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Model
Loss 

function

Output: Input:

Estimation error

xy

L(y, Wx)

Changes for machine learning framework:

1. Now must establish the mapping from inputs to outputs (here, matrix W)

W = ???

y = f(W, x)
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deep imagingPipeline for machine learning

Model
Loss 

function

Output: Input:
xy

Changes for machine learning framework:

1. Now must establish the mapping from inputs to outputs (here, matrix W)
2. Using large set of “training” data to first determine mapping f(x, W)

Training dataset 

Ex. [x1,y1] Ex. [x2,y2]

…

Ex. [xN,yN]

Estimation error

L(y, Wx)
y = f(W, x)

W = ???
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deep imagingPipeline for machine learning

Model
Loss 

function

Output: Input:
xy

Changes for machine learning framework:

1. Now must establish the mapping from inputs to outputs (here, matrix W)
2. Using large set of “training” data to first determine mapping f(x, W) 
3. To do so, use a loss function L that depends upon the training inputs (x,y) and the model (W)

Ex. [x1,y1] Ex. [x2,y2]

…

Ex. [xN,yN]

Training dataset 

Training error

Lin(y, f(x, W)) W = ???

y = f(W, x)
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Model
Loss 

function

Output:Estimation error

y Ex. [x1,y1] Ex. [x2,y2]

…

Ex. [xN,yN]

Training dataset 

dL/dW

Training error

Lin(y, f(x, W))

Changes for machine learning framework:

1. Now must establish the mapping from inputs to outputs (here, matrix W)
2. Using large set of “training” data to first determine mapping f(x, W) 
3. To do so, use a loss function L that depends upon the training inputs (x,y) and the model (W)

4. Find optimal mapping (W) using the training data, guided by gradient descent on L 

W = ???

y = f(W, x)
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Model
Output:

y*

y*= f(x,W)

In a separate step, we then need to do the following to test the network:

1. Evaluate model accuracy by sending new x through – need new, unique data with label

W optimized

Ex. [x1,y1] Ex. [xK,yK]

…

Test dataset – Different from Training! 
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Model
Loss 

function

Output:Estimation error

y*

Lout(y,y*) = Σ  (y – y*)2
y*= f(x,W)

In a separate step, we then need to do the following to test the network:

1. valuate model accuracy by sending new x through – need new, unique data with label
2. Compare output y* to known “test data” label y
3. Evaluate performance with an error equation Lout

W optimized

Ex. [x1,y1] Ex. [xK,yK]

…

Test dataset – Different from Training! 

Test Error

This is what we care about!
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Example: machine learning for image classification

Model

Output: Image 
class

y

y=f(W, x)

Training error

dL/dW

Let’s consider a simple example – image classification. What do we need for training? 

1. Labeled examples  

Ex. [x1,y1] Ex. [x2,y2]

…

Ex. [xN,yN]

Training data: labeled images# Correct labels for 
test images?
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MNIST image set: http://yann.lecun.com/exdb/mnist/

https://en.wikipedia.org/wiki/MNIST_database

http://yann.lecun.com/exdb/mnist/
https://en.wikipedia.org/wiki/MNIST_database
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X = 28x28 pixel matrix

x = vec[X] = 784-long vector

Linear model would require W = 784 element matrix

Start simple:  use x = (x0, x1, x2) to describe intensity 
and symmetry of image X

Linear model can now use smaller w = (w0, w1, w2)
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x2

x1

This transforms wx+b into wx

Dataset: 1000 examples of 1’s and 5’s mapped to xj = (1,x1,x2), with associated label yj = 1 or -1

  

Caltech Learning from Data: https://work.caltech.edu/telecourse.html

[w0 w1 w2] 1
x1
x2

= w0 + w1x1 + w2x2 

https://work.caltech.edu/telecourse.html
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Example: machine learning for image classification

Model

Output: Image 
class

# Correct labels with 
test dataset?

y

y = Wx

Ex. [x1,y1] Ex. [xK,yK]

…

Images and class labels

Training error

Let’s consider a simple example – image classification. What do we need for training? 

1. Labeled examples  

2. A model and loss function 
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Let’s start with a simpler approach: linear regression

General linear model: W

xy

# classes

Assume 1 class = 
1 linear fit wT

xy

=

=1 var.

Use MSE error 
model

Where labels 
determined by 
thresholding

,



Machine Learning and Imaging – Roarke Horstmeyer (2024)

deep imagingWhy does linear regression with sgn() achieve classification?

x1 x2

y

• If yi can be anything, minimizing L 
makes w the plane of best fit 

Without sgn(): regression for best fit

w

-w0/|w|
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x1 x2

y

• yi can only be -1 or +1, which 
defines its class

Without sgn(): regression for best fit

-1

+1

Project to -1 or +1

Why does linear regression with sgn() achieve classification?
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x1 x2

y

• yi can only be -1 or +1, which 
defines its class

• Can still find plane of best fit

Without sgn(): regression for best fit

-1

+1

Project to -1 or +1

Why does linear regression with sgn() achieve classification?
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x1 x2

y

• Anything point to one side of y=0 
intersection is class +1, anything on 
the other side of intersection is 
class -1

With sgn() operation:

-1

+1 Projected to -1 or +1

0

Intersection y=0

Why does linear regression with sgn() achieve classification?
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x1 x2

y

• y axis isn’t really needed now & can 
view this decision boundary in 2D

With sgn() operation:

-1

+1

0

Intersection y=0

Why does linear regression with sgn() achieve classification?
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x1 x2

Sign operation takes linear regression 
and makes it a classification operation!

With sgn() operation:

y=-1
y=+1Linear classification 

boundary

Why does linear regression with sgn() achieve classification?
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Caltech Learning from Data: https://work.caltech.edu/telecourse.html

https://work.caltech.edu/telecourse.html
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Example: machine learning for image classification

Model

Output: Image 
class

# Correct labels with 
test dataset?

y

y = sign(wTx)

Ex. [x1,y1] Ex. [xK,yK]

…

Images and class labels

Training error

dL/dW

Let’s consider a simple example – image classification. What do we need for training? 

1. Labeled examples  

2. A model and loss function 

3. A way to minimize the loss function L
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1. Pseudo-inverse (this is one of the few cases with a closed-form solution)

2. Numerical gradient descent

3. Gradient descent on the cost function with respect to W

(easier)

(harder)

3 methods to solve for wT in the case of linear regression:
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1. Pseudo-inverse (this is one of the few cases with a closed-form solution)

2. Numerical gradient descent

3. Gradient descent on the cost function with respect to W

(easier)

(harder)

3 methods to solve for wT in the case of linear regression:
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deep imaging1. Turning linear regression for unknown weights W into a pseudo-inverse:

We are multiplying many xi’s with the same w and are adding them up -  let’s make a matrix!
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deep imaging1. Turning linear regression for unknown weights W into a pseudo-inverse:

We are multiplying many xi’s with the same w and are adding them up -  let’s make a matrix!

X = 

x1
x2

xN

y = 
y1

yN

Each training 
image is 1 row 
of X

Each training 
label is 1 entry 
of y
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deep imaging1. Turning linear regression for unknown weights W into a pseudo-inverse:

We are multiplying many xi’s with the same w and are adding them up -  let’s make a matrix!

X = 

x1
x2

xN

y = 
y1

yN

This is the same form as the pseudo-inverse we were 
working with before, but now we want to solve for w

Each training 
image is 1 row 
of X

Each training 
label is 1 entry 
of y
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Write this out as a matrix equation:
Note: Training data goes 
into “dictionary” matrix
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Write this out as a matrix equation:

Take derivative wrt w and set to 0:

Solution is pseudo-inverse:

Note: Training data goes 
into “dictionary” matrix
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Write this out as a matrix equation:

Take derivative wrt w and set to 0:

Solution is pseudo-inverse:

Note: Training data goes 
into “dictionary” matrix

Steps for Pseudo-inverse: 1. Construct matrix X and vector y from data

2. Compute solution for w0 via above equation

Each training image is 1 row of X

Each training label is 1 entry of y
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Data:

Images

labels

X

ones

Y
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1. Pseudo-inverse (this is one of the few cases with a closed-form solution)

2. Numerical gradient descent

3. Gradient descent on the cost function with respect to W

(easier)

(harder)

3 methods to solve for wT in the case of linear regression:
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Gradient descent: The iterative recipe

Initialize: Start with a guess of W

Until the gradient does not change very much:
 dL/dW = evaluate_gradient(W, x ,y ,L)
 W = W – step_size * dL/dW

evaluate_gradient can 
be achieved numerically 
or algebraically
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With a matrix, compute this for each entry:

Gradient descent: Numerical evaluation example
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Example: 

W = [1,2;3,4]
L(W, x, y) = 12.79

With a matrix, compute this for each entry:

Gradient descent: Numerical evaluation example
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W1+h = [1.001,2;3,4]
L(W1+h, x, y) = 12.8 

With a matrix, compute this for each entry:

Gradient descent: Numerical evaluation example

Example: 

W = [1,2;3,4]
L(W, x, y) = 12.79
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dL(W1)/dW1 = 12.8-12.79/.001

dL(W1)/dW1 = 10

With a matrix, compute this for each entry:

Gradient descent: Numerical evaluation example

W1+h = [1.001,2;3,4]
L(W1+h, x, y) = 12.8 

Example: 

W = [1,2;3,4]
L(W, x, y) = 12.79
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dL(W1)/dW1 = 12.8-12.79/.001

dL(W1)/dW1 = 10

With a matrix, compute this for each entry:

Gradient descent: Numerical evaluation example

W1+h = [1.001,2;3,4]
L(W1+h, x, y) = 12.8 

Example: 

W = [1,2;3,4]
L(W, x, y) = 12.79

- Repeat for all entries of W, dL/dW will have NxM entries for NxM matrix
- This is a “brute force” approach – not ideal, but sometimes helpful
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• For non-convex functions, 
local minima can obscure the 
search for global minima

• Analyzing critical points 
(plateaus) of function of 
interest is important

Some quick details about gradient descent
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• For non-convex functions, 
local minima can obscure the 
search for global minima

• Analyzing critical points 
(plateaus) of function of 
interest is important

• Critical points at df/dx = 0

• 2nd derivative d2f/dx2 tells us 
the type of critical point:

• Minima at d2f/dx2 > 0
• Maxima at  d2f/dx2 < 0
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deep imagingSome quick details about gradient descent

Often we’ll have functions of m variables

(e.g., f(x) = Σ (Ax-y)2 )

We take partial derivatives and put them in gradient vector g=
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deep imagingSome quick details about gradient descent

Often we’ll have functions of m variables

(e.g., f(x) = Σ (Ax-y)2 )

We take partial derivatives and put them in gradient vector g=

Hessian MatrixWe have many second derivatives:
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In general, we’ll have functions that map m variables to n variables

:

(e.g., f(x) = Wx, W is n x m)

Jacobian Matrix

Often we’ll have functions of m variables

(e.g., f(x) = Σ (Ax-y)2 )

We take partial derivatives 

Hessian MatrixWe have many second derivatives:

and put them in gradient vector g=
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f(x) = x1
2 – x2

2
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f(x) = x1
2 – x2

2

g =  2x1

-2x2
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f(x) = x1
2 – x2

2

g =  2x1

-2x2

H = 2
-2
0

0

• Convex functions have positive semi-definite Hessians (Trace >= 0)

• Trace/eigenvalues of Hessian are useful evaluate critical points & guide optimization
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1. Evaluate function f(x(0)) at an initial guess point, x(0)

2. Compute gradient g(0) = ∇xf(x(0))

3. Next point x(1) = x(0) - ε(0)g(0)

4. Repeat – x(n+1) = x(n) - ε(n)g(n), until |x(n+1)-x(n)| < threshold t

epsilon

**Update epsilon – see next slide
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deep imagingSteepest descent and the best step size ε

1. Evaluate function f(x(0)) at an initial guess point, x(0)

2. Compute gradient g(0) = ∇xf(x(0))

3. Next point x(1) = x(0) - ε(0)g(0)

4. Repeat: x(n+1) = x(n) - ε(n)g(n), until |x(n+1)-x(n)| < threshold t

epsilon

**Update epsilon – see next slide

We computed this – computers can too 
in interesting ways



Machine Learning and Imaging – Roarke Horstmeyer (2024)

deep imagingSteepest descent and the best step size ε

What is a good step size ε(n)?
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What is a good step size ε(n)?

To find out, take 2nd order Taylor expansion of f (a good approx. for nearby points):
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What is a good step size ε(n)?

To find out, take 2nd order Taylor expansion of f (a good approx. for nearby points):

Then, evaluate at the next step: 
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What is a good step size ε(n)?

To find out, take 2nd order Taylor expansion of f (a good approx. for nearby points):

Then, evaluate at the next step: 

Solve for optimal step (when Hessian is positive):

J. R. Shewchuck, “An Introduction to the Conjugate Gradient Method Without the Agonizing Pain”

https://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf
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1. Pseudo-inverse (this is one of the few cases with a closed-form solution)

2. Numerical gradient descent

3. Gradient descent on the cost function with respect to W

(easier)

(harder)

Next : We’ll understand why linear regression 
doesn’t work so well, and extend things beyond 
this simple starting point
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Model
Output

y* Ex. [x1,y1] Ex. [xK,yK]

…
Training 
Data

Training error

dL/dW

The linear classification model – what’s not to like?

Lin = || Wx - y||2 y* = Wx
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Model
Output

y* Ex. [x1,y1] Ex. [xK,yK]

…
Training 
Data

Training error

dL/dW

The linear classification model – what’s not to like?

y* = Wx

Solution hypothesis

x

y 1. Can only separate data with lines (hyper-planes)…

Lin = || Wx - y||2
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Model
Output

y* Ex. [x1,y1] Ex. [xK,yK]

…
Training 
Data

Training error

dL/dW

The linear classification model – what’s not to like?

y* = Wx

x

y 1. Can only separate data with lines (hyper-planes)…

2. We only allowed for binary labels (y = +/- 1)

+1

-1

+1

-1

Lin = || Wx - y||2
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Model
Output

y* Ex. [x1,y1] Ex. [xK,yK]

…
Training 
Data

Training error

dL/dW

The linear classification model – what’s not to like?

y* = Wx

x

y 1. Can only separate data with lines (hyper-planes)…

2. We only allowed for binary labels (y = +/- 1)

3. Error function Lin inherently makes assumptions 
about statistical distribution of data

+1

-1

+1

-1

Lin = || Wx - y||2
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x

f(x, W)
+1 = You

-1 = Bad guy

https://www.cnet.com/how-to/apple-face-id-everything-you-need-to-know/

https://www.cnet.com/how-to/apple-face-id-everything-you-need-to-know/
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x

f(x, W)
+1 = You

-1 = Bad guy

Two types of error: false accept and false reject f(x, W)

y
+1

-1

+1 -1

No Error

No Error

False reject

False accept

(you/you)

(bad guy/ 
bad guy)

https://www.cnet.com/how-to/apple-face-id-everything-you-need-to-know/

https://www.cnet.com/how-to/apple-face-id-everything-you-need-to-know/
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deep imagingCost functions matter: a simple example

x

f(x, W)
+1 = You

-1 = Bad guy

Two types of error: false accept and false reject f(x, W)

y
+1

-1

+1 -1

No Error

No Error

False reject

False accept

It’s you, but you 
can’t get in…

Letting an intruder in

On a standard phone, what’s a good cost function?

https://www.cnet.com/how-to/apple-face-id-everything-you-need-to-know/

https://www.cnet.com/how-to/apple-face-id-everything-you-need-to-know/
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deep imagingCost functions matter: a simple example

x

f(x, W)
+1 = You

-1 = Bad guy

Two types of error: false accept and false reject f(x, W)

y
+1

-1

+1 -1

No Error

No Error

False reject

False accept

It’s you, but you 
can’t get in…

Letting an intruder in

On a standard phone, what’s a good cost function?

https://www.cnet.com/how-to/apple-face-id-everything-you-need-to-know/

ReLU(x)  = 0, x < 0
               = x, x >= 0

x

ReLU(x)

https://www.cnet.com/how-to/apple-face-id-everything-you-need-to-know/
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x

f(x, W)
+1 = You

-1 = Bad guy

Two types of error: false accept and false reject f(x, W)

y
+1

-1

+1 -1

No Error

No Error

False reject

False accept

It’s you, but you 
can’t get in…

Letting an intruder in

Lin = ReLU[f(x, W)-y] + 10 ReLU[y-f(x, W)] 
 

Penalty for 
intruder

Large penalty for 
annoyance…

On a standard phone, what’s a good cost function?

https://www.cnet.com/how-to/apple-face-id-everything-you-need-to-know/

https://www.cnet.com/how-to/apple-face-id-everything-you-need-to-know/
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deep imagingCost functions matter: a simple example

x

f(x, W)
+1 = You

-1 = Bad guy

What if you’re a CIA agent? f(x, W)

y
+1

-1

+1 -1

No Error

No Error

It’s you, but you 
can’t get in…

Letting an intruder in

False reject

False accept

https://www.cnet.com/how-to/apple-face-id-everything-you-need-to-know/

https://www.cnet.com/how-to/apple-face-id-everything-you-need-to-know/
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deep imagingCost functions matter: a simple example

x

f(x, W)
+1 = You

-1 = Bad guy

What if you’re a CIA agent? f(x, W)

y
+1

-1

+1 -1

No Error

No Error

It’s you, but you 
can’t get in…

Letting an intruder in

Lin = 100,000 ReLU[f(x, W)-y] + ReLU[y-f(x, W)] 
 

BIG penalty 
for intruder

Don’t mind about 
annoyance…

False reject

False accept

https://www.cnet.com/how-to/apple-face-id-everything-you-need-to-know/

https://www.cnet.com/how-to/apple-face-id-everything-you-need-to-know/
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deep imagingCost functions matter: a simple example

x

f(x, W)
+1 = You

-1 = Bad guy

Establishing cost function tied to conditional probabilities: f(x, W)

y
+1

-1

+1 -1

No Error

No Error

It’s you, but you 
can’t get in…

Letting an intruder in

P(y = -1 | f(x,W) = +1)

P(y = +1 | f(x,W) = -1)

Establish L, W to 
balance and 
minimize these 
probabilities

False reject

False accept

https://www.cnet.com/how-to/apple-face-id-everything-you-need-to-know/

https://www.cnet.com/how-to/apple-face-id-everything-you-need-to-know/

