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Standard X-ray

Detector – sees 
“shadow” of x-rays

hand

X-ray source
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• Interpretation #1: Radiation  (Incoherent)
• Model: Rays

• Interpretation #2: Electromagnetic wave (Coherent)
• Model: Waves

• Complex field
• Models Interference

• Real, non-negative
• Models absorption 

and brightness
Itot = I1 + I2

Etot = E1 + E2

Most X-rays: Incoherent radiation (treat as ray)
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deep imagingWhat is computed tomography?

Standard X-ray

Detector – sees 
“shadow” of x-rays

hand

X-ray source

X-rays: EM radiation with very short 
wavelength 

Typically reported as energy: E=hv
e.g., 100 kEV x-ray source
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Standard X-ray

Detector – sees 
“shadow” of x-rays

hand

X-ray source

Intensity I of a beam of X-ray satisfies 
Beer’s Law:
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Standard X-ray

Detector – sees 
“shadow” of x-rays

hand

X-ray source

Intensity I of a beam of X-ray satisfies 
Beer’s Law:

x0+av

x0+bv

s

Ib / Ia =  

Ib (x+z) / Ia (x)= exp(-µz)  

Under some approximations,
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Standard X-Ray Computed tomography: X-Ray projector that spins!

Snapshot 1 Snapshot 2

…

…
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•
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deep imagingDerivation of Fourier slice theorem

• We work in the transformed 
coordinate

• 𝑡 = 𝑥 cos 𝜃 + 𝑦 sin 𝜃
• 𝑠 = −𝑥 sin 𝜃 + 𝑦 cos 𝜃

• The projection measurement along 
𝑃! 𝑡 = ∫𝑓 𝑡, 𝑠 𝑑𝑠
• Whose Fourier transform is 
𝑆! 𝜔 = ∫𝑃! 𝑡 𝑒"#$%&'𝑑𝑡
•  

s



Machine Learning and Imaging – Roarke Horstmeyer (2022)
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• Substituting the projection expression into the Fourier transform 
equation
• 𝑆! 𝜔 = ∬𝑓 𝑡, 𝑠 𝑑𝑠	𝑒"#$%&'𝑑𝑡
• Since 𝑡 = 𝑥 cos 𝜃 + 𝑦 sin 𝜃, and both 𝑥, 𝑦  and 𝑠, 𝑡  are defined 
along	(−∞,∞), we can substitute x and y for t
•  We have 𝑆! 𝜔 = ∬𝑓 𝑡, 𝑠 𝑑𝑠	𝑒"#$%&() *+, !-. ,/0 !)𝑑𝑡 =
𝐹(𝜔 cos 𝜃 , 𝜔 sin 𝜃). 
• Where 𝐹(𝑢, 𝑣) is the 2D Fourier transform of 𝑓(𝑥, 𝑦)
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Note that high 
frequencies are 
sampled much less 
densely than low 
frequencies
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• Note that to invert the process, we need 
to do Frequency domain interpolation, 
which is not desired.
• The filtered back-projection algorithm is 

more popularly used, which contains 
following step:
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deep imagingFiltered back-projection algorithm

• Fourier transform the projection measurement
• Filter each frequency component using a 

“wedge” function shown on the right
• 2D Inverse Fourier transform each slice and 

sum in the space domain 𝜔



Machine Learning and Imaging – Roarke Horstmeyer (2022)

deep imagingDerivation

• We write the inverse Fourier transform in polar coordinate

• 𝑓 𝑥, 𝑦 = 	∫2
$% ∫2

3𝐹 𝜔, 𝜃 𝑒#$%&() *+, !-,/0 !)𝜔𝑑𝜔𝑑𝜃
• Let’s split into tow parts: 0-180 degrees, and then the rest:

• 𝑓 𝑥, 𝑦 = 	∫2
% ∫2

3𝐹 𝜔, 𝜃 𝑒#$%&() *+, !-,/0 !)𝜔𝑑𝜔𝑑𝜃 +∫2
% ∫2

3𝐹(
)

𝜔, 𝜃 +
𝜋 𝑒#$%&() *+, !-,/0 !)𝜔𝑑𝜔𝑑𝜃
• Using 𝐹 𝜔, 𝜃 + 𝜋 = 𝐹(−𝜔, 𝜃), and again 𝑡 = 𝑥 cos 𝜃 + 𝑦 sin 𝜃
• We write 𝑓 𝑥, 𝑦 = ∫2

% 𝐹 𝜔, 𝜃 𝜔 𝑒#$%'𝑑𝜔𝑑𝜃

“Wedge filter” Sum in space
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https://scikit-image.org/docs/stable/auto_examples/transform/plot_radon_transform.html
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FBP rms reconstruction error: 0.0298
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deep imagingReconstruction from 22 measurements

FBP rms reconstruction error: 0.117
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deep imaging(f)MRI

Slides adopted from: https://www.biac.duke.edu/education/courses/fall08/fmri/handouts/2008_Week1_Introduction.ppt

1. Magnetic: Static Magnetic Field Coils
2. Resonance: Radiofrequency Coil
3. Imaging: Gradient Field Coils

The scanner contains large parallel coilings of 
wires. 
These generate the main magnetic field (B0), 
which gives the scanner its field strength (e.g., 
3T).
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deep imaging(f)MRI

Slides adopted from: https://www.biac.duke.edu/education/courses/fall08/fmri/handouts/2008_Week1_Introduction.ppt

Resonance: Send radiofrequencies in at different 
times/locations

Tissue can be characterized by two different relaxation times – 
T1 and T2. T1 (longitudinal relaxation time) is the time constant 
which determines the rate at which excited protons return to 
equilibrium. It is a measure of the time taken for spinning 
protons to realign with the external magnetic field. T2 
(transverse relaxation time) is the time constant which 
determines the rate at which excited protons reach equilibrium 
or go out of phase with each other. It is a measure of the time 
taken for spinning protons to lose phase coherence among the 
nuclei spinning perpendicular to the main field.
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deep imagingPhysical explanation of fMRI
Protons have spin, act like a 
magnetic dipole

When placed in a magnetic field, 
dipole tends toward a low and 
high energy state

ΔΕ = γ h Bo

E = h fo = γ h Bo

γ = gyromagnetic ratio

MRI resonance frequency (fo) is simply the gyromagnetic 
ratio (γ) times the magnetic field strength (Bo)
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deep imagingPhysical explanation of fMRI

Send in radio waves with frequency f ~ ∂E

measure dynamics

Protons have spin, act like a 
magnetic dipole

When placed in a magnetic field, 
dipole tends toward a low and 
high energy state
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We suppose that the object to be scanned is placed within the uniform, strong 
background field, B0 = (0, 0, b0), for a time that is long compared to T1. This polarizes the 
spins, leading to an equilibrium magnetization:

M0 = ρ(x)B0(x).

ρ(x) = density of interest

Only magnetization with a non-zero transverse component will precess in the background 
field, producing a measurable signal. The measured signal takes the form:

https://www2.math.upenn.edu/~cle/notes/Lect2.pdf
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https://www2.math.upenn.edu/~cle/notes/Lect2.pdf
https://qiml.radiology.wisc.edu/wp-
content/uploads/sites/760/2020/10/notes_015_dft_recon.pdf
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https://www2.math.upenn.edu/~cle/notes/Lect2.pdf
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https://www2.math.upenn.edu/~cle/notes/Lect2.pdf
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Examples of Deep Learning + Hardware Optimization with CT/MRI 
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deep imagingLimited-angle computed tomography with deep image and physics priors
S. Baructu et al., Nat. Sci. (2023) 
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S. Baructu et al., Nat. Sci. (2023) 
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Segment Anything – for medical images

Segment anything - A. Krillov et al., 2023

Segment Anything – for medical images
J. Ma et al., Nature Communications (2024)
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Facebook Fast MRI Challenge:
https://ai.facebook.com/blog/using-reinforcement-learning-to-personalize-ai-accelerated-mri-scans/
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