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Examples: Lenses and optics

Machine Learning and Imaging — Roarke Horstmeyer (2024)



Hybrid optlcal -electronic
_convolutional neural networks with deep imaging
-optimized diffractive optics for
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_image classification |
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Figure 1. Optical convolutional layer design. (a) Diagram of a 4f system that could be adapted to implement
optical convolutional (opt-conv) layers by placing a phase mask in the Fourier plane. (b) The standard
components of a digital convolutional layer, including an input image, a stack of convolutional kernels, and

a corresponding output volume. (c¢) The equivalent components in an opt-conv layer, where the kernels and
outputs are tiled in a 2D array instead of stacked in the depth dimension.




a) Schematic of an optical correlator

lin conv block max pool relative scores class scores -
deep imaging
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b) Optimized kernels
multichannel, unconstrained  multichannel, nonneg. tiled kernels, nonneg.  optimized phase mask PSF
accuracy = 0.7013

accuracy = 0.7591 accuracy = 0.7786 accuracy = 0.7222

Figure 2. Learned optical correlator. (a) Schematic of an optical correlator, where the conv block consists of
the 4f system shown in Fig. 1. (b) Characteristic optimized kernels of a multichannel unconstrained digital
convolutional layer, a multichannel nonnegative digital convolutional layer, a single channel opt-conv layer with
tiled kernels, and the PSF produced by phase mask optimization with the previous optimized tiled kernels as the
target.
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c) Comparison of simulation and experimental prototype

simulated PSF simulated input image simulated sensor image pseudonegative sub-images,
simulated

deep imaging

test accuracy: 50.96.%

captured PSF pseudonegative sub-images,

from capture

.
test accuracy: 44.40%

Figure 3. Hybrid optoelectronic CNN. (a) Schematic of a model with a single opt-conv layer, after which the
sensor image is processed and fed into subsequent digital CNN layers. (b) The optimized phase mask template
and microscope images of the fabricated phase mask, at different zoom levels. (¢) Comparison of simulated
and captured versions of the PSF produced by the phase mask, a sample input image, the respective sensor
image, and pseudonegative sub-images after subtraction of corresponding positive (top two rows) and negative
(bottom two rows) sub-images.
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End-to-end Optimization of Optics and Image Processing for
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Learned phase coded aperture for the benefit of
depth of field extension
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Multicolor localization microscopy and point-
spread-function engineering by deep learning
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DeepSTORMS3D: dense three dimensional localization microscopy and point spread function
design by deep learning
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Examples: Detection and sampling

Machine Learning and Imaging — Roarke Horstmeyer (2024)



ReconNet: Non-Iterative Reconstruction of Images from Compressively Sensed
Random Measurements

Kuldeep Kulkarni'?, Suhas Lohit', Pavan Turaga'?, Ronan Kerviche?, and Amit Ashok?

!School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, AZ
2School of Arts, Media and Engineering, Arizona State University, Tempe, AZ
3College of Optical Sciences, University of Arizona, Tucson, AZ
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DEEP LEARNING SPARSE TERNARY PROJECTIONS
FOR COMPRESSED SENSING OF IMAGES
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DeepBinaryMask: Learning a Binary Mask for
Video Compressive Sensing

Michael lliadis, Member, IEEE, Leonidas Spinoulas, Member, IEEE,
and Aggelos K. Katsaggelos, Fellow, IEEE
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DeepBinaryMask: Learning a Binary Mask for
Video Compressive Sensing

Michael lliadis, Member, IEEE, Leonidas Spinoulas, Member, IEEE,
and Aggelos K. Katsaggelos, Fellow, IEEE

Figure 6: Compressive imager testbed layout with the object
imaging arm in the center, the two DMD imaging arms are on
the sides.
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Standard compressive sensing problem:
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Figure 8: The figure shows reconstruction results on 3 images
collected using our block SPC operating at measurement rate of
0.04. The reconstructions of our algorithm are qualitatively better
than those of TVAL3 and D-AMP.
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Learning Sensor Multiplexing
Design through Back-propagation

Ayan Chakrabarti
Toyota Technological Institute at Chicago
6045 S. Kenwood Ave., Chicago, IL
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Learning Sensor Multiplexing
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Adaptive Image Sampling using Deep Learning and
its Application on X-Ray Fluorescence Image
Reconstruction

Qiqin Dai, Henry Chopp, Emeline Pouyet, Oliver Cossairt, Marc Walton,
and Aggelos K. Katsaggelos, Fellow, IEEE
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Fig. 1. (a) XRF map showing the distribution of Pb Ln XRF emission line
(sum of channel #582 - 602) of the “Bloemen en insecten” (ca 1645), by
Jan Davidsz. de Heem, in the collection of Koninklijk Museum voor Schone
Kunsten (KMKSA) Antwerp and (b) the HR RGB image.

@ ®

Fig. 2. (a) Random binary sampling mask that skips 80% of pixels and (b)
Adaptive binary sampling mask that skips 80% of pixels based on the input
RGB images in Fig 1 (b).
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Learning a Variational Network

for Reconstruction of Accelerated MRI Data
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(b) Structure of the variational network (VN)
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Facebook Fast MRI Challenge:
https://ai.facebook.com/blog/using-reinforcement-learning-to-personalize-ai-accelerated-mri-scans/



Reducing Uncertainty in Undersampled MRI Reconstruction
with Active Acquisition

Zizhao Zhang!?* Adriana Romero? Matthew J. Muckley® Pascal Vincent? Lin Yang! Michal Drozdzal?
! University of Florida 2 Facebook AI Research 3 NYU School of Medicine
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Figure 3: The training pipeline of the proposed method.
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Learning a Probabilistic Strategy
for Computational Imaging Sensor Selection

He Sun, Member, IEEE, and Adrian V. Dalca, Member, IEEE, and Katherine L. Bouman, Member, IEEE
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Fig. 3. Site map of potential future EHT telescope locations. Twelve sites
(“EHT+") marked with blue stars are existing telescopes currently partic-
ipating in or planning to join the EHT. The other nine sites (“FUTURE”),
marked with orange dots, are potential locations where new telescopes
could be added. “FUTURE” sites are selected as locations that can
observe at the necessary 230 GHz (1.3 mm wavelength) observed by
the EHT.
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Machine Learning and Imaging — Roarke Horstmeyer (2024)



Accurate and efficient classification with LED illumination %
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R. Horstmeyer et al., "Convolutional neural networks that teach microscopes how to image," arXiv (2017)
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Physics-based Learned Design: Optimized
Coded-Illumination for Quantitative Phase Imaging

deep imaging

Michael R. Kellman*¥ Emrah Bostan* Nicole Repina.}
Michael Lustig,* Laura Waller*

August 13, 2018
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Figure 1: Learning Coded-Illumination Design for Quantitative Phase Imaging: (a) Schematic
of the LED-illumination microscope where multiple intensity measurements are captured un-
der unique coded-illumination patterns, (b) Computational phase reconstruction of the sample’s
optical phase with coded-illumination measurements. (c) Optimization for learning of coded-
illumination design based on the non-linear iterative reconstruction.
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Deep learning with coherent
nanophotonic circuits

Figure 1: General architecture of the ONN.
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a, General artificial neural network architecture composed of an input layer, a number of
hidden layers and an output layer. b, Decomposition of the general neural network into
individual layers. ¢, Optical interference and nonlinearity units that compose each layer of

the artificial neural network. d, Proposal for an all-optical, fully integrated neural network.

Machine Learning and Imaging — Roarke Horstmeyer (2024)




Figure 2: Illustration of OIU.
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Inverse design in nanophotonics

Sean Molesky', ZinLin?, AlexanderY.Piggott?, WeiliangJin', Jelena Vuckovié® and
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Machine learning based compact photonic structure design for
strong light confinement
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Ethical questions surrounding deep convolutional networks

1. What are your expectations for an image reconstruction algorithm used in a clinical setting?
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Ethical questions surrounding deep convolutional networks

1. What are your expectations for an image reconstruction algorithm used in a clinical setting?

2. What types of “guarantees” should we be able to make, if any, to a patient?

3. How should we guide future development of ML software to meet any guarantees?

4. How should we guide future development of ML-designed hardware to meet any guarantees?

5. Thoughts towards a system of checks and balances?

deep imaging
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The Machine Learning in Imaging Ethics Questionnaire

Situation 1: In 5 years, you walk into a clinic because you have a spot on your skin that
you are concerned about. The clinician is too busy, so you step over to a terminal with
a standard microscope and it images your arm. It says you are fine.

Are you comfortable with leaving the office?

Yes:

No:

Why or why not? What might change how you feel?
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The Machine Learning in Imaging Ethics Questionnaire

Situation 2: The same thing happens. But this time, the machine reports that it is 99%
confident in its diagnosis, given previous examples of skin marks that have been
verified by doctors as benign. It also gives you the opportunity to take a look at some
of these previous example images it is basing its decision on. You notice that they
don’t look 100% like the mark on your arm, as is expected, but they look pretty similar.

Are you comfortable with leaving the office?

Yes:

No:

Why or why not? What might change how you feel?
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The Machine Learning in Imaging Ethics Questionnaire

Situation 3: In 5 years, the same thing happens. But this time, a doctor comes up after

the machine makes its suggested diagnosis. He takes a very cursory look (10 seconds)
and then confirms the machine’s opinion.

Are you now comfortable with leaving the office?

Yes:

No:
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The Machine Learning in Imaging Ethics Questionnaire

Situation 4: In 10 years, you go up to a modified microscope, “the Tissue Scanner
30007, that has a number of fancy lenses and lights. As a machine learning expert by
now, you’re aware that this microscope is optimized for looking at skin lesions. It
performs a scan with a particular lighting configuration and reports a score of 98%
confident that the lesion is benign, allowing you to look through other examples. It asks
If you’d like another scan for additional confidence or a different outcome, at which
point the illumination changes and it does some more scanning and reports a 99%
confidence level. You can continue with another scan, but...

Are you now comfortable with leaving the office?

Yes:

No:



