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Ethical questions surrounding deep convolutional networks

1. What are your expectations for an image reconstruction algorithm used in a clinical setting?

2. What types of “guarantees” should we be able to make, if any, to a patient?

3. How should we guide future development of ML software to meet any guarantees?

4. How should we guide future development of ML-designed hardware to meet any guarantees?

5. Thoughts towards a system of checks and balances?

deep imaging
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The Machine Learning in Imaging Ethics Questionnaire

Situation 1: In 5 years, you walk into a clinic because you have a spot on your skin that
you are concerned about. The clinician is too busy, so you step over to a terminal with
a standard microscope and it images your arm. It says you are fine.

Are you comfortable with leaving the office?

Yes:

No:

Why or why not? What might change how you feel?
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The Machine Learning in Imaging Ethics Questionnaire

Situation 2: The same thing happens. But this time, the machine reports that it is 99%
confident in its diagnosis, given previous examples of skin marks that have been
verified by doctors as benign. It also gives you the opportunity to take a look at some
of these previous example images it is basing its decision on. You notice that they
don’t look 100% like the mark on your arm, as is expected, but they look pretty similar.

Are you comfortable with leaving the office?

Yes:

No:

Why or why not? What might change how you feel?
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The Machine Learning in Imaging Ethics Questionnaire

Situation 3: In 5 years, the same thing happens. But this time, a doctor comes up after

the machine makes its suggested diagnosis. He takes a very cursory look (10 seconds)
and then confirms the machine’s opinion.

Are you now comfortable with leaving the office?

Yes:

No:
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The Machine Learning in Imaging Ethics Questionnaire

Situation 4: In 10 years, you go up to a modified microscope, “the Tissue Scanner
30007, that has a number of fancy lenses and lights. As a machine learning expert by
now, you’re aware that this microscope is optimized for looking at skin lesions. It
performs a scan with a particular lighting configuration and reports a score of 98%
confident that the lesion is benign, allowing you to look through other examples. It asks
If you’d like another scan for additional confidence or a different outcome, at which
point the illumination changes and it does some more scanning and reports a 99%
confidence level. You can continue with another scan, but...

Are you now comfortable with leaving the office?

Yes:

No:
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Material used to form this lecture:

Deep Learning Book (deeplearningbook.org), Chapter 10
Stanford CS231n, Lecture #10

F. Visin et al., ReNet: A Recurrent Neural Network Base Alternative to

Convolutional Networks
K. He et al., Mask R-CNN

S. Hochreiter and J. Schmidhuber, Long short-term memory



Convolutional neural networks versus recurrent neural networks deep imaging

Values [0, 255]
many image pixels to one output

1(X,y) Classify image [0 — 9]
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Convolutional neural networks versus recurrent neural networks deep imaging

RNN'’s: Examine signals as a function of time

E.g., establish if mouse was scared from this EEG recording

a

Measurement

Time \

Naive attempt #1: Take entire signal and feed into CNN CNN

l

Scared or not?




Convolutional neural networks versus recurrent neural networks deep imaging

RNN'’s: Examine signals as a function of time

E.g., establish if mouse was scared from this EEG recording

Measurement

Time
Naive attempt #1: Take entire signal and feed into CNN CNN
« Can have way too many entries to solve efficiently i

« Embedded signal of interest may be at different moments Scared or not?



Convolutional neural networks versus recurrent neural networks deep imaging

RNN'’s: Examine signals as a function of time

E.g., establish if mouse was scared from this EEG recording
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Naive attempt #2: Use a sliding window CNN CNN

i

Scared or not?

(Time Window #1)
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RNN'’s: Examine signals as a function of time

E.g., establish if mouse was scared from this EEG recording
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Naive attempt #2: Use a sliding window CNN CNN

i

Scared or not?

(Time Window #2)



Convolutional neural networks versus recurrent neural networks deep imaging

RNN'’s: Examine signals as a function of time

E.g., establish if mouse was scared from this EEG recording
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Naive attempt #2: Use a sliding window CNN CNN
* Convolutions share features within window, but all i

features might not lie within window

, Scared or not?
 RNN’s: share parameters across windows!

(Time Window #2)



Recurrent neural networks in a nutshell deep imaging

RNN'’s: Examine signals as a function of time

E.g., establish if mouse was scared from this EEG recording

Measurement

f(Xo)

State h, Time

Recurrent neural networks: Generate states (“hidden units”) to use to inform subsequent decisions



Recurrent neural networks in a nutshell deep imaging

RNN'’s: Examine signals as a function of time

E.g., establish if mouse was scared from this EEG recording

Slide

Measurement

| /' J f(x4, ho)

State h, State h; Time

Recurrent neural networks: Generate states (“hidden units”) to use to inform subsequent decisions
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Recurrent neural networks in a nutshell deep imaging

RNN'’s: Examine signals as a function of time

E.g., establish if mouse was scared from this EEG recording

»
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Measurement

v

| /| f(x;, hy.1)

State hy State h;, State h; Time

Recurrent neural networks: Generate states (“hidden units”) to use to inform subsequent decisions



Recurrent neural networks in a nutshell

RNN'’s: Examine signals as a function of time

Measurement

E.g., establish if mouse was scared from this EEG recording

Slide

—>

l /’l f(x, hiq)

State h, State h, State h,

Reasoning unique to temporal data:
- Exploit preferential direction
- Helpful to establish a “memory” of what h

Time

as been seen in the past

- Effectively learns how to daisy-chain information in signal

deep imaging
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Recurrent neural networks in a nutshell deep imaging

RNN'’s: Examine signals as a function of time

E.g., establish if mouse was scared from this EEG recording

= Slide
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| /| f(x;, i.4) X
State hy State h;, State h; Time
130 :g(t) (m(t), et t=2) w(2), a:(l))

—fi(" " 25,

Recursive structure can be unfolded Deep Learning Book, Ch. 10
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Recurrent neural networks in a nutshell deep imaging

RNN'’s: Examine signals as a function of time

E.g., establish if mouse was scared from this EEG recording
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Deep Learning Book, Ch. 10
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Many-to-many recurrent neural network deep imaging
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Label y —— Loss function L(o, y)
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Many-to-one recurrent neural network deep imaging

»

Measurement

&
<

Backpropagate to
minimize “dL/df”

(Trust me, it’s
possible, we
won’t derive it....)

|

Label y —— Loss function L(o, y)



Many-to-one recurrent neural network

»

Measurement

Backpropagate to
minimize dL/dW, dL/DU

Simple network structure:

f(xs, hi.1)

State h,

ir

Output o,

|

Label y —— Loss function L(o, y)
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Many-to-one recurrent neural network

deep imaging

Learn fixed W and U from n sequences
x and labels y

An example use case:
“I went to Nepal in 2009.”
“In 2009, | went to Nepal.”

Goal: Extract year each writer went to Nepal
from lots of sentences

« 2009 is 2d and 6t word in sentence
» Separated by 1 word and then 3 words

Deep Learning Book, Ch. 10
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Many-to-many recurrent neural network deep imaging

Instead of having one output at the end, can have a trainable output at each step

»

Measurement

v

State h, State h; State h,

v| v

Output o, Output 04 Output oy

e

Labely, Labely,; Labely,



Many-to-many recurrent neural network

Instead of having one output at the end, can have a trainable output at each step

»

Measurement

State h, State h; State h,

v| v

Output o, Output 04 Output oy

e

Labely, Labely,; Labely,

v

Total loss function for sequence:
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deep imaging
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Many-to-many recurrent neural network deep imaging

D = b+whrt Y L Uz®,

a

h®) = tanh(a®),
o) — c—i—Vh(t),
g = softmax(o?),

Deep Learning Book, Ch. 10



Several options to treat loss function in many-to-many case

Option #1: Run through full sequence, go back all the way to compute gradient

i
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From Stanford CS231n Lecture 10 slides
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Several options to treat loss function in many-to-many case

Option #2: Run through chunks at a time

/ f T X \\ Note: hidden states are

always carried forward
without any time limit,
t ¢+ ¢+ ¢+ ¢+ ¢ +/¢+ ¢+ ¢+ ¢+ t 4 but you'll just back-
propagate loss for a
finite number of steps

< From Stanford CS231n Lecture 10 slides



Example:
Character-level
Language Model

Vocabulary:
[h,e,l,o0]

Example training
sequence:
“hello”

input layer

input chars: °

S o000 -

O loo=-0
= e o
~|lomo0o0O

From Stanford CS231n Lecture 10 slides



Example:
Character-level
Language Model

Vocabulary:
[h,e,l,0]

Example training
sequence:
“hello”

hi = tanh(Wprphi—1 + Wenzt)

0.3
hidden layer | -0.1

0.9

input layer

1
0
0
0
“h”

input chars:

1.0 0.1 |w hnl-0.3
——— 03— 05—+ 0.9

0.1 0.3 0.7

! ! Tw_x

0 0 0

1 0 0

0 1 1

0 0 0

“e” I “I”

From Stanford CS231n Lecture 10 slides



Example:
Character-level
Language Model

Vocabulary:
[h,e,l,0]

Example training

sequence:
“hello”

target chars: ‘e’

output layer

hidden layer

input layer

input chars: “

e | T 0
1.0 0.5 0.1 0.2

2.2 0.3 0.5 1.5
-3.0 1.0 1.9 0.1

4.1 12 1.1 2.2

I A A
0.3 1.0 0.1 |w hnl-0-3
01— 03— 05—+ 09

0.9 0.1 0.3 0.7
b T w
1 0 0 0

0 1 0 0

0 0 1 1

0 0 0 0

h” e I ¢

From Stanford CS231n Lecture 10 slides



Example: Sample  ©
Character-level s
Sof .

Language Model ommax &

Sampling i

output layer %%

4.1

Vocabulary: i

[h,e,l,0] | 03
hidden layer | .01 ——

0.9

At test-time sample T
characters one at a time, B é
0
=

feed back to model

input chars:

From Stanford CS231n Lecture 10 slides
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Example: Sample
Character-level s
Sof :

Language Model ommax g8
Sampling =
output layer 23%

4.1

Vocabulary: T
[h,e,l,0] |
hidden layer | .0.1

0.9

At test-time sample |
characters one at a time, . é
0
—

feed back to model

o |loo~o

input chars: \* ‘

From Stanford CS231n Lecture 10 slides
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Example: Sample | ¢
Character-level o || |28
Sof ' :

Language Model ommex SEM| R

Sampling =

output layer %% (:%

4.1 12

Vocabulary: | i

[h,e,I,O] T 0.3 1.0
idden layer | -0.1 > 0.3 -

0.9 0.1

At test-time sample T T

characters one at a time, e é 3

feed back to model e S

e

From Stanford CS231n Lecture 10 slides



Example: Sample | ¢ : ;
Character-level o3 || |2 (| [ f|
Language Model ormax S B | Bl | B
. t t t }
Sampling
output layer %% (;3(’) ?g (1)?
41 12 14 2.2

Vocabulary: T i T Py
[h.e,l,0] e FE1 0 FTY I P P
0.9 0.1 -0.3 0.7

At test-time sample I R B
characters one at a time, e é E 513 §
feed back to model | 0 0 0 0
input chars:  “h” \* ey v \}|

From Stanford CS231n Lecture 10 slides



Example: Image captioning H%é

deep imaging

image | <

conv-64

test image

conv-64
maxpool

conv-128

conv-128

maxpool

conv-256
conv-256
maxpool

conv-512
conv-512
maxpool

conv-512
conv-512
maxpool

FC-4096
FC-4096

F 0
sofygax

From Stanford CS231n Lecture 10 slides



Example: Image captioning H%é

deep imaging

image =

conv-64

test image

conv-64

maxpool

conv-128

conv-128
maxpool

conv-256 yO

conv-256

maxpool T bEfO re.
h = tanh(Wxh * x + Whh * h)

conv-512
hO

maxpool

Wih

conv-512

conv-512

T NOW.
h = tanh(Wxh * x + Whh * h + Wih * v)

maxpool

FC-4096 6

X
FC-4096 Pl

\'

<START>
From Stanford CS231n Lecture 10 slides



Example: Image captioning H%é

deep imaging

 image | -

conv-64

test image

conv-64
maxpool

conv-128

conv-128
maxpool

conv-256 yO

conv-256
maxpool T

conv-512

conv-512 Sa m p I e '

maxpool

conv-512
conv-512 T
maxpool
FC-4096 0
FC-4096 <STA straw
RT>

<START>
From Stanford CS231n Lecture 10 slides



Example: Image captioning H%é

deep imaging

| image | <

conv-64

test image

conv-64
maxpool

conv-128
conv-128

maxpool

conv-256

conv-256
maxpool

conv-512 T T

conv-512 samp le!

maxpool hO — h1

conv-512
conv-512 T T
maxpool

FC-4096 o

<STA straw hat
FC-4096 e

<START>
From Stanford CS231n Lecture 10 slides



Example: Image captioning H%é

deep imaging

| image | <

conv-64

test image

conv-64
maxpool

conv-128

conv-128
maxpool

COI’\V-::: yo y1 y2
— r o T\ sample

<END> token

conv-512
conv-512 — . .
maxpool hO —»{ h1 —»| h2 => f|n|Sh
conv-512
conv-512 T T T
maxpool
FC-4096 o
FC-4096 <STA straw hat

RT>

<START>

From Stanford CS231n Lecture 10 slides



Example: Image captioning H%

Image Captioning: Failure Cases ST

MY 3’
’ p ’ .
A 4
- \ 5
BN A
= G4r W Y TN
x - )
Ak 4 ) k‘
7 !
o - ! 3 !

A woman is holding a
cat in her hand

A manina
baseball uniform
throwing a ball

3
A woman standing on a
beach holding a surfboard

N

A person holding a
computer mouse on a desk

From Stanford CS231n Lecture 10 slides



Prospective identification
of hematopoietic lineage
choice by deep learning

Felix Buggenthin!-, Florian Buettner!->9,

Philipp S Hoppe**, Max Endele?, Manuel Kroiss!>,
Michael Strasser!, Michael Schwarzfischer!,

Dirk Loeffler3#, Konstantinos D Kokkaliaris34,
Oliver Hilsenbeck3#, Timm Schroeder34,

Fabian J Theis!»> & Carsten Marr!

a
Granulocytic/
Hematopoietic —>. monocytic
stem cell el lineage (GM)
PU.1
GATA1™
CD16/32*
py.1md Megakaryocytic/
GATA1™ o erythroid
CD16/32” lineage (MegE)
I
Lineage decision PU.1 ov:
GATA1
CD16/32~

b

Latent Annotated
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IO IDISIoloI0
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T2 1

X

0 10 20 70 80 90 100 110

Tlme (h after experlment start)
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( \
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+'2

'—6 R 2 -1 0o+
< 3 T
= g 2 :
S .
2% 1 ﬂ"“ WMIJMNW'
O X
0 10 20 30 40 50 60 70 8 90 100 110

Time (h after experiment start)

Single
image patch
27 x 27 px
5x5 2x2
Convolution Max Convolution
pooling
e Patch

Cell

AUC

patches

features

Experi- Experi- Experi-
ment ment ment
1 ‘ 2 3
1 (6]
Training Test 2
L ] L ] L ] <
Training  Test  Training
L ] L ]
Test Training
Latent |
0.8 : a:j:j:
0.6
0.4
0 50 100
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- |
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score I

AT o

Displacement

Max Convolution
pooling

Patch
features

Patch

=) lineage
score

Max
pooling
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score

0.9 S & 2
A + 3 8 +
08 2
8 * *
0.7 } b2
° o Round 1
ger a + Round 2
0.5 A Round 3
o4l . . . . . .
-5 4 -3 -2 - 0 1 2
Time (generation before or after
marker identification)
3 Annotated
o e ’;*:j‘f;:j -e- Round 1
= —+ Round 2
0.6 -4~ Round 3
04
0 50 100

Fraction of cell cycle (%)
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What are we possibly missing from the many-to-many model?

1. Not taking advantage of structure of output labels (assuming they are conditionally independent)

logp(y | =V),...,z®)

Let the network become dependent on past labels as well:

logp(y” |V, 4y .yl
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Conditional recurrent neural network deep imaging
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What are we possibly missing from the many-to-many model?

1. Not taking advantage of structure of output labels (assuming they are conditionally independent)

logp(y | =V),...,z®)

Let the network become dependent on past labels as well:

logp(y” |V, 4y .yl

2. Only considering one direction in sequence/time...



Other extensions: bi-directional analysis

Consider future and past events jointly

Add a third matrix that takes future
hidden states in as well

E.g., sentence structure is not purely
causal

Handwriting recognition, speech
analysis, etc.

deep imaging
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What are we possibly missing from the many-to-many model?

1. Not taking advantage of structure of output labels (assuming they are conditionally independent)

logp(y | =V),...,z®)

Let the network become dependent on past labels as well:

logp(y” |V, 4y .yl

2. Only considering one direction in sequence/time...

3. Chaining things together is not necessarily the ideal way to maintain long connections



Other extensions: recursive neural networks

deep imaging

» Use tree-like structure to instead of chain-
like structure to embed temporal
relationships

* Reduce n nonlinear relationships connecting
timeatotimebtonlogn

« Obviously lots of extensions/variants here
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RNN’s have limited memory and can suffer from exploding gradients

Hidden weights effectively follow a recursive relationship:

h(t) _ WTh(t—l) h(t) _ (Wt)T h(o)-_
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RNN’s have limited memory and can suffer from exploding gradients

Hidden weights effectively follow a recursive relationship:

h® — WwThptD h® — (W) h©

If W admits it, can perform eigenvvector decomposition to obtain,

W =QAQ".
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RNN’s have limited memory and can suffer from exploding gradients

Hidden weights effectively follow a recursive relationship:

h® — WwThptD h® — (W) h©

If W admits it, can perform eigenvvector decomposition to obtain,
- T
W =QAQ .
In this space, power relationship Wt alters just eigenvalues, does not rotate eigenvectors:

h® — QT A*QR)

Thus, if the eigenvector is large (the largest), it will explode. Remaining eigenvectors eventually vanish
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S. Hochreiter and J. Schmidhuber (1997) Hé%@

Long Short-Term Memory

The |Ong short-term memory network https://dl.acm.org » citation
by S Hochreiter - 1997 - Cited by 24398 - Related articles

Nov 1, 1997 - Hochreiter, S., & Schmidhuber, J. (1996). Bridging long time lags by weight
guessing and "long short-term memory." In F. L. Silva, J. C. Principe, ...

Addlt'OﬂS output

« Self-loop to maintain “memory”
« Allow gradients to flow for a long time

self-loop

+ Weight of self-loop gated by “Forget gate”
» Forgetting depends on data
« Memory time scale is thus dynamic

« Qutput gate
« Can turn on/shut off everything

input input gate output gate



S. Hochreiter and J. Schmidhuber (1997) H%
Long Short-Term Memory

The Iong short-term memory network https://dl.acm.org > citation
by S Hochreiter - 1997 - Cited by 24398 - Related articles
Forget gate: Nov 1, 1997 - Hochreiter, S., & Schmidhuber, J. (1996). Bridging long time lags by weight

guessing and "long short-term memory." In F. L. Silva, J. C. Principe, ...
tput
(t) _ f f o) fop(t=1)
fi7=o bl + ) ULal)+ > Wlin
J J

Internal state:

self-loop
(t—1)

SZ(-t) = fz.(t)sz + gl(-t)U bi+ Z Ui,jxét) + ZWi,jhg-t_l) :
j ] <>!)state

External input gate:

(t) _ (t) (t—1)
g, =0 bf+ZU£j33j —I—ZW/;gjhj
J J

L STM ou tpu t' input input gate orget gate output gate
)Y (@) JD

h = tanh (5”) g /N /\N/\N/\
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Brainstorming time - physical layers in an RNN???
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Brainstorming time - physical layers in an RNN???

Here’s a simple example - _ _ . .
Design an optimal X to produce the best image captions

Physical
CNN

77image <

conv-64

test image

conv-64
maxpool

conv-128

conv-128
maxpool

conv-256 y0 yi y2
conv-256

maxpool A A A \ Sample

conv-512 < E N D > tO ke n
i ho h1 h2 => finish.

maxpool

\4

Y

conv-512

conv-512

maxpool

FC-4096 0

X
<STA straw hat
FC-4096 ST

<START>



Brainstorming time - physical layers in an RNN??? deep imaging

Take a bit of time and try to write down the following:
« With your image data (or some data that you are interested), what might you input into an RNN?

« What might be a useful output?
« What physical parameter might be useful to tweak to improve this output?

« Can you think of a way to model that parameter?



