

Lecture 24: Reinforcement Learning

Machine Learning and Imaging

BME 548L Roarke Horstmeyer

Resources for this lecture

Stanford CS231n, Lecture 17

Berkeley CS 294: Deep Reinforcement Learning http://rail.eecs.berkeley.edu/deeprlcourse-fa17/f17docs/lecture_3_rl_intro.pdf

V. Mnih et al., "Human-level control through deep reinforcement learning," Nature (2016)

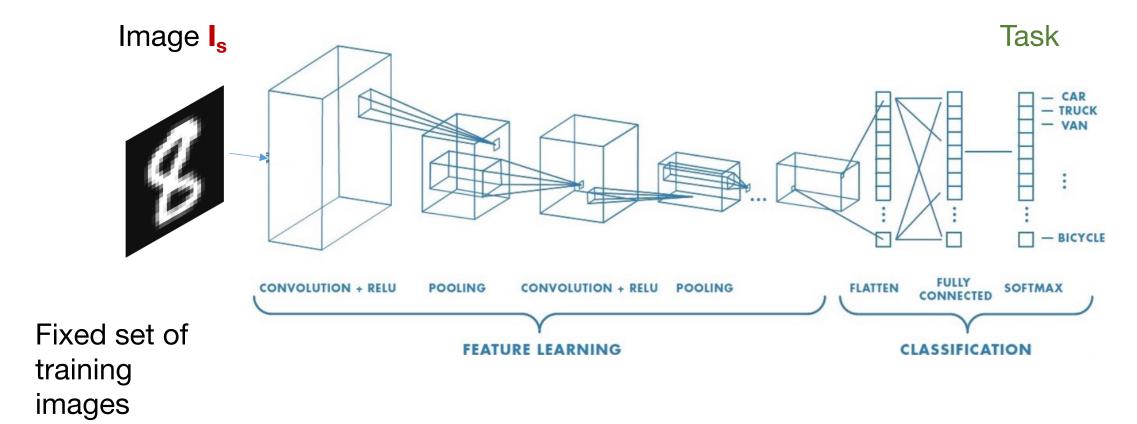
Technical note: Q-Learning

http://www.gatsby.ucl.ac.uk/~Dayan/papers/cjch.pdf

Reinforcement learning - in a nutshell

- So far, we've looked at:
 - 1) Decisions from fixed images (classification, detection, segmentation)

CNN's



Task = \mathbf{W}_{n} ...ReLU[\mathbf{W}_{1} ReLU[\mathbf{W}_{0} \mathbf{I}_{s}]...]

Reinforcement learning - in a nutshell

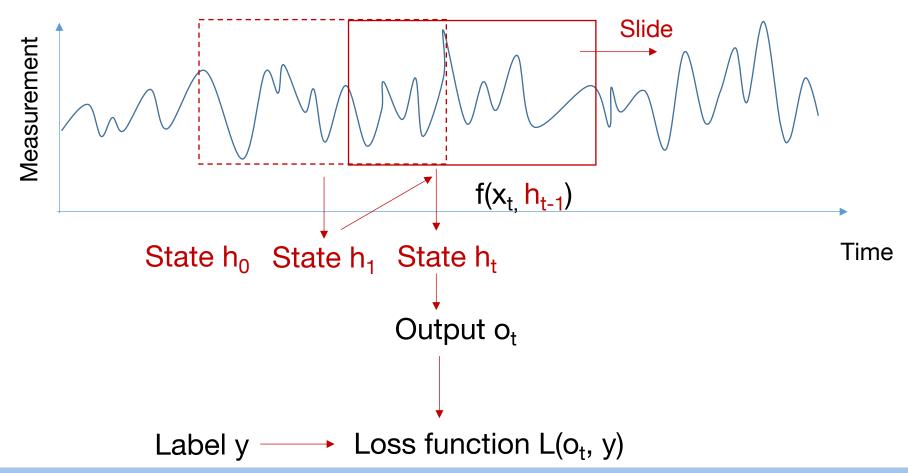
- So far, we've looked at:
 - 1) Decisions from fixed images (classification, detection, segmentation)

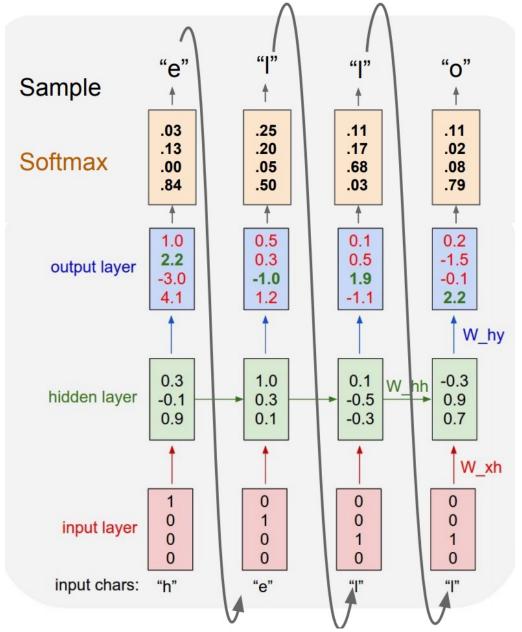
CNN's

2) Decisions from time-sequence data (captioning as classification, etc.)

RNN's

Fixed set of temporal sequences





From Stanford CS231n Lecture 10 slides

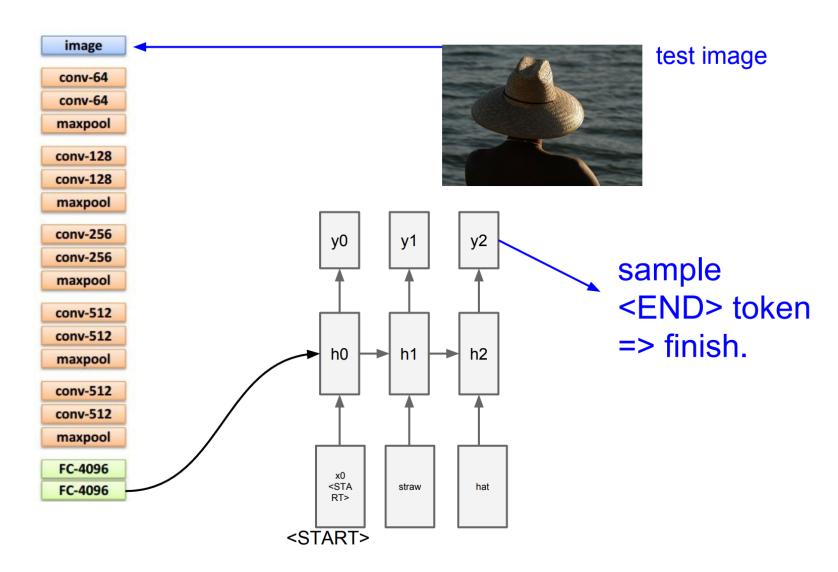
Reinforcement learning - in a nutshell

- So far, we've looked at:
 - 1) Decisions from fixed images (classification, detection, segmentation)

CNN's

2) Decisions from time-sequence data (captioning as classification, etc.)
Decisions from images and time-sequence data (video classification, etc.)
RNN's

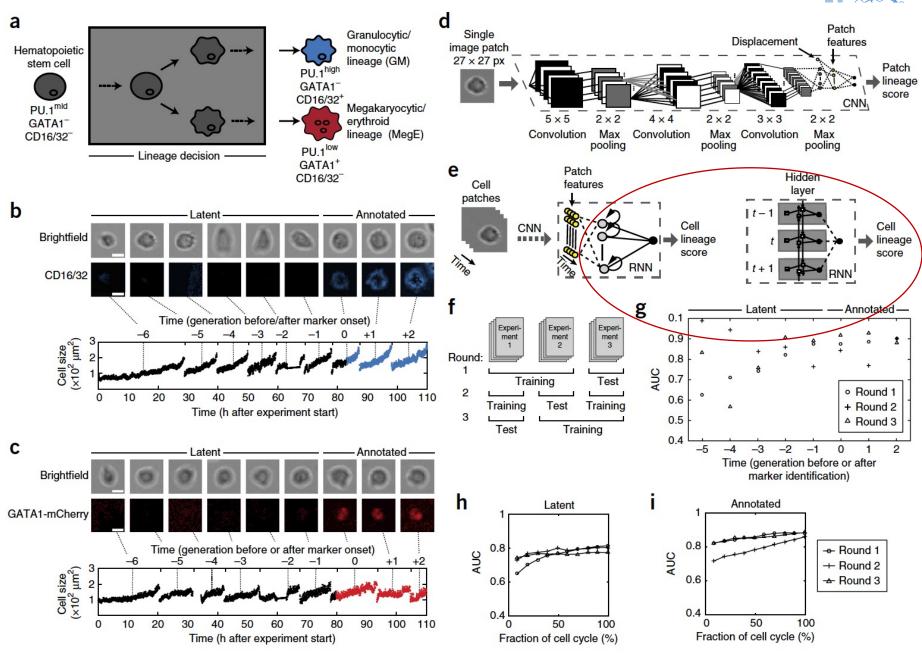
Example: Image captioning



From Stanford CS231n Lecture 10 slides

Prospective identification of hematopoietic lineage choice by deep learning

Felix Buggenthin^{1,6}, Florian Buettner^{1,2,6}, Philipp S Hoppe^{3,4}, Max Endele³, Manuel Kroiss^{1,5}, Michael Strasser¹, Michael Schwarzfischer¹, Dirk Loeffler^{3,4}, Konstantinos D Kokkaliaris^{3,4}, Oliver Hilsenbeck^{3,4}, Timm Schroeder^{3,4}, Fabian J Theis^{1,5} & Carsten Marr¹



Reinforcement learning - in a nutshell

- So far, we've looked at:
 - 1) Decisions from fixed images (classification, detection, segmentation)

CNN's

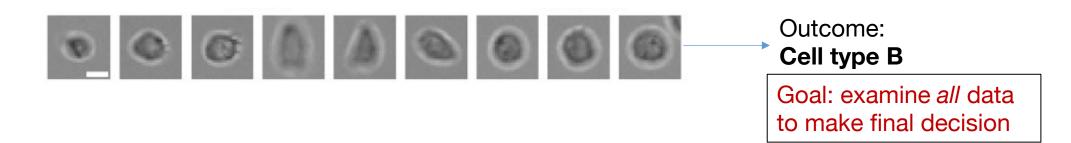
2) Decisions from time-sequence data (captioning as classification, etc.)

Decisions from images and time-sequence data (video classification, etc.)

RNN's

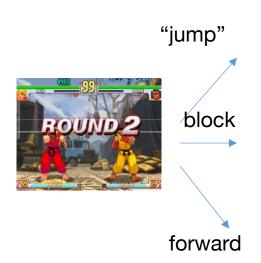
- Now, we're going to consider decisions for dynamic data
 - Most successful application: dynamic image data
 e.g.: video games, images of a Go game, car turning through obstacles

Reinforcement Learning



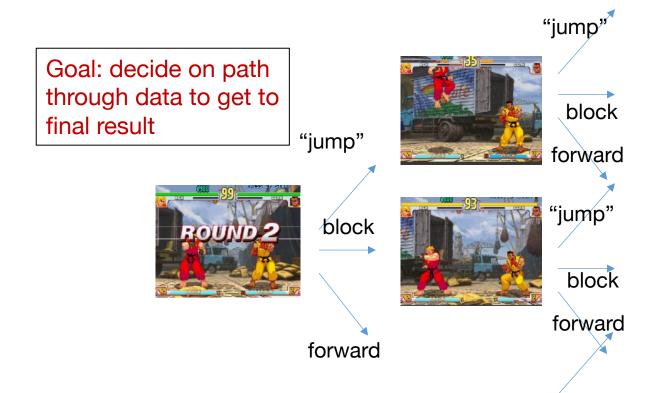
Outcome: Cell type B

Goal: examine all data to make final decision



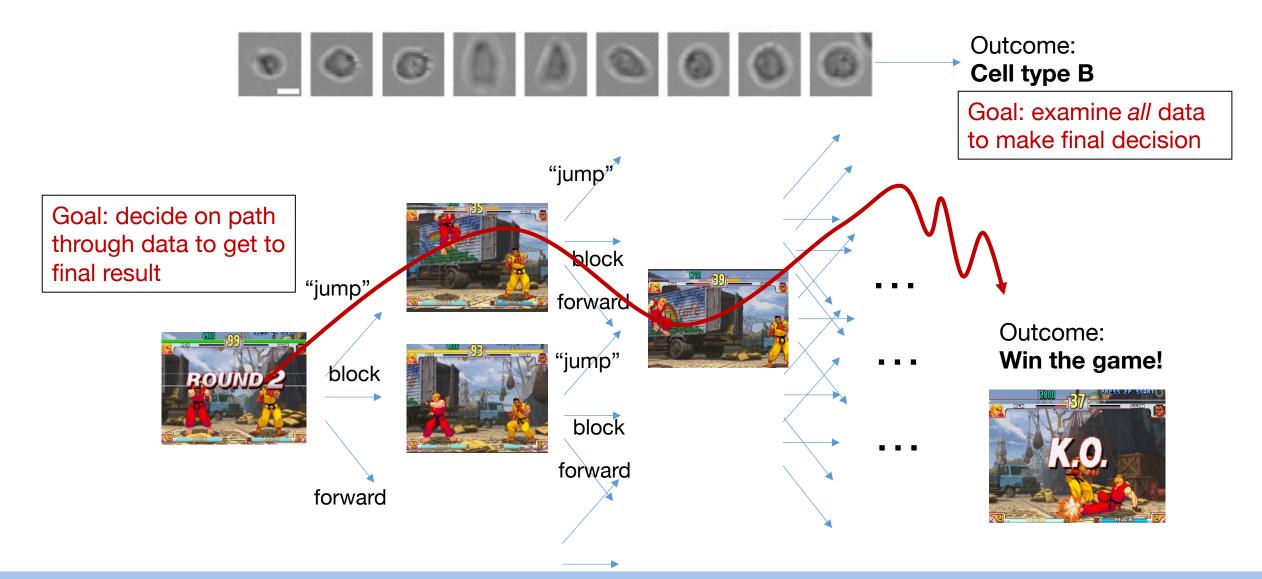
Outcome: Cell type B

Goal: examine all data to make final decision

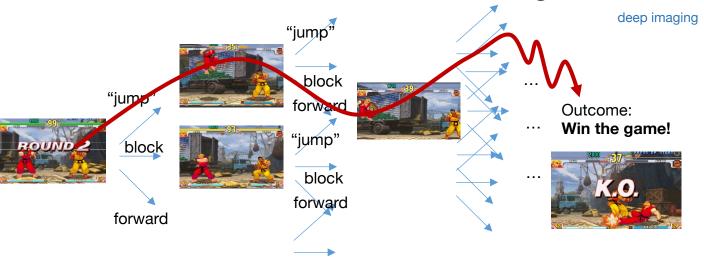




The step from fixed video to dynamic video



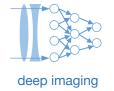
Supervised ML



Reinforcement learning

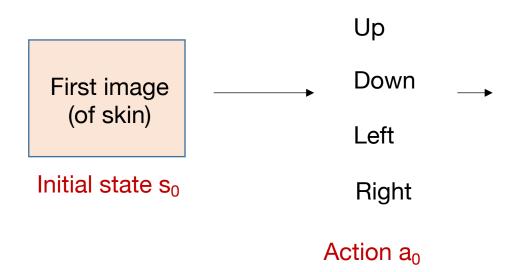
- Fixed image sequence
- Goal: match to known label
 (large labeled dataset needed)
- Output: label
- Examines all data

- Dynamic/active image sequence
- Goal: get to known desired outcome (no labels needed, really...)
- Output: sequence of actions
- Not possible to examine all data

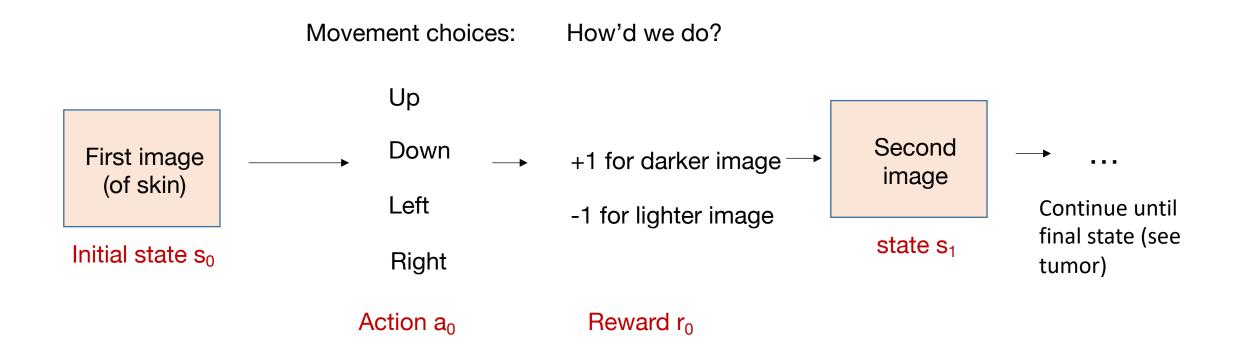


Example situation: Preparing for surgery using a robotically controlled instrument with an endoscope camera. You want endoscope to guide itself to tumor as quickly as possible

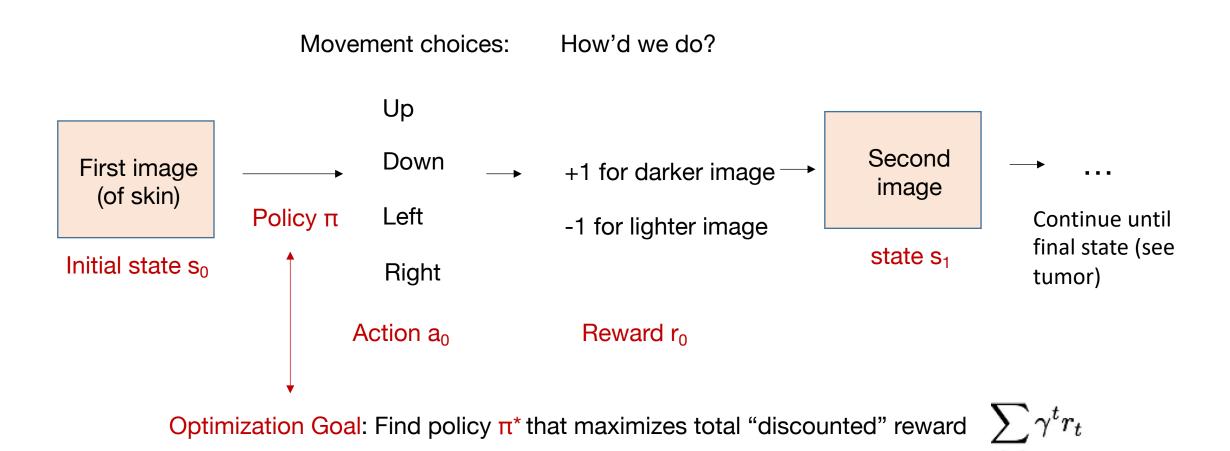
Movement choices:



Example situation: Preparing for surgery using a robotically controlled instrument with an endoscope camera. You want endoscope to guide itself to tumor as quickly as possible

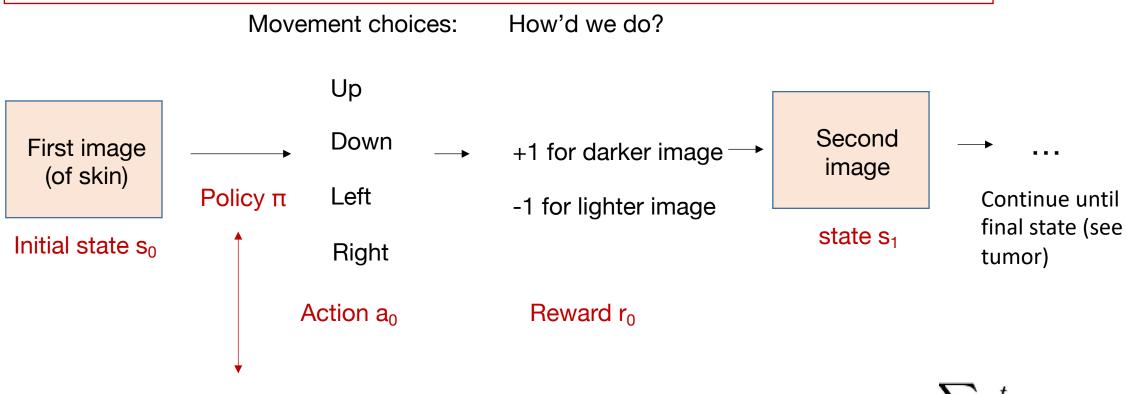


Example situation: Preparing for surgery using a robotically controlled instrument with an endoscope camera. You want endoscope to guide itself to tumor as quickly as possible



TL;DR

-> Use a CNN to map images to actions, optimize CNN with respect to loss function that depends on reward *in a recursive manner*



Optimization Goal: Find policy π^* that maximizes total "discounted" reward

$$\sum_{t\geq 0} \gamma^t r_t$$

A simple MDP: Grid World

```
actions = {

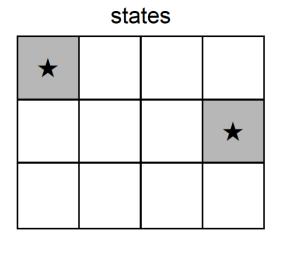
1. right →

2. left →

3. up ↑

4. down ↑

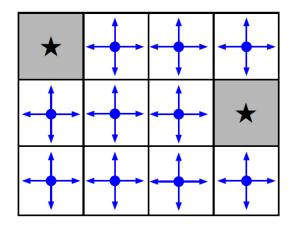
}
```



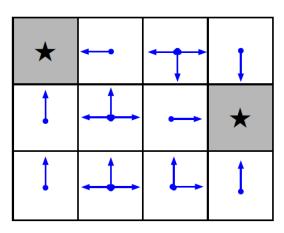
Set a negative "reward" for each transition (e.g. r = -1)

Objective: reach one of terminal states (greyed out) in least number of actions

A simple MDP: Grid World



Random Policy



Optimal Policy

Let's jump into the math....

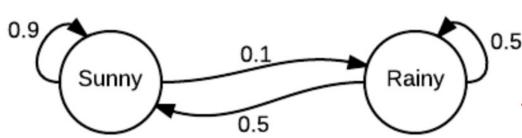
Definition of a Markov process:

$$\Pr(X_{n+1} = x \mid X_1 = x_1, X_2 = x_2, \dots, X_n = x_n) = \Pr(X_{n+1} = x \mid X_n = x_n)$$

Let's jump into the math....

Definition of a Markov process:

$$\Pr(X_{n+1} = x \mid X_1 = x_1, X_2 = x_2, \dots, X_n = x_n) = \Pr(X_{n+1} = x \mid X_n = x_n)$$



$$\mathbf{x}^{(0)} = [egin{matrix} 1 & 0 \end{bmatrix}$$

The weather on day 2 can be predicted by:

$$\mathbf{x}^{(1)} = \mathbf{x}^{(0)} P = egin{bmatrix} 1 & 0 \end{bmatrix} egin{bmatrix} 0.9 & 0.1 \ 0.5 & 0.5 \end{bmatrix} = egin{bmatrix} 0.9 & 0.1 \end{bmatrix}$$

Thus, there is a 90% chance that day 2 will also be sunny.

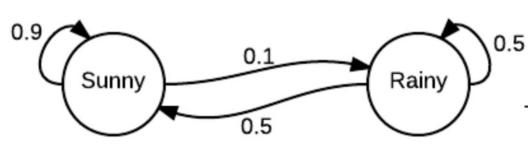
2 states: Sunny and Rainy

https://en.wikipedia.org/wiki/Markov_chain

Let's jump into the math....

Definition of a Markov process:

$$\Pr(X_{n+1} = x \mid X_1 = x_1, X_2 = x_2, \dots, X_n = x_n) = \Pr(X_{n+1} = x \mid X_n = x_n)$$



2 states: Sunny and Rainy

$$\mathbf{x}^{(0)} = [egin{matrix} 1 & 0 \end{bmatrix}$$

The weather on day 2 can be predicted by:

$$\mathbf{x}^{(1)} = \mathbf{x}^{(0)} P = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 0.9 & 0.1 \\ 0.5 & 0.5 \end{bmatrix} \neq \begin{bmatrix} 0.9 & 0.1 \end{bmatrix}$$

Thus, there is a 90% chance that day 2 will also be sunny.

Transition matrix – try to learn this from state to state

https://en.wikipedia.org/wiki/Markov_chain

Assume transition between states follows Markov process

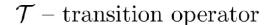
$$P(s_{t+1}|s_t, s_{t-1}...s_0) = P(s_{t+1}|s_t)$$

Markov chain

$$\mathcal{M} = \{\mathcal{S}, \mathcal{T}\}$$

S – state space

states $s \in \mathcal{S}$ (discrete or continuous)



$$p(s_{t+1}|s_t)$$

why "operator"?

let
$$\mu_{t,i} = p(s_t = i)$$

let
$$\mathcal{T}_{i,j} = p(s_{t+1} = i | s_t = j)$$
 then $\vec{\mu}_{t+1} = \mathcal{T}\vec{\mu}_t$

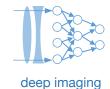
Andrey Markov

 $\vec{\mu}_t$ is a vector of probabilities

then
$$\vec{\mu}_{t+1} = \mathcal{T} \vec{\mu}_t$$

Markov property independent of \mathbf{s}_{t-1} $p(\mathbf{s}_{t+1}|\mathbf{s}_t)$

Add in dependence on action: Markov decision process



$$P(s_{t+1}|s_t) = P(s_{t+1} | s_t, a_t) = P(s_{t+1} | s_t, a_t, ... s_0, a_0)$$

Markov decision process

$$\mathcal{M} = \{\mathcal{S}, \mathcal{A}, \mathcal{T}, r\}$$

S – state space

states $s \in \mathcal{S}$ (discrete or continuous)

 \mathcal{A} – action space

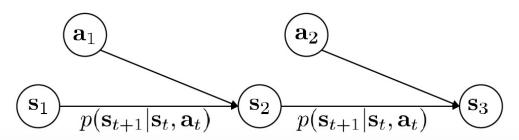
actions $a \in \mathcal{A}$ (discrete or continuous)

 \mathcal{T} – transition operator (now a tensor!)

let
$$\mu_{t,j} = p(s_t = j)$$

let
$$\xi_{t,k} = p(a_t = k)$$

let
$$\mathcal{T}_{i,j,k} = p(s_{t+1} = i | s_t = j, a_t = k)$$



Andrey Markov

Richard Bellman

 $P(s_{t+1}|s_t, a_t)$ can include reward $r(s_t, a_t)$

Markov decision process

$$\mathcal{M} = \{\mathcal{S}, \mathcal{A}, \mathcal{T}, r\}$$

S – state space

states $s \in \mathcal{S}$ (discrete or continuous)

A – action space

actions $a \in \mathcal{A}$ (discrete or continuous)

 \mathcal{T} – transition operator (now a tensor!)

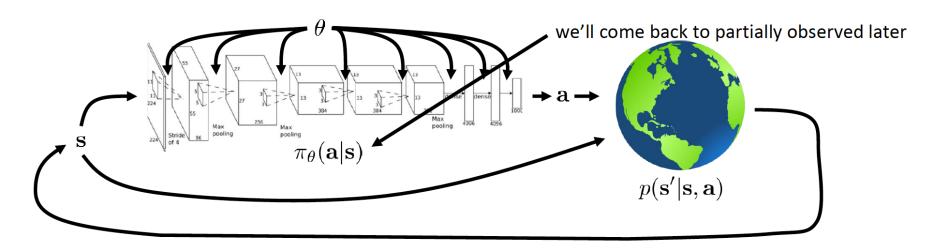
r – reward function

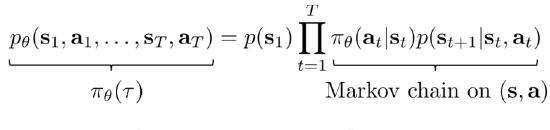
$$r: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$$

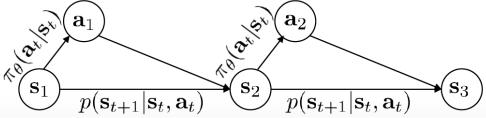
$$r(s_t, a_t)$$
 – reward



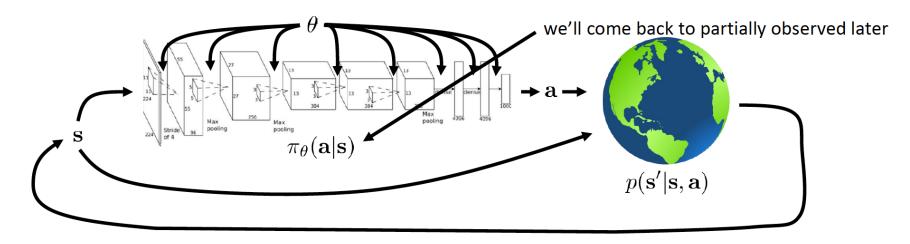
The goal of reinforcement learning







The goal of reinforcement learning



$$\underbrace{p_{\theta}(\mathbf{s}_{1}, \mathbf{a}_{1}, \dots, \mathbf{s}_{T}, \mathbf{a}_{T})}_{\pi_{\theta}(\tau)} = p(\mathbf{s}_{1}) \prod_{t=1}^{T} \underbrace{\pi_{\theta}(\mathbf{a}_{t}|\mathbf{s}_{t}) p(\mathbf{s}_{t+1}|\mathbf{s}_{t}, \mathbf{a}_{t})}_{\text{Markov chain on } (\mathbf{s}, \mathbf{a})}$$

$$\theta^* = \arg\max_{\theta} \sum_{t=1}^{T} E_{(\mathbf{s}_t, \mathbf{a}_t) \sim p_{\theta}(\mathbf{s}_t, \mathbf{a}_t)} [r(\mathbf{s}_t, \mathbf{a}_t)]$$

The optimal policy π^*

We want to find optimal policy π^* that maximizes the sum of rewards.

How do we handle the randomness (initial state, transition probability...)? Maximize the **expected sum of rewards!**

Formally:
$$\pi^* = \arg\max_{\pi} \mathbb{E}\left[\sum_{t\geq 0} \gamma^t r_t | \pi\right]$$
 with $s_0 \sim p(s_0), a_t \sim \pi(\cdot|s_t), s_{t+1} \sim p(\cdot|s_t, a_t)$

Discount factor: accumulate the rewards "acquired" up to current state, but they become less important the longer they were in the past

The optimal policy π^*

We want to find optimal policy π^* that maximizes the sum of rewards.

How do we handle the randomness (initial state, transition probability...)? Maximize the expected sum of rewards!

Formally:
$$\pi^* = \arg\max_{\pi} \mathbb{E}\left[\sum_{t\geq 0} \gamma^t r_t | \pi\right]$$
 with $s_0 \sim p(s_0), a_t \sim \pi(\cdot|s_t), s_{t+1} \sim p(\cdot|s_t, a_t)$

The **Q-value function** at state s and action a, is the expected cumulative reward from taking action a in state s and then following the policy:

$$Q^\pi(s,a)=\mathbb{E}\left[\sum_{t\geq 0}\gamma^tr_t|s_0=s,a_0=a,\pi
ight]$$
 Don't have access to all policies, so use Q in practice

Bellman equation

The optimal Q-value function Q* is the maximum expected cumulative reward achievable from a given (state, action) pair:

$$Q^*(s,a) = \max_{\pi} \mathbb{E}\left[\sum_{t \geq 0} \gamma^t r_t | s_0 = s, a_0 = a, \pi
ight]$$

Q* satisfies the following **Bellman equation**:

$$Q^*(s, a) = \mathbb{E}_{s' \sim \mathcal{E}} \left[r + \gamma \max_{a'} Q^*(s', a') | s, a \right]$$

Intuition: if the optimal state-action values for the next time-step Q*(s',a') are known, then the optimal strategy is to take the action that maximizes the expected value of $r + \gamma Q^*(s',a')$

Solving for the optimal policy: Q-learning

Q-learning: Use a function approximator to estimate the action-value function

$$Q(s,a;\theta) pprox Q^*(s,a)$$
 function parameters (weights)

If the function approximator is a deep neural network => deep q-learning!

Solving for the optimal policy: Q-learning

Remember: want to find a Q-function that satisfies the Bellman Equation:

$$Q^*(s, a) = \mathbb{E}_{s' \sim \mathcal{E}} \left[r + \gamma \max_{a'} Q^*(s', a') | s, a \right]$$

Forward Pass

Loss function:
$$L_i(\theta_i) = \mathbb{E}_{s,a \sim \rho(\cdot)} \left[(y_i - Q(s,a;\theta_i))^2 \right]$$

where
$$y_i = \mathbb{E}_{s' \sim \mathcal{E}}\left[r + \gamma \max_{a'} Q(s', a'; \theta_{i-1}) | s, a
ight]$$

Solving for the optimal policy: Q-learning

Remember: want to find a Q-function that satisfies the Bellman Equation:

$$Q^*(s, a) = \mathbb{E}_{s' \sim \mathcal{E}} \left[r + \gamma \max_{a'} Q^*(s', a') | s, a \right]$$

Forward Pass

Loss function:
$$L_i(\theta_i) = \mathbb{E}_{s,a\sim
ho(\cdot)}\left[(y_i - Q(s,a;\theta_i))^2\right]$$

where
$$y_i = \mathbb{E}_{s' \sim \mathcal{E}}\left[r + \gamma \max_{a'} Q(s', a'; \theta_{i-1}) | s, a
ight]$$
 Iteratively try to make the Q-value close to the target value (y_i) it

Backward Pass

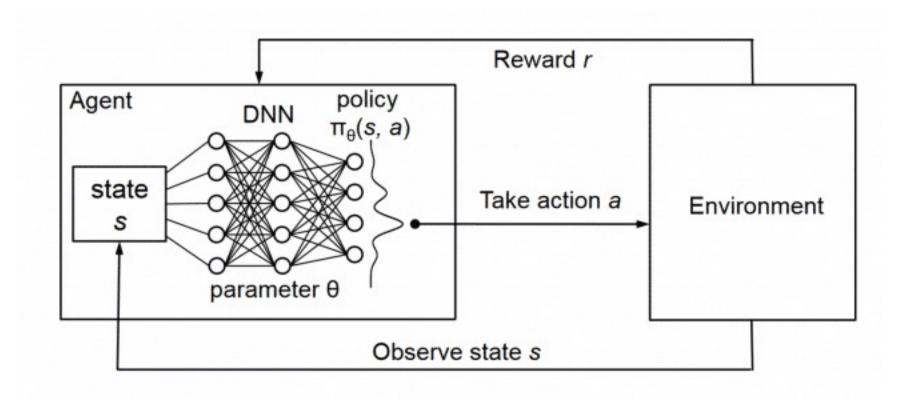
Gradient update (with respect to Q-function parameters θ):

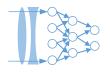
$$\nabla_{\theta_i} L_i(\theta_i) = \mathbb{E}_{s, a \sim \rho(\cdot); s' \sim \mathcal{E}} \left[r + \gamma \max_{a'} Q(s', a'; \theta_{i-1}) - Q(s, a; \theta_i)) \nabla_{\theta_i} Q(s, a; \theta_i) \right]$$

should have, if Q-function corresponds to optimal Q* (and optimal policy π^*)

From Stanford CS231n Lecture 17







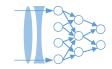
Case Study: Playing Atari Games

Objective: Complete the game with the highest score

State: Raw pixel inputs of the game state

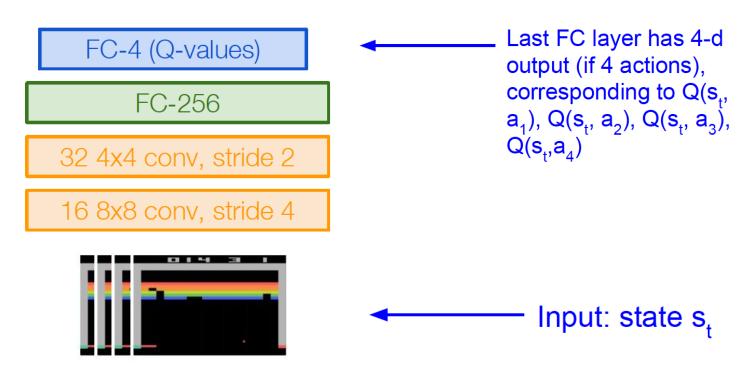
Action: Game controls e.g. Left, Right, Up, Down

Reward: Score increase/decrease at each time step



Q-network Architecture

Q(s,a; heta) : neural network with weights heta

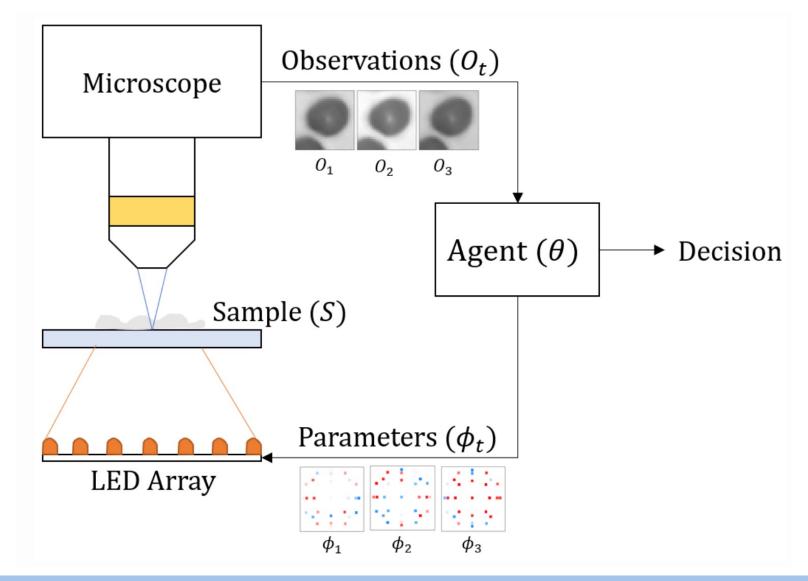


Current state s_t: 84x84x4 stack of last 4 frames (after RGB->grayscale conversion, downsampling, and cropping)

From Stanford CS231n Lecture 17

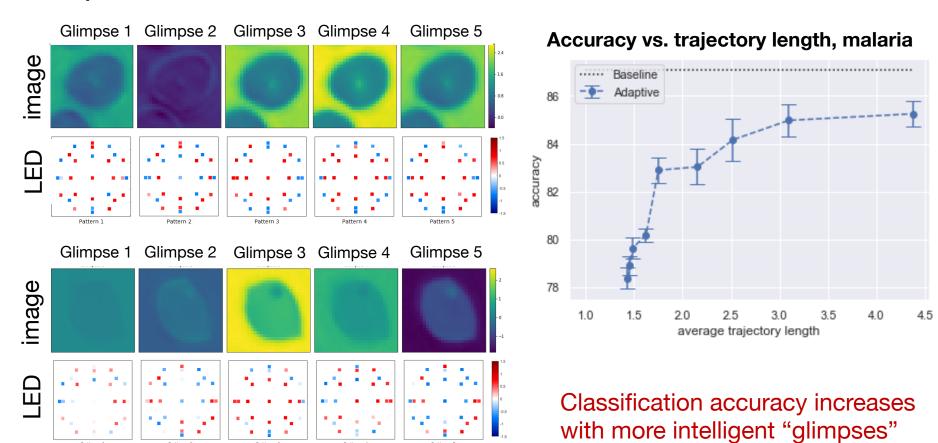
https://www.youtube.com/watch?v=V1eYniJ0Rnk

How can this be applied to optimized imaging?



Reinforcement learning for intelligent multi-image classification

Experiment: Malaria-infected blood cells



A. Chaware et al., "Towards an intelligent microscope: adaptively learned illumination for optimal sample classification," ICASSP (2020)

Training the Q-network: Experience Replay

Learning from batches of consecutive samples is problematic:

- Samples are correlated => inefficient learning
- Current Q-network parameters determines next training samples (e.g. if maximizing action is to move left, training samples will be dominated by samples from left-hand size) => can lead to bad feedback loops

Address these problems using experience replay

- Continually update a replay memory table of transitions (s_t, a_t, r_t, s_{t+1}) as game (experience) episodes are played
- Train Q-network on random minibatches of transitions from the replay memory, instead of consecutive samples

Each transition can also contribute to multiple weight updates => greater data efficiency

From Stanford CS231n Lecture 17