: 1000 examples of 1’s and 5’s mapped to xj = (1,x1,x2), with associated label yj = 1 or -1

  

Caltech Learning from Data: https://work.caltech.edu/telecourse.html

[w0 w1 w2] 1
x1
x2

= w0 + w1x1 + w2x2 

https://work.caltech.edu/telecourse.html
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x2

x1

Dataset: 1000 examples of 1’s and 5’s mapped to xj = (1,x1,x2), with associated label yj = 1 or -1

  [Xtrain, Ytrain] = [xj, yj] for n=1 to 750 [Xtest, Ytest] = [xj, yj] for n=751 to 1000

Training dataset Test dataset
Labeled 
data:

n=1-750 n=751-1000
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Example: machine learning for image classification

Model

Output: Image 
class

# Correct labels with 
test dataset?

y

y = Wx

Ex. [x1,y1] Ex. [xK,yK]

…

Images and class labels

Training error

Let’s consider a simple example – image classification. What do we need for training? 

1. Labeled examples  

2. A model and loss function 
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Example: machine learning for image classification

Model

Output: Image 
class

# Correct labels with 
test dataset?

y

y = Wx

Ex. [x1,y1] Ex. [xK,yK]

…

Images and class labels

Training error

Let’s consider a simple example – image classification. What do we need for training? 

1. Labeled examples  

2. A model and loss function 
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Let’s start with a simpler approach: linear regression

General linear model: W

xy

# classes =
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Let’s start with a simpler approach: linear regression

General linear model: W

xy

# classes

Assume 1 class = 
1 linear fit wT

xy

=

=1 var.,
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Let’s start with a simpler approach: linear regression

General linear model: W

xy

# classes

Assume 1 class = 
1 linear fit wT

xy

=

=1 var.

Use MSE error 
model

Where labels 
determined by 
thresholding

,
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x1 x2

y

• If yi can be anything, minimizing L 
makes w the plane of best fit 

Without sgn(): regression for best fit

w

-w0/|w|
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x1 x2

y

• yi can only be -1 or +1, which 
defines its class

Without sgn(): regression for best fit

-1

+1

Project to -1 or +1

Why does linear regression with sgn() achieve classification?
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x1 x2

y

• yi can only be -1 or +1, which 
defines its class

• Can still find plane of best fit

Without sgn(): regression for best fit

-1

+1

Project to -1 or +1

Why does linear regression with sgn() achieve classification?



Machine Learning and Imaging – Roarke Horstmeyer (2024)

deep imaging

x1 x2

y

• Anything point to one side of y=0 
intersection is class +1, anything on 
the other side of intersection is 
class -1

With sgn() operation:

-1

+1 Projected to -1 or +1

0

Intersection y=0

Why does linear regression with sgn() achieve classification?
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x1 x2

y

• y axis isn’t really needed now & can 
view this decision boundary in 2D

With sgn() operation:

-1

+1

0

Intersection y=0

Why does linear regression with sgn() achieve classification?
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x1 x2

Sign operation takes linear regression 
and makes it a classification operation!

With sgn() operation:

y=-1
y=+1Linear classification 

boundary

Why does linear regression with sgn() achieve classification?
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Caltech Learning from Data: https://work.caltech.edu/telecourse.html

https://work.caltech.edu/telecourse.html
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Example: machine learning for image classification

Model

Output: Image 
class

# Correct labels with 
test dataset?

y

y = sign(wTx)

Ex. [x1,y1] Ex. [xK,yK]

…

Images and class labels

Training error

dL/dW

Let’s consider a simple example – image classification. What do we need for training? 

1. Labeled examples  

2. A model and loss function 

3. A way to minimize the loss function L
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Example: machine learning for image classification

Model

Output: Image 
class

# Correct labels with 
test dataset?

y

y = sign(wTx)

Ex. [x1,y1] Ex. [xK,yK]

…

Images and class labels

Training error

dL/dW

Let’s consider a simple example – image classification. What do we need for training? 

1. Labeled examples  

2. A model and loss function 

3. A way to minimize the loss function L
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1. Pseudo-inverse (this is one of the few cases with a closed-form solution)

2. Numerical gradient descent

3. Gradient descent on the cost function with respect to W

(easier)

(harder)

3 methods to solve for wT in the case of linear regression:
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deep imaging3 methods to solve for wT in the case of linear regression:

1. Pseudo-inverse (this is one of the few cases with a closed-form solution)

2. Numerical gradient descent

3. Gradient descent on the cost function with respect to W

(easier)

(harder)

Next class: We’ll talk more about gradient descent 
methods!


