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What is light and how can we model it?

Interpretation #1: Radiation (Incoherent)
Model: Rays

Interpretation #2: Electromagnetic wave (Coherent)

Model: Waves

Interpretation #3: Particle
Model: Photons

double slit

q]

screen

deep imaging

Real, non-negative
Models absorption
and brightness

liot = 11 + 1>

Complex field
Models Interference

Ewot = E1 + E5
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Simple mathematical model of incoherent image formation deep imaging

Physical world % n X mimage lg

» Assume incoherent illumination
« Assume thin 2D object
* Obiject is real, non-negative map of absorption/reflectivity

Object absorption: ly(X,Y)
lllumination pattern: s(x,y)
Light exiting object surface: ls(X,y) = lp(X,y)o s(X,y)
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Simple mathematical model of incoherent image formation deep imaging

S : :
I , % Intensity at image plane I, = ?
0




Summary: simple physical layers for incoherent imaging

Deal with sample/image intensities |, real and non-negative

Effect of illumination is element-wise multiplication

A

l(X,y)= S lp(x,y)

Imaging systems blur the object via point-spread function matrix H

Discrete pixels down-sample the object via

Add noise into measurement

Different colors add linearly

Ib(x’y)=

H IO(X,y)

Id(X,Y)=

D IO(X,y)

IN(X!y)=

D l,(x,y) + N

(X,

y) =

z IO(X’ Y; )\)

deep imaging
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Example #1: Optimized illumination pattern (one color) deep imaging

[le(X, y), V]
Training data:
|[|-01()C()b y))(, 1y(])0 Y= S 1o0cy) Task = W), ...ReLU[W; ReLUWq |] ...]
O.

Label yv: 1x2 Physical Layer



[IE=

Example #2: Optimized color filter for a grayscale camera deep imaging
14 Color transmission vs. A
Design optimal  W,(A)
color filter for 207
classification: 0 >
400 nm A 700 nm

Monochromatic
camera sensor

Training data: B
[lo(X, v, N), V] 5(X, y) = % Wo(A) lo(X, y, N)

1o:100 x 100 pix. x 30
Label y: 1x3 - pepper, broccoli, green beans Physical Layer




Example 3: learned illumination pattern for improved segmentation

Input &%
image |
':’“. "%“f

U-Net: Convolutional Networks for Biomedical
Image Segmentation

Olaf Ronneberger, Philipp Fischer, and Thomas Brox

Computer Science Department and BIOSS Centre for Biological Signalling Studies,
University of Freiburg, Germany
ronneber@informatik.uni-freiburg.de,

WWW home page: http://1lmb. informatik.uni-freiburg.de/
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deep imaging

U-Net Architecture

Decompress
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I Output:
segmentation

map (need
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Example 3: learned illumination pattern for improved segmentation

Variably illuminated images from different LEDs

Camera

Microscope
Objective

Sample

LED Array

Image Spectrum

U-Net CNN

Segmentation Map

[IE=

deep imaging



Example 3: learned illumination pattern for improved segmentation

deep imaging

Variably illuminated images from different LEDs U-Net CNN Segmentation Map

*If we allow w’s here to be trainable weights, then we can find ideal brightnesses for different LEDs
to illuminate a sample of interest!



[IE=

Example 3: learned illumination pattern for improved segmentation

deep imaging
Variably illuminated images U-Net CNN Segmentation Map
gf.‘: N = W Z LN . \
..9;? AR I 1
A e R
2 R O :
:“f"b‘ A 's' 2 , .
W1|1 + W2|2 + W3|3 + .H

Optimized illumination for nuclei segmentation

Mean Red channel Mean Green channel Mean Blue channel
| ] | ] [ ]

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
L e— T T

+5-10% accuracy
See C. Cooke et al., “Physics-enhanced machine learning for virtual fluorescence microscopy,” ICCV (2021)



1x Pattern
Optimization

2x Pattern
Optimization

4x Pattern
Optimization

8x Pattern
Optimization

Multiple Patterns for Fluorescence image inference

— P
deep imaging

Ground Truth 1 Pattern 4 Patterns

HelLa Task Performance

1072

6x1073

Mean Squared Error

,:II 2K &
o4 essies it iy

4 O 1 20 B B4
4 crsessersd
v 4 2

[ 1

Pattern 5 Patt

ern 6 Pattern 7

g:allléﬂ-' 20 21 22 23 24 25 26
Pattern 8 lllumination Patterns

See C. Cooke et al., “Physics-enhanced machine learning for virtual fluorescence microscopy,” ICCV (2021)
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What is light and how can we model it? deep imaging

Interpretation #1: Radiation (Incoherent)
Model: Rays

* Real, non-negative
« Models absorption

E}Kji@x& AR and brightness

- liot = 14 + I

Interpretation #2: Electromagnetic wave (Coherent)
* Model: Waves

double slit screen

i

Complex field
Models Interference

. jo!
N
\_/
[ )

Ewot = E1 + E5

This class: Modeling coherent radiation as a wave




Let’s take a step back: how does light propagate? deep imaging

Maxwell’s equations . OH
without any charge VXE = —pu—
ot
. o€
VXH =€e—
ot
V-e£ =0
vV pffi =0




Let’s take a step back: how does light propagate?

Maxwell’s equations . OH
without any charge VXE = —pu—
ot
. IE
VXH =€e—
ot
V-e£ =0
vV pffi =0

1. Take the curl of both sides of first equation
2. Substitute 2nd and 3™ equation
3. Arrive at the wave equation:

\/#«060‘

deep imaging



Let’s take a step back: how does light propagate? deep imaging

Considering light that isn’t pulsed over time, we can use the following solution:

u(P,t) = A(P) cos[2mvt + P(P)]

u(P,t) = Re{U(P) exp(— j2mvt)},



Let’s take a step back: how does light propagate?

Considering light that isn’t pulsed over time, we can use the following solution:

With this particular solution, we get the following important time-independent equation:

Helmholtz
Equation

u(P, 1) =
u(P t) =

(V2 + kXU = 0.

k

A(P) cos[2mvt + P(P)]

Re{U(P) exp(— j2mvt)},

2w

y
= Qmrn— ,
7Tnc )\

deep imaging



Let’s take a step back: how does light propagate? deep imaging

Considering light that isn’t pulsed over time, we can use the following solution:

u(P,t) = A(P) cos[2mvt + P(P)]
u(P,t) = Re{U(P) exp(— j2mvt)},

With this particular solution, we get the following important time-independent equation:

Helmholtz vV 27T
Equation (V2 + kz)U = 0. k = 277"; = N

This is an important equation in physics. We won’t go into the details, but it leads to the Huygen-Fresnel principle:

UP,) = _1} ” up )Rk 6 ds
J L&)

p>



Plane-to-plane light propagation via the “paraxial approximation” deep imaging

The Huygens-Fresnel Equation U(P,) = J}X Jj U(Pl)exp(rfkrz]) cos 8 ds
21

p>

Aperture
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Plane-to-plane light propagation via the "paraxial approximation” deep imaging

The Huygens-Fresnel Equation U(P,) = }}X Jj U(Pl)exp(rjkn]) cos 8 ds
21

p>

Generally connects two points in 3D:
U(P) =U(z1, 91, 21)

U(P) =U(z2,y2, 22)



Plane-to-plane light propagation via the “paraxial approximation” deep imaging

We are usually concerned about propagation between two planes (almost always in an optical system):



Plane-to-plane light propagation via the “paraxial approximation” deep imaging

We are usually concerned about propagation between two planes (almost always in an optical system):

Paraxial approximation:

dU
2 2ik— =
V_LU+ 1 dz 0

def 2 o2
V2 E
JE Ox2 + 3y2



Plane-to-plane light propagation via the “paraxial approximation” deep imaging

We are usually concerned about propagation between two planes (almost always in an optical system):

Paraxial approximation:

. dU .
V?LU T 22[“@ =0 Substitute in U(P) — E(g;7 Y, z)e’kz and crank the wheel,

L dE
ViE + 2%k— +2k*E =0 Paraxial Helmholtz Equation. This has an exact integral solution:

dz



Plane-to-plane light propagation via the “paraxial approximation” deep imaging

We are usually concerned about propagation between two planes (almost always in an optical system):

Paraxial approximation:

dU .
V U + ZZkE =0 Substitute in U(P) — E(g;,y, z)emz and crank the wheel,

dE
V E + Zde— +2k%E =0 Paraxial Helmholtz Equation. This has an exact integral solution:
Z
—|-OO ik [ 1\2 1\2 - -
/ / — |(z—2" )" +(y—vy') ] ! 7.1 Fresnel diffraction
E(CE Y, =z ’L)\Z Yy 0)6 2 dx dy integral

This is how light propagates from one plane to the next. It’s a convolution!



Fresnel light propagation as a convolution deep imaging

+00 ik 1\2 1\2
B(z,y,2) = = B(@,y,0)es 0 4o gy
Az
ez’kz ( 2, )
h(z,y,z) = e 22 Y
(2,9, 2) IAZ



Fresnel light propagation as a convolution

+OO ik
E(x —
(z,y, 2 Mz
kz
e'l
h(z,y,z) = -
INZ
“Paraxial
image
plane

E(z,y,z) = E(x,y,0) * h(x,y, 2)

w“. 'uz

y 0)6 92 [(CL‘ Z )2+(y_y,)2] d:c'dy'

w“' ’A

—A =
S
—=>

deep imaging




From the Fresnel approximation to the Fraunhofer approximation deep imaging

Fresnel Approximation:

+OO ik [ 12 / 2}
T—E ) +\Y—
E(CE Yy, 2) = ’y O)€2Z ( ) (y y) d:c'dy'
z)\z
2D?
Lets assume that the second plane is “pretty far away” from the first plane. Then, > T




From the Fresnel approximation to the Fraunhofer approximation

Fresnel Approximation:

+OO ik

E(z,y,z2) =

z)\z

Lets assume that the second plane is “pretty far away” from the first plane. Then,

1. Expand the squaring

y 0)6 9, [(33 Z )2+(y_y,)2] d:c'dy'

2D?
7>

A

E(z,y,z z/\z // 'y, ())ezz (@*+9%) o 3z (2 +y"7) ¢ 5 (@2’ +uy') ! dy’

deep imaging



From the Fresnel approximation to the Fraunhofer approximation deep imaging

Fresnel Approximation:

+OO ik [ 12 / 2]
r—x )" +(y—
E(CI}' Yy, 2) = ’y 0)€2z ( ) (y y) d(]l',dy,
z)\z
2D?
Lets assume that the second plane is “pretty far away” from the first plane. Then, 7> T

1. Expand the squaring
E(z,y,z )\ // 2y, 0)ess (@Y 5 (&) o 5L (a2’ +uy) gt o/
1AL

2. Front term comes out, assume second term goes away, then,

ez’kz
E(x,y,z) — C// 7y 0)€2k (22" +yy )dx'dy C = .—e2z(‘” +y°)

INZ




This is the aperture This is what you see far away

deep imaging

Two-dimensional rectangle d) Magnitude of Fourier spectrum
function as an image of the 2-D rectangle
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deep imaging




— AW,

— SR

deep imaging

magnitude of cheetah

magnitude of zebra phase of zebra
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Model of a microscope (or camera) using Fourier transforms: deep imaging

Es(xs,ys,0) Eo(Ta, Yo, w)
\—/V

2D Fourier Transform



Model of a microscope (or camera) using Fourier transforms: deep imaging

/
E,(Ta;Ya,w)
\ Effect of the lens is to block light.

Use thin object approximation to
determine distribution of light on the
immediate other side of the lens stop:

/ E(,L (.fUd, yd) — Ea, (:Ed) yd)A(xcb yd)

Es(xsay.%o) Ea(xany(l?w)
\/V

2D Fourier Transform O’s out here
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Model of a microscope (or camera) using Fourier transforms: deep imaging

Last piece of the puzzle: what happens from lens to sensor?

ES (333, Ys, 0) E;(Zl?d, yd) — Ea(ZCd, yd)A(xda yd)

2D Fourier Transform
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Model of a microscope (or camera) using Fourier transforms: deep imaging

Last piece of the puzzle: what happens from lens to sensor?

inverse Fourier transform!

ES (xS) Ys, 0) E;(Zl?d, yd) — Ea(.’Ed, yd)A(xda yd)

2D Fourier Transform 2D inverse Fourier Transform



This process should sound familiar.... Hé%

deep imaging

Convolution filter h

Input image Output image
U~|(X,y) - U2(X y)
Input
spectrum

ZaN

U 1 (fx7fy)
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Model of image formation for wave optics (coherent light): deep imaging

1. Discrete sample
function s(x,y)
(complex)

<

N



Model of image formation for wave optics (coherent light):

1. Discrete sample 2. Compute its 2D
function s(x,y) Fourier transform
(complex) S(fy, fy)

K “Fourier plane”

3=

deep imaging

<

N



Model of image formation for wave optics (coherent light):

1. Discrete sample 2. Compute its 2D 3 Multipl},/ by
function s(x,y) Fourier transform aperture
(complex) 5(f,, f,) function A(fy, fy)

“Fourier plane”

[IE=

deep imaging

<

N
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Model of image formation for wave optics (coherent light): deep imaging
1. Discrete sample 2. Compute its 2D 3 Multipl},/ by 4. Compute
function s(x,y) Fourier transform aperture inverse Fourler
(complex) 8(fy, ,) function Alfx, fy)  transform s’(x’,y’)

P

‘ (complex)

“Blurred image”

“Fourier plane”
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Model of image formation for wave optics (coherent light): deep imaging
1. Discrete sample 2. Compute its 2D 3- Multiply by 4, Compute 5. Detector
function s(x,y) Fourier transform aperture inverse Fourler m,ea,su,res
(complex) 8(f,, 1) function A(fx, f,)  transform s’'x,y)  18'(<.Y)P

p

‘ (complex)

“Blurred image”

“Fourier plane”



Can also model this using the Convolution Theorem deep imaging

Aperture function (lens shape) Camera blur function (IFT of lens shape)

Alfy, f,) oy
X,y

2D IFT



Two modeling choices for the camera: %

—v >

deep imaging

Spatial Frequency Domain Multiply

§1(fxirfyi) é2(fxor yo)

Spatial Domain Convolve = blur

./v

h(x y)

4




Linear systems and the black box

The optical black box system and the point-spread function:

[IE=

deep imaging

Light g4(X;,y)) entering “black box” optical system modified by system point-spread function

92($2,y2) — // gl(xlayl)h(m2 —T1,Y2 — yl)d$1dy1

Assume shift
invariance:

This is the system
point-spread function



Summary of two models for image formation
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deep imaging

Interpretation #1: Radiation (/Incoherent)
Model: Rays

Real, non-negative
Models absorption
and brightness

liot =11 + I




Mathematical model of for incoherent image formation Hﬁg

deep imaging

« All quantities are real, and non-negative

Object absorption:
So(x,y)

lllumination brightness:
B(x,y)




Mathematical model of for incoherent image formation H§

deep imaging

« All quantities are real, and non-negative

Object absorption:

lllumination brightness: So(x.y)

B(x.y)

60%
transmission



Mathematical model of for incoherent image formation H§

deep imaging

« All quantities are real, and non-negative

Object absorption:
So(X,y)

lllumination brightness:
B(x,y)

10%
transmission




Mathematical model of for incoherent image formation Hﬁé

deep imaging

« All quantities are real, and non-negative

Object absorption:
So(x,y)

lllumination brightness:
B(x,y)

multiplication



Summary of two models for image formation
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deep imaging

 Model: Rays

* Interpretation #1: Radiation (Incoherent)

Real, non-negative
Models absorption
and brightness

liot =11 + I

IS= BSO

* Model: Waves

double slit

» Interpretation #2: Electromagnetic wave (Coherent)

screen

Complex field
Models Interference

Eiot = E1 + E>




Mathematical model of for coherent image formation o
eep imaging

» Pretty much the same thing, but now we have an amplitude and a complex phase

_ Point #1: Amplitudes behave just like before
Sample absorption = S(x,y)

L light > )
( asirr g . /) 100 Ailx,y) = Ailx,y) S(x,y)
Ultrasound) > N photons | g 60
I A W —. G > photons
" 60%
transmission
Incident field: Transmitted field:

C(X’y) = Ai(x’y) U(X’ ) = A’[(X’y) =7



Mathematical model of for coherent image formation

Pretty much the same thing, but now we have an amplitude and a complex phase

New: complex phase delay

Sample absorption = S(x,y)
 Needed to represent wave
Represents wave delay across space

Sample phase delay = °
explikd(x,y)]

(Laser light
or >
Ultrasound)

Incident field: Transmitted field:

C(x,y) = Aix,y) explikdi(x,y)] UX,y) = Ai(x,y) S(x,y) explikd:(x,y)]

\A
Hﬁg
deep imaging



Mathematical model of for coherent image formation

Pretty much the same thing, but now we have an amplitude and a complex phase

New: complex phase delay

Sample absorption = S(x,y)

Sample phase delay =
explikd(x,y)] ‘

(Laser light
or > (e
Ultrasound)

n/6 deg.
Phase delay

s
LS
deep imaging



s
LS
deep imaging

Mathematical model of for coherent image formation

Pretty much the same thing, but now we have an amplitude and a complex phase

New: complex phase delay

Sample absorption = S(x,y)

Sample phase delay =

explik(x,y)] ‘
(Laser light - Incident light
or > (A
Ultrasound) A S— ' ' '
n/GHeg.

Phase delay 5
Transmitted light

VAVAVAVS

Total lag = pi/6 rad
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deep imaging

Mathematical model of for coherent image formation

Pretty much the same thing, but now we have an amplitude and a complex phase

Sample absorption = S(x,y)
Output phase is sum of phase delays, product of phasors

Sample phase delay =
explikd(x,y)]
d)t(X,Y) :q)(x,y) + (I)i(x,y)

(Laser light
> elkdtixy) = aikdilx,y) x aikd(x.y)

or
Ultrasound)

Multiply phases!




¥
i | W
deep imaging

Mathematical model of for coherent image formation

Pretty much the same thing, but now we have an amplitude and a complex phase

Sample absorption = S(x,y)

Sample phase delay =
explikd(x,y)] ‘

) >
(A > .
Conclusion:

Transmitted field = incident field x complex sample

(Laser light
or >
Ultrasound)

Adx,y) explikdy(x,y)] = Ailx,y) explikdi(x,y)] x S(x,y) explikd(x,y)]
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Summary of two models for image formation deep imaging

* Interpretation #1: Radiation (Incoherent)

« Model: Rays * Real, non-negative

. * Models absorption
1 and brightness

liot =11 + I

» Interpretation #2: Electromagnetic wave (Coherent)
* Model: Waves « Complex field
 Models Interference

double slit screen
d[ ° )>> Eiot = E1 + B2
) U=CS,

Z U, C and S are complex!




deep imaging

Additional Information about sample index of
refraction, spatial frequency and Fourier optics



Microscope illumination and sample index of refraction

deep imaging

So far: illuminate the sample and create a field that is equivalent
to the sample’s absorption and phase
— why is this true???



Microscope illumination and sample index of refraction

deep imaging

So far: illuminate the sample and create a field that is equivalent
to the sample’s absorption and phase
— why is this true???

Sample index of refraction n(x,y,z) = 1 +ia(x) + ¢ (x)

a(x=1) =.2
p(x=1)=.1

*For more information, see D. Paganin, Coherent X-Ray Optics, Section 2.2




Microscope illumination and sample index of refraction

deep imaging

So far: illuminate the sample and create a field that is equivalent
to the sample’s absorption and phase
— why is this true???

Sample index of refraction n(x,y,z) = 1 +ia(x) + ¢ (x)

a(x=1) =.2
p(x=1)=.1

Thin sample approximation:

Sample’s effect on light is multiplication with exp[-ik * n(x,y)]

*For more information, see D. Paganin, Coherent X-Ray Optics, Section 2.2




Microscope illumination and sample index of refraction

deep imaging

So far: illuminate the sample and create a field that is equivalent
to the sample’s absorption and phase
— why is this true???

Sample index of refraction n(x,y,z) = 1 +ia(x) + ¢ (x)

a(x=1) =.2
p(x=1)=.1

Thin sample approximation:

Sample’s effect on light is multiplication with exp[-ik * n(x,y)]

In 1D: Emerging field U(x) = incident field U;(x) * sample function s(x)



Microscope illumination and sample index of refraction

deep imaging

So far: illuminate the sample and create a field that is equivalent
to the sample’s absorption and phase
— why is this true???

Sample index of refraction n(x,y,z) = 1 +ia(x) + ¢ (x)

a(x=1) =.2
p(x=1)=.1

Thin sample approximation:

Sample’s effect on light is multiplication with exp[-ik * n(x,y)]

In 1D: Emerging field U(x) = incident field U;(x) * sample function s(x)=exp[-ik n(x)]

U(x) = Uj(x) *expl[-ik n(x)] = Ui(x) A(x) explik@(x)] | A(x) = exp[k a(x)]

absorption phase shift: new term for laser



deep imaging

Microscope illumination and sample index of refraction

Sample absorption = A(x)
Sample phase = expl[ikp(x)]

v

> Emerging field U = incident field U;(x) * sample function s(x)

\4

Incident field U;



deep imaging

Microscope illumination and sample index of refraction

Q: When is the emerging field equal to the absorption and phase?

Sample absorption = A(x)
Sample phase = expl[ikp(x)]

> Emerging field U = incident field U;(x) * sample function s(x)

Incident field U; Emerging field U



deep imaging

Microscope illumination and sample index of refraction

Q: When is the emerging field equal to the absorption and phase?

Sample absorption = A(x) A: When the incident wave = 1, means uniform in amplitude and phase:
Sample phase = expl[ikp(x)]
Ui(x) =1 — U(x)=A(x) explike(x)]

> Emerging field U = incident field U;(x) * sample function s(x)

Incident field U; Emerging field U



deep imaging

Microscope illumination and sample index of refraction

Q: When is the emerging field equal to the absorption and phase?

Sample absorption = A(x) A: When the incident wave = 1, means uniform in amplitude and phase:

Sample phase = exp[ikep(x)]

Ui(x) =1 — U(x)=A(x) exp[ike(x)]
6=0 0=30
. Plane wave Uj(x) = 1 * exp(ikex) — /
S Ui(x) = exp(ikx sin(06)) 1 everywhere Not 1
everywhere

This is when incident wave hits the sample with 6=0!

Incident field U; Emerging field U
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Model of image formation for wave optics (coherent light): deep imaging

1. Discrete sample
function s(x,y)
(complex)

2. Compute its 2D
Fourier transform

S(fx fy)

P

'

“Blurred image”
What does f, represent, really?



From before: Spatial frequencies = “stripes” within each image

U(x,y) Fourier lAJ(fx’ fy)
21/T, Transform
[RR——— - °
| e—
— f °
y  — y I T,
| — ()
—_—
X f,
ZH/T Ux.y) Fourier LAJ(fx, fy)
Transform

A
v

B Tx
y fy e L

[IE=

deep imaging
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Ray angle and spatial frequency _ —Vi>
Plane of interest deep imaging

X

Stripes are for complex fields!
Incident plane wave
Proportional to distance between

subsequent peaks of wave along plane
of interest




Ray angle and spatial frequency _ Hﬁ
Plane of interest deep imaging

X

Distance to two crests = spatial period

Sin(6) = A/d

d =M/ Sin(6)




Ray angle and spatial frequency

Plane of interest

X

Distance to two crests = spatial period

Sin(6) = A/d

d =M/ Sin(6)

Spatial frequency = 1/spatial period
(number of periods per unit length)

f,=1/d =Sin(0)/ A

E—

0
o
—_

deep imaging



deep imaging

Equivalent coordinates in the Fourier domain and at the Fourier plane

f, =Sin(6)/ A k, = 2nf, = 2t/ A Sin(0)

Image plane ray angle 6 Image plane spatial frequency f, Image plane wavevectors k,



General rules for applying the Fourier transform in optics deep imaging

Situation 1: From an object to a plane “really far away”

U,(x1)

|
U,(x2) ~ F[U1(x2/M1)]



General rules for applying the Fourier transform in optics deep imaging

Situation 1: From an object to a plane “really far away”

U,(x1)

|
| Us(x;) ~ F[U1(x1/My)]

Situation 2: From an object to the back focal plane of U1(x,) e
the microscope objective lens |

U,(x2) ~ F[U1(x2/M3)]




General rules for applying the Fourier transform in optics deep imaging

Situation 1: From an object to a plane “really far away”

U,(x1)

|
| Us(x;) ~ F[U1(x1/My)]

Situation 2: From an object to the back focal plane of Uy(x,) g
the microscope objective lens |

U,(x2) ~ F[U1(x2/M3)]

12.2 mm

Situation 3: From an object to a plane 1 focal length away from a lens (1f-1f system)

Uy(x1)

r<:' Uy (%) ~ F[Us(x1/Ms)]
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A more exact model: the 4f optical system deep imaging
f o ‘ f ‘ f
Es(zs,ys,0) E (%d4,Yd) = Eo(zd,ya)A(Td, Ya)
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2D Fourier Transform 2D inverse Fourier Transform
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A more exact model: the 4f optical system deep imaging

The Fourier plane provides
a measure of the ray angles
at the image plane
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A more exact model: the 4f optical system deep imaging

The Fourier plane provides
a measure of the ray angles
at the image plane
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Shift point
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Doesn’t contain info about spatial distribution light
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A more exact model: the 4f optical system deep imaging

The Fourier plane provides

a measure of the ray angles
at the image plane

20 degrees
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./. Rays are leaving image plane at +20 degrees
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A more exact model: the 4f optical system

The Fourier plane provides
a measure of the ray angles
at the image plane
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deep imaging

Rays are coming in at +20 degrees and -15 degrees
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You typically go between 4 functions to describe one imaging system:

Incoherent point-
spread function

hi(x)

FL.]

Incoherent
transfer function

Hi(fx)

deep imaging



