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• Interpretation #1: Radiation  (Incoherent)
• Model: Rays

• Interpretation #2: Electromagnetic wave (Coherent)
• Model: Waves

• Interpretation #3: Particle
• Model: Photons

• Complex field
• Models Interference

• Real, non-negative
• Models absorption 

and brightness
Itot = I1 + I2

Etot = E1 + E2

What is light and how can we model it?
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n x m image IsPhysical world

Simple mathematical model of incoherent image formation

Object absorption: I0(x,y)
Illumination pattern: s(x,y)
Light exiting object surface: Ie(x,y) = I0(x,y)     s(x,y)

• Assume incoherent illumination
• Assume thin 2D object
• Object is real, non-negative map of absorption/reflectivity
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Intensity at image plane Ip = ?S
I0

Ie = S I0

Ip = H Ie = H S I0

Convolution filter h

Simple mathematical model of incoherent image formation
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λ
• Effect of illumination is element-wise multiplication

• Deal with sample/image intensities I, real and non-negative

• Imaging systems blur the object via point-spread function matrix H 

Ie(x,y)= S I0(x,y)

Ib(x,y)= H I0(x,y)

• Discrete pixels down-sample the object via Id(x,y)= D I0(x,y)

• Different colors add linearly Is(x, y) = Σ I0(x, y, λ)

• Add noise into measurement IN(x,y)= D I0(x,y) + N
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Training data:
 [I0(x, y), y]
I0:100 x 100
Label y: 1x2

Ie(x,y)= S I0(x,y)

Physical Layer

[Ie(x, y), y] 

Task = Wn …ReLU[W1 ReLU[W0 Ie] …]

SI0

Example #1: Optimized illumination pattern (one color)
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Training data:
 [I0(x, y, λ), y]
I0:100 x 100 pix. x 30 
Label y: 1x3 - pepper, broccoli, green beans

Design optimal 
color filter for 
classification:

Is(x, y) = Σ W0(λ) I0(x, y, λ)
λ

Monochromatic 
camera sensor

W0(λ)

λ

Color transmission vs. λ

400 nm 700 nm

1

0
???

Physical Layer

Example #2: Optimized color filter for a grayscale camera
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Compress Decompress

U-Net Architecture 

Input 
image

Output: 
segmentation 

map (need 
labels for 
training)
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U-Net CNN Segmentation MapVariably illuminated images from different LEDs

…

Example 3: learned illumination pattern for improved segmentation
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U-Net CNN Segmentation MapVariably illuminated images from different LEDs

…

w1I1 w2I2 w3I3+ + + …

*If we allow w’s here to be trainable weights, then we can find ideal brightnesses for different LEDs 
to illuminate a sample of interest! 

Example 3: learned illumination pattern for improved segmentation
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U-Net CNN Segmentation MapVariably illuminated images

…

(a) (c)

All Center DPC

Random Optimized Off-axis

Mask

(b)

Optimized illumination for nuclei segmentation

+5-10% accuracy

w1I1 w2I2 w3I3+ + + …

Standard illumination Learned illumination

Example 3: learned illumination pattern for improved segmentation

See C. Cooke et al., “Physics-enhanced machine learning for virtual fluorescence microscopy,” ICCV (2021)
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Multiple Patterns for Fluorescence image inference

Pattern 4Pattern 3

Pattern 5 Pattern 6 Pattern 7 Pattern 8

Pattern 2Pattern 1

1x Pattern 
Optimization

2x Pattern 
Optimization

4x Pattern 
Optimization

8x Pattern 
Optimization

1 Pattern 4 PatternsGround Truth

See C. Cooke et al., “Physics-enhanced machine learning for virtual fluorescence microscopy,” ICCV (2021)
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• Interpretation #1: Radiation  (Incoherent)
• Model: Rays

• Interpretation #2: Electromagnetic wave (Coherent)
• Model: Waves

• Complex field
• Models Interference

• Real, non-negative
• Models absorption 

and brightness
Itot = I1 + I2

Etot = E1 + E2

This class: Modeling coherent radiation as a wave
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deep imagingLet’s take a step back: how does light propagate?

Maxwell’s equations 
without any charge
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deep imagingLet’s take a step back: how does light propagate?

Maxwell’s equations 
without any charge

1. Take the curl of both sides of first equation
2. Substitute 2nd and 3rd equation
3. Arrive at the wave equation:
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Considering light that isn’t pulsed over time, we can use the following solution:
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deep imagingLet’s take a step back: how does light propagate?

Considering light that isn’t pulsed over time, we can use the following solution:

With this particular solution, we get the following important time-independent equation:

Helmholtz 
Equation
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deep imagingLet’s take a step back: how does light propagate?

Considering light that isn’t pulsed over time, we can use the following solution:

With this particular solution, we get the following important time-independent equation:

This is an important equation in physics. We won’t go into the details, but it leads to the Huygen-Fresnel principle:

Helmholtz 
Equation

2
2

2
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The Huygens-Fresnel Equation 
2

2

2

Aperture

P2
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The Huygens-Fresnel Equation 
2

2

2

P2

Generally connects two points in 3D:
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We are usually concerned about propagation between two planes (almost always in an optical system):
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We are usually concerned about propagation between two planes (almost always in an optical system):

Paraxial approximation:
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deep imagingPlane-to-plane light propagation via the ”paraxial approximation”

We are usually concerned about propagation between two planes (almost always in an optical system):

Paraxial approximation:

Substitute in and crank the wheel,

Paraxial Helmholtz Equation. This has an exact integral solution:
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deep imagingPlane-to-plane light propagation via the ”paraxial approximation”

We are usually concerned about propagation between two planes (almost always in an optical system):

Paraxial approximation:

Substitute in and crank the wheel,

Paraxial Helmholtz Equation. This has an exact integral solution:

Fresnel diffraction 
integral 

This is how light propagates from one plane to the next. It’s a convolution!
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Fresnel Approximation:

Lets assume that the second plane is “pretty far away” from the first plane. Then,
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deep imagingFrom the Fresnel approximation to the Fraunhofer approximation

Fresnel Approximation:

Lets assume that the second plane is “pretty far away” from the first plane. Then,

1. Expand the squaring 
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deep imagingFrom the Fresnel approximation to the Fraunhofer approximation

Fresnel Approximation:

Lets assume that the second plane is “pretty far away” from the first plane. Then,

1. Expand the squaring 

2. Front term comes out, assume second term goes away, then,

Fraunhofer diffraction is a Fourier transform!!!!!!!
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2D Fourier Transform



Machine Learning and Imaging – Roarke Horstmeyer (2024)

deep imagingModel of a microscope (or camera) using Fourier transforms:

2D Fourier Transform

Effect of the lens is to block light.

Use thin object approximation to 
determine distribution of light on the 
immediate other side of the lens stop:

1’s in here

0’s out here
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2D Fourier Transform

Last piece of the puzzle: what happens from lens to sensor?



Machine Learning and Imaging – Roarke Horstmeyer (2024)

deep imagingModel of a microscope (or camera) using Fourier transforms:

2D Fourier Transform

Last piece of the puzzle: what happens from lens to sensor?
inverse Fourier transform!

2D inverse Fourier Transform
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This process should sound familiar….

U1(x,y) U2(x,y)=
Input image Output image

Convolution filter h

F [U1]
F [h]

Û1(fx,fy)

Input 
spectrum 

• =

F -1[HÛ1]
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1. Discrete sample 
function s(x,y) 
(complex)
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deep imagingModel of image formation for wave optics (coherent light):

1. Discrete sample 
function s(x,y) 
(complex)

2. Compute its 2D 
Fourier transform

“Fourier plane”

ŝ(fx, fy)

2D FT
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deep imagingModel of image formation for wave optics (coherent light):

1. Discrete sample 
function s(x,y) 
(complex)

2. Compute its 2D 
Fourier transform

3. Multiply by 
“aperture” 
function A(fx, fy)

“Fourier plane”

ŝ(fx, fy)

2D FT
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deep imagingModel of image formation for wave optics (coherent light):

1. Discrete sample 
function s(x,y) 
(complex)

2. Compute its 2D 
Fourier transform

3. Multiply by 
“aperture” 
function A(fx, fy)

“Fourier plane”

ŝ(fx, fy)

4. Compute 
inverse Fourier 
transform s’(x’,y’) 
(complex)

“Blurred image”

2D FT 2D IFT
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deep imagingModel of image formation for wave optics (coherent light):

1. Discrete sample 
function s(x,y) 
(complex)

2. Compute its 2D 
Fourier transform

3. Multiply by 
“aperture” 
function A(fx, fy)

“Fourier plane”

ŝ(fx, fy)

4. Compute 
inverse Fourier 
transform s’(x’,y’) 
(complex)

“Blurred image”

5. Detector 
measures 
|s’(x’,y’)|2 

2D FT 2D IFT
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A(fx, fy)
h(x, y)

2D IFT

Aperture function (lens shape) Camera blur function (IFT of lens shape) 
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A (fx,fy)ŝ1(fxi,fyi) ŝ2(fxo,fyo)

MultiplySpatial Frequency Domain

h (x,y)

s1(xi,yi) s2(xo,yo)

Convolve = blurSpatial Domain

Two modeling choices for the camera:



Machine Learning and Imaging – Roarke Horstmeyer (2024)

deep imaging

The optical black box system and the point-spread function:

Linear systems and the black box

Light g1(xi,yi) entering “black box” optical system modified by system point-spread function

h (x2,y2)

Assume shift 
invariance: 
This is the system 
point-spread function

g1(x1,y1) g2(x2,y2)
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• Interpretation #1: Radiation  (Incoherent)
• Model: Rays • Real, non-negative

• Models absorption 
and brightness

Itot = I1 + I2
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Mathematical model of for incoherent image formation 

Illumination brightness: S0(x,y)
Object absorption:

• All quantities are real, and non-negative 

B(x,y)
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Mathematical model of for incoherent image formation 

Illumination brightness: S0(x,y)
Object absorption:

• All quantities are real, and non-negative 

B(x,y)

100 
photons

60% 
transmission

60 
photons
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Mathematical model of for incoherent image formation 

Illumination brightness: S0(x,y)
Object absorption:

• All quantities are real, and non-negative 

B(x,y)

80 
photons

10% 
transmission

8 
photons
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Mathematical model of for incoherent image formation 

Illumination brightness: S0(x,y)

B S0

Object absorption:

multiplication

• All quantities are real, and non-negative 

B(x,y)
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deep imagingSummary of two models for image formation

• Interpretation #1: Radiation  (Incoherent)
• Model: Rays • Real, non-negative

• Models absorption 
and brightness

Itot = I1 + I2

• Complex field
• Models Interference

Etot = E1 + E2

• Interpretation #2: Electromagnetic wave (Coherent)
• Model: Waves

Is = B S0
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Sample absorption = S(x,y)

Incident field:
 
C(x,y) = Ai(x,y) 

Mathematical model of for coherent image formation 

• Pretty much the same thing, but now we have an amplitude and a complex phase

Point #1: Amplitudes behave just like before

Transmitted field:

U(x,y) = At(x,y) = ?

(Laser light
or

Ultrasound)

At(x,y) = Ai(x,y) S(x,y) 100 
photons

60% 
transmission

60 
photons
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Sample absorption = S(x,y)

Sample phase delay = 
exp[ikϕ(x,y)]

Incident field:
 
C(x,y) = Ai(x,y) exp[ikϕi(x,y)]
 

Mathematical model of for coherent image formation 

• Pretty much the same thing, but now we have an amplitude and a complex phase

New: complex phase delay 
• Needed to represent wave
• Represents wave delay across space

Transmitted field:

U(x,y) = Ai(x,y) S(x,y) exp[ikϕt(x,y)]

(Laser light
or

Ultrasound)
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Sample absorption = S(x,y)

Sample phase delay = 
exp[ikϕ(x,y)]

Mathematical model of for coherent image formation 

• Pretty much the same thing, but now we have an amplitude and a complex phase

New: complex phase delay 

(Laser light
or

Ultrasound)

ϕi(x,y) = 0

π/6 deg. 
Phase delay



Machine Learning and Imaging – Roarke Horstmeyer (2024)

deep imaging

Sample absorption = S(x,y)

Sample phase delay = 
exp[ikϕ(x,y)]

Mathematical model of for coherent image formation 

• Pretty much the same thing, but now we have an amplitude and a complex phase

New: complex phase delay 

(Laser light
or

Ultrasound)

ϕi(x,y) = 0

π/6 deg. 
Phase delay

Incident light

Transmitted light

Total lag = pi/6 rad
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Sample absorption = S(x,y)

Sample phase delay = 
exp[ikϕ(x,y)]

Mathematical model of for coherent image formation 

• Pretty much the same thing, but now we have an amplitude and a complex phase

Output phase is sum of phase delays, product of phasors

(Laser light
or

Ultrasound)

ϕt(x,y) =ϕ(x,y) + ϕi(x,y)

eikϕt(x,y) = eikϕi(x,y) x eikϕ(x,y)

Multiply phases!



Machine Learning and Imaging – Roarke Horstmeyer (2024)

deep imaging

Sample absorption = S(x,y)

Sample phase delay = 
exp[ikϕ(x,y)]

Mathematical model of for coherent image formation 

• Pretty much the same thing, but now we have an amplitude and a complex phase

Conclusion:
(Laser light

or
Ultrasound)

Transmitted field = incident field x complex sample

At(x,y) exp[ikϕt(x,y)] = Ai(x,y) exp[ikϕi(x,y)] x S(x,y) exp[ikϕ(x,y)] 
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deep imagingSummary of two models for image formation

• Interpretation #1: Radiation  (Incoherent)
• Model: Rays • Real, non-negative

• Models absorption 
and brightness

Itot = I1 + I2

• Complex field
• Models Interference

Etot = E1 + E2

• Interpretation #2: Electromagnetic wave (Coherent)
• Model: Waves

Is = B S0

U = C S0
U, C and S are complex!
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Additional Information about sample index of 
refraction, spatial frequency and Fourier optics
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So far: illuminate the sample and create a field that is equivalent 
to the sample’s absorption and phase
 – why is this true???
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deep imagingMicroscope illumination and sample index of refraction

So far: illuminate the sample and create a field that is equivalent 
to the sample’s absorption and phase
 – why is this true???

*For more information, see D. Paganin, Coherent X-Ray Optics, Section 2.2

Sample index of refraction n(x,y,z) = 1 + ia(x) + ϕ (x)

a(x=1) = .2 
ϕ(x=1) = .1 
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deep imagingMicroscope illumination and sample index of refraction

*For more information, see D. Paganin, Coherent X-Ray Optics, Section 2.2

Sample index of refraction n(x,y,z) = 1 + ia(x) + ϕ (x)

Thin sample approximation:

Sample’s effect on light is multiplication with exp[-ik * n(x,y)]

a(x=1) = .2 
ϕ(x=1) = .1 

So far: illuminate the sample and create a field that is equivalent 
to the sample’s absorption and phase
 – why is this true???
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deep imagingMicroscope illumination and sample index of refraction

Sample index of refraction n(x,y,z) = 1 + ia(x) + ϕ (x)

Thin sample approximation:

Sample’s effect on light is multiplication with exp[-ik * n(x,y)]

a(x=1) = .2 
ϕ(x=1) = .1 

So far: illuminate the sample and create a field that is equivalent 
to the sample’s absorption and phase
 – why is this true???

Emerging field U(x) = incident field Ui(x) * sample function s(x)  In 1D:
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deep imagingMicroscope illumination and sample index of refraction

Sample index of refraction n(x,y,z) = 1 + ia(x) + ϕ (x)

Thin sample approximation:

Sample’s effect on light is multiplication with exp[-ik * n(x,y)]

a(x=1) = .2 
ϕ(x=1) = .1 

U(x) = Ui(x) *exp[-ik n(x)] = Ui(x) A(x) exp[ikϕ(x)] A(x) = exp[k a(x)]

So far: illuminate the sample and create a field that is equivalent 
to the sample’s absorption and phase
 – why is this true???

Emerging field U(x) = incident field Ui(x) * sample function s(x)=exp[-ik n(x)]  

absorption phase shift: new term for laser

In 1D:
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Sample absorption = A(x)
Sample phase = exp[ikϕ(x)]

Incident field Ui

Emerging field U = incident field Ui(x) * sample function s(x)  
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deep imagingMicroscope illumination and sample index of refraction

Q: When is the emerging field equal to the absorption and phase?

Sample absorption = A(x)
Sample phase = exp[ikϕ(x)]

Incident field Ui Emerging field U

Emerging field U = incident field Ui(x) * sample function s(x)  
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deep imagingMicroscope illumination and sample index of refraction

Q: When is the emerging field equal to the absorption and phase?

Sample absorption = A(x)
Sample phase = exp[ikϕ(x)]

Incident field Ui Emerging field U

A: When the incident wave = 1, means uniform in amplitude and phase:

Ui(x) = 1 U(x)=A(x) exp[ikϕ(x)] 

Emerging field U = incident field Ui(x) * sample function s(x)  
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deep imagingMicroscope illumination and sample index of refraction

Q: When is the emerging field equal to the absorption and phase?

Sample absorption = A(x)
Sample phase = exp[ikϕ(x)]

Incident field Ui Emerging field U

Ui(x) = 1 U(x)=A(x) exp[ikϕ(x)] 

Plane wave Ui(x) = 1 * exp(ik•x)
     
     Ui(x) = exp(ikx sin(θ))

This is when incident wave hits the sample with θ=0!

θ=0 θ=30

A: When the incident wave = 1, means uniform in amplitude and phase:

1 everywhere Not 1 
everywhere
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deep imagingModel of image formation for wave optics (coherent light):

1. Discrete sample 
function s(x,y) 
(complex)

“Blurred image”

2. Compute its 2D 
Fourier transform

ŝ(fx, fy)

What does fx represent, really?
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U(x,y) Fourier 
Transform

fxx

y fy

2π/Ty

Ty

Û(fx, fy)

From before: Spatial frequencies = “stripes” within each image

U(x,y) Fourier 
Transform

fxx

y fy

Û(fx, fy)2π/Tx

Tx
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Ray angle and spatial frequency

Plane of interest

x

Incident plane wave
Stripes are for complex fields! 

Proportional to distance between 
subsequent peaks of wave along plane 
of interest
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Ray angle and spatial frequency

θ

θ

λ

Sin(θ) = λ/d

d = λ/ Sin(θ) 
 

d

Distance to two crests = spatial period 

Plane of interest

x
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Ray angle and spatial frequency

θ

θ

λ

Sin(θ) = λ/d

d = λ/ Sin(θ) 
 

d

Distance to two crests = spatial period 

Plane of interest

x

Spatial frequency = 1/spatial period
(number of periods per unit length)

fx = 1/d = Sin(θ)/ λ 
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Image plane ray angle θ

Equivalent coordinates in the Fourier domain and at the Fourier plane

Image plane spatial frequency fx

fx = Sin(θ)/ λ 

Image plane wavevectors kx

kx = 2πfx = 2π/ λ Sin(θ) 
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deep imagingGeneral rules for applying the Fourier transform in optics

Situation 1: From an object to a plane “really far away”

U1(x1)

U2(x2) ~ F[U1(x1/M1)]
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deep imagingGeneral rules for applying the Fourier transform in optics

Situation 1: From an object to a plane “really far away”

Situation 2: From an object to the back focal plane of 
the microscope objective lens

U1(x1)

U2(x2) ~ F[U1(x1/M1)]
 

U1(x1)
U2(x2) ~ F[U1(x1/M2)]
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deep imagingGeneral rules for applying the Fourier transform in optics

Situation 1: From an object to a plane “really far away”

Situation 2: From an object to the back focal plane of 
the microscope objective lens

Situation 3: From an object to a plane 1 focal length away from a lens (1f-1f system)

U1(x1)

U2(x2) ~ F[U1(x1/M1)]
 

U1(x1)
U2(x2) ~ F[U1(x1/M2)]
 

U1(x1)

U2(x2) ~ F[U1(x1/M3)]
 

f f
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2D Fourier Transform 2D inverse Fourier Transform

f f ff
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deep imagingA more exact model: the 4f optical system

2D Fourier Transform

f f

The Fourier plane provides 
a measure of the ray angles 
at the image plane

Image plane ray angle θ
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deep imagingA more exact model: the 4f optical system

2D Fourier Transform

f f

The Fourier plane provides 
a measure of the ray angles 
at the image plane

Image plane ray angle θ

Shift point 
source

Doesn’t contain info about spatial distribution light
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deep imagingA more exact model: the 4f optical system

2D Fourier Transform

f f

The Fourier plane provides 
a measure of the ray angles 
at the image plane

Image plane ray angle θ

Shift point 
source

Rays are leaving image plane at +20 degrees

20 degrees
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deep imagingA more exact model: the 4f optical system

2D Fourier Transform

f f

The Fourier plane provides 
a measure of the ray angles 
at the image plane

Image plane ray angle θ

Shift point 
source

Rays are coming in at +20 degrees and -15 degrees

20 degrees

-15 degrees
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deep imaging

You typically go between 4 functions to describe one imaging system: 

Coherent point-
spread function

h(x)

Incoherent point-
spread function

hi(x)
|.|2

Coherent 
transfer function

H(fx)

F[.] F[.]

H*H Incoherent 
transfer function

Hi(fx)


