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Reminder: Please complete course evaluations here

duke.evaluationkit.com

Any input and feedback is greatly appreciated!!
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What is computed tomography?

Standard X-ray X-ray source

hand

Detector — sees
“shadow” of x-rays
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How can we model radiation? deep imaging

» Interpretation #1: Radiation (/ncoherent)
 Model: Rays

* Real, non-negative
« Models absorption

E}Kji@x& AR and brightness

- liot = 14 + I

Most X-rays: Incoherent radiation (treat as ray)

* Interpretation #2: Electromagnetic wave (Coherent)
* Model: Waves

double slit screen

i

Complex field
Models Interference
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N
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[ )

Ewot = E1 + E5
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What is computed tomography?

X-rays: EM radiation with very short

wavelength
Standard X'ray X-ray source
wavelength (metres) T frequency (hertz)

_ gamma rays —-1022
1018 I 4 _________ 41021
10_12 _____ T _______________________ _-1020
1071 X J1010
1angstrom (R) 10-10f Ay T 1018
1nanometre ((m 10 | | | 1017
10-8 [ £ 6

10-7 ETTT0 07T ultraviolet —————--—-—-—---- —10
L -101°
1 micrometre (u) 106 - 1014

10-5 L visible T 10
10-4 light infrared —1013
4 [= i = i e e e e e i ] o e, e e s J1012
h d L 1 _____________ J10M1
an 1 centimetre (cm) 1072 - microwave J1g10
107" | J100

tmetem . DEEEREEES I 4108

102 shortwave radio —107

(T T T T T T T T A e T T T T T T T T T :1 61 |
1 kilometre (km) 103 o _________AMradio = ____ ] 185 ESEEIES
Detector — sees 104 , i
105 | longwave radio 10° 1 kil |
u ” . ilocycle
shadow” of x-rays |

Typically reported as energy: E=hv
e.g., 100 kEV x-ray source
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What is computed tomography?

Intensity / of a beam of X-ray satisfies

Beer’s Law:
Standard X-ray X-ray source dl
— =—u(x)I.
P u(x)
Material Attenuation coefficient
in Hounsfield units
water 0
air —1000
bone 1086
hand blood 53
fat —61
brain white/gray —4
breast tissue 9
Detector — sees muscle a1
“shadow” of x-rays soft tissue 51
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What is computed tomography?

Intensity / of a beam of X-ray satisfies
Beer’s Law:
Standard X-ray X-ray source

dl )1
ds AW

m(s) = u(xo + sv)

Xot+av
h an d S Between the points x¢ + av and x + bv, the intensity of the beam is attenuated by
b
Xp+bv by/lo= o {—/ m<s>ds]

Detector — sees

. ; Under some approximations,
shadow” of x-rays

I (x+2) / Iy (x)= exp(-.z)



Snapshot 1 Snapshot2 .. H%

What is computed tomography? % deep imaging

Standard X-Ray Computed tomography: X-Ray projector that spins!

N




The radon transform — from “shadows” to 3D shape

\ Rotation angle theta
[
X

Source

flxy)

Projection anto the x-axis

Proecfion anto the y-axs

e

imaging
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Key idea — the Fourier transforms of projections are really useful deep imaging

oooooooooooooooooooooooooooooooo

Fourier transform

space domain frequency domain
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Fourier slice theorem, in a nutshell

* If we have an imaging object f(x,y), and we measure the projection
pe (t) of it at an angle 6.

* Then, the Fourier transform of the projection along line L(6,1),
* |s a slice of the object’s spectrum

e F(u,v) = [[ f(x,y)e /2FWx+vY) dxdy

* Along the line where

e L(O6,t) ={(x,y) ERXR: xcosf + ysinf =t}
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Derivation of Fourier slice theorem

--------------------------------

y e We work in the transformed
| Fourier. coordinate
& et =xcos0 +ysinf
*s=—xsinf + ycos@

* The projection measurement along
, Pg(t) = [ f(t,s)ds
 Whose Fourier transform is
Sg(w) = [ Py(t)e I2m0t ¢

space domain
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Derivation of Fourier slice theorem

 Substituting the projection expression into the Fourier transform
equation

e Sg(w) = [[ f(t,s)ds e I2™@t (¢

* Sincet = xcos @ + ysin 0, and both {x, y} and {s, t} are defined
along (—oo, 00), we can substitute x and y for t

« We have Sy (w) = [[ f(t,5)ds e /2mw(xcosO+ysinb) gt —
F(wcosf,wsinf).
* Where F(u, v) is the 2D Fourier transform of f (x, y)



K space sampling

-

frequency domain

Note that high
frequencies are
sampled much less
densely than low
frequencies

e

deep imaging



Filtered back-projection algorithm

* Note that to invert the process, we need
to do Frequency domain interpolation,
which is not desired.

* The filtered back-projection algorithm is
more popularly used, which contains
following step:

deep imaging



—TT >

—v

deep imaging

Filtered back-projection algorithm

* Fourier transform the projection measurement

 Filter each frequency component using a
“wedge” function shown on the right

e 2D Inverse Fourier transform each slice and
sum in the space domain
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Derivation

* We write the inverse Fourier transform in polar coordinate

. f(x, y) — fOZ” fooo F(w, 9)ej2na)(x cos 6+sin 0) ., 1,110

* Let’s split into tow parts: 0-180 degrees, and then the rest:
T

« fOo,y) = [ [ F(w,0)ef2moxcos6+sin®)ygudg + [ [ F(w,0 +
n.)ej2na)(x cos 6+sin B)wdwde

* Using F(w,0 + ™) = F(—w, ), and againt = x cos @ + y sin 8
* We write f(x,y) = fonF(a), 0)|wle’*™tdwd6

N

uWedge ﬁltern Sum in space
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Reconstruction from 180 measurements

Rado.n transform
Original (Sinogram)

o 160
40 5 120 -
Q
52
Q.
60 ‘C’ 100 A Nl
S
80 8 80 '
o
[ —
100 S 60 -
=)
@
&
120 £ 40
140 20 . -
0
0O 25 50 75 100 125 150 0 50 100 150

Projection angle (deg)

https://scikit-image.org/docs/stable/auto_examples/transform/plot_radon_transform.html
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Reconstruction from 180 measurements

Reconstruction Reconstruction error
. Filtered back projection Filtered back projection
20
40
60
80
100
120
140

0 50 100 150 0 50 100 150
FBP rms reconstruction error: 0.0298
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Reconstruction from 22 measurements

Radon transform

Oniginal (Sinogram)
0 160
20
40 w 120
X
Q.
&0 p 100 A -
S
80 80
Q
c
100 S 60 -
O
o,
120 £
140
0 25 S0 5 100 125 150 0 S0 100 150

Projection angle (deg)



Reconstruction from 22 measurements

Reconstruction Reconstruction error
o Filtered back projection Filtered back projection
20
40
60
80
100
120
140

0 50 100 150
FBP rms reconstruction error: 0.117

=

deep imaging
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CO d e deep imaging

image = shepp logan phantom()
subsample = 8

theta = np.linspace(©., 180., max(image.shape)//subsample, endpoint=False)
sinogram = radon(image, theta=theta)
reconstruction fbp = iradon(sinogram, theta=theta, filter name="ramp’)
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The Radon transform
Output: reconstructed image

Input: sinogram

—
Step 1:
p — —————
Fourier transform
each row Step 2:
¥ Step 3:
Rearrange rows
2-dimensinal
as diameters
Fourier transform

of a circle

Colored plaed
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1. Magnetic: Static Magnetic Field Coils
2. Resonance: Radiofrequency Coil
3. Imaging: Gradient Field Coils

The scanner contains large parallel coilings of
wires.
These generate the main magnetic field (By),

which gives the scanner its field strength (e.g.,
3T).

Slides adopted from: https://www.biac.duke.edu/education/courses/fall08/fmri/handouts/2008_Week1_Introduction.ppt



Resonance: Send radiofrequencies in at different
times/locations TR (intermediate)

f) "TE (short)
(F)IMRI =

Scanner control DAQ
—— MRI signal return 1

Experimental control

Control
| CPU

‘l "“ﬁ

X- grad:ent amplifier

Computer room

Z- gr1dlent amphner

/ » ¢ S— Tissue can be characterized by two different relaxation times —
Rdt%?k id'd T1 and T2. T1 (longitudinal relaxation time) is the time constant
| (a3 ?w;h\w which determines the rate at which excited protons return to

e 72 S J equilibrium. It 1s a measure of the time taken for spinning

Faer protons to realign with the external magnetic field. T2

__ (transverse relaxation time) is the time constant which

determines the rate at which excited protons reach equilibrium

| S or go out of phase with each other. It is a measure of the time

Simut taken for spinning protons to lose phase coherence among the
nuclei spinning perpendicular to the main field.

Laboratory

Storage ser-
age server Reconstru-:tion

con 4 -
nputer Snnncr contro] Real e
console anﬂvs:s

Workstation

FUNCTIONAL MAGNETIC RESONANCE IMAGING, Figure 2.2 © 2004 Sinauer Associates, Inc

Slides adopted from: https://www.biac.duke.edu/education/courses/fall08/fmri/handouts/2008_Week1_Introduction.ppt
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Physical explanation of fMRI

Protons have spin, act like a
magnetic dipole

When placed in a magnetic field,
dipole tends toward a low and
high energy state

AE =y h Bo Y = gyromagnetic ratio
§ Spin =% -
g E=hf,=yhBo
£ — AE
W
§ ) MRI resonance frequency (f,) is simply the gyromagnetic
£ Spin +% ratio (y) times the magnetic field strength (B,)

e

Increasing B,
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deep imaging

Physical explanation of fMRI

Protons have spin, act like a
magnetic dipole

When placed in a magnetic field,
dipole tends toward a low and
high energy state

| < Send in radio waves with frequency f ~ OE

Increasing Energy

Spin +Y measure dynamlcs

AN

Increasing B,
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MRI sampling in a nutshell

We suppose that the object to be scanned is placed within the uniform, strong
background field, BO = (0, O, b0), for a time that is long compared to T1. This polarizes the
spins, leading to an equilibrium magnetization:

Mo = p(x)Bo(x).
p(x) = density of interest

Only magnetization with a non-zero transverse component will precess in the background
field, producing a measurable signal. The measured signal takes the form:

(1) o / 5(x, y)dxdy,
D

where D is the projection, onto the xy-plane, of the object
between z = zp and z = 71, and

<]

p(x,y) = /p(x, y,2)dz.

https://www2.math.upenn.edu/~cle/notes/Lect2.pdf 0



We can do much better than the signal described in the previous
slide, as this is little more than the total spin density within the
selected slice. If, while acquring the RF-signal, we turn on a
gradient field of the form

G¢ — (*9 *, (g(COS¢, Sin¢9 0)’ x>)’ ‘

then the measured signal takes the form

52 1) o / /78105 b5 NS (x. y)dxdy, ‘
D

which is the Fourier transform of p at the spatial frequency

k(t) = —ygt(cos ¢, sing).

— AW,

— T

deep imaging
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15.2 MRI Reconstruction

Reconstruction of MR images from MR raw data, which is acquired in the Fourier space
(termed “k-space” in MRI lingo), can be as simple as a DFT in 2D (for 2D MR imaging,
see illustration in Figure[15.1) or a DFT in 3D (for 3D MR imaging).

Samples measured as a 2D Reconstructed image results
grid in Fourier space from iDFT of sampled data

https://giml.radiology.wisc.edu/wp-

https://www2.math.upenn.edu/~cle/notes/Lect2.pdf content/uploads/sites/760/2020/10/notes_015_dft_recon.pdf
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*;*,_JM)_/TQ‘_,, In conventional MRI, we can assume
that we sample nearly
instantaneously along one direction
RV of Fourier space (horizontal in this
Slow S case, where samples are taken one
sampling SR line at a time), and slowly along the

g s other direction (vertical in this case).
In the presence of physiological
motion, this leads to motion artifacts
along the slow-sampling direction.

Ideal 1”7096‘_(@%*\ Motion artifg

—

Figure 15.2: Physiological motion in MRI leads to motion artifacts along those directions
that are sampled slowly. This effect is due to an inconsistency in the lines of Fourier space
acquired at different stages of motion. In other words, different sampled lines in Fourier
space correspond to images that are shifted with respect to each other. When we perform
the inverse DFT (in 2D in this case) to reconstruct our image, these inconsistencies lead
to deleterious motion artifacts observable in image space.

https://www2.math.upenn.edu/~cle/notes/Lect2.pdf
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Original image Reconstructed image

https://www2.math.upenn.edu/~cle/notes/Lect2.pdf
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Examples of Deep Learning + Hardware Optimization with CT/MRI
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Limited-angle computed tomography with deep image and physics priors
S. Baructu et al., Nat. Sci. (2023)

(a) Conventional Tomography (b) Limited Angle Tomography

m Fourier space

Fourier space ,
sampling 0° Rotation angle 180° Reconstruction sampling 0° 60° 120° 180° Reconstruction



Limited-angle computed tomography with deep image and physics priors

S. Baructu et al., Nat. Sci. (2023)

| 1@642x120
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R: Reshape Operation

Generator Network (G,,)

R {[reneerereasta.
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Fully  Heonvolutional!
il Network !

i Connected |
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-
.
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(b) Limited Angle Tomography
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Segment Anything — for medical images

Qo

Segment anything - A. Krillov et al., 2023

Segment Anything — for medical images
J.Maetal,

The Number of Image-mask Pairs

500k

400k

300k

200k

100k

9vT09S

Cr

Nature Communications (2024)

69SPHT

W 9317 6710 3900 1284 803
4

Y X, 2, & YoN Op.
ah&b 4kﬁbu %y aﬁh@b Lho&y (n”Q&.AZbEWo 4
Dy g & Py &h%%y

Input Image

Image
encoder

Image
embedding

Mask decoder

T

Prompt encoder

I

Bounding box prompts

[]

Segmentation

deep imaging




Learning a Variational Network

for Reconstruction of Accelerated MRI Data

Kerstin Hammernik!*, Teresa Klatzer!, Erich Kobler?,
Michael P Recht??, Daniel K Sodickson??,

Thomas Pock!* and Florian Knoll?3

! Institute of Computer Graphics and Vision,
Graz University of Technology, Graz, Austria

2 Center for Biomedical Imaging, Department of Radiology,
NYU School of Medicine, New York, NY, United States

3 Center for Advanced Imaging Innovation and Research (CAI’R),
NYU School of Medicine, New York, NY, United States

4 Center for Vision, Automation & Control,
AIT Austrian Institute of Technology GmbH, Vienna, Austria

Sensitivity maps
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k-Space data f

Zero filling ug Reconstruction ur

: - _ Variational
Network
y (VN)

(a) Data processing pipeline

AtA*(Aut — f)

ki ke /\/_} k1 e
.. —
A 1/
H kl ,IM 1 .kl M
t T
- [ B
r— -

R 1.t B 7.1
[ ka,IM %k ka,IM

(b) Structure of the variational network (VN)
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Facebook Fast MRI Challenge:
https://ai.facebook.com/blog/using-reinforcement-learning-to-personalize-ai-accelerated-mri-scans/



Reducing Uncertainty in Undersampled MRI Reconstruction
with Active Acquisition

Zizhao Zhang!?* Adriana Romero? Matthew J. Muckley® Pascal Vincent? Lin Yang! Michal Drozdzal?
! University of Florida 2 Facebook AI Research 3 NYU School of Medicine

@
! Shortcut from _ Shortcut .
‘ previous | ? to next Subsampling
\ v i mask
g Residual blocks g

k-space Image

( MRl | € NGOk |

scanner system

Monitor

Rate rec.
quality Q0O (‘) 010)

Knee DICOM
MRI dataset

Training
objective

Initial k-space next (red) Uncertainty Reconst
trajectory trajectory () -ruction

Figure 3: The training pipeline of the proposed method.
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