deep imaging

Lecture 6, Part 2: Ingredients for
Machine Learning

Machine Learning and Imaging

BME 548L
Roarke Horstmeyer

—v

Pipeline for machine learning deep imaging

Output: Input:
X
o y Model 3
u 4)
function
Estimation error (=== (== |y =W, x) —
L(y, Wx) - W = 227

1\ J 1

Changes for machine learning framework:

1. Now must establish the mapping from inputs to outputs (here, matrix W)

—v >

Pipeline for machine learning deep imaging

Output: Input: Training dataset
v Model X 7Ex xoyil Ex. Do,yel Ex. Dnyad)
Loss - e ~N N]
function
Estimation error <: <: y = f(W, x) <:
L(y, Wx) - W = 2?2 B E R
g J

TN - -/

Changes for machine learning framework:

1. Now must establish the mapping from inputs to outputs (here, matrix W)

2. Using large set of “training” data to first determine mapping f(x, W)

—v >

Pipeline for machine learning deep imaging

Output: Input: Training dataset
y Model X (Ex [yl Ex. [xeyel EX. Dy
Loss d e ~N N][]
function
Training error <: <: y = (W, x) <:
Lin(y, f(x, W)) - W = 227 R B B
_ J/

TN - -/

Changes for machine learning framework:

1. Now must establish the mapping from inputs to outputs (here, matrix W)
2. Using large set of “training” data to first determine mapping f(x, W)

3. To do so, use a loss function L that depends upon the training inputs (x,y) and the model (W)

— T

Pipeline for machine learning deep imaging

Estimation error Output: Training dataset
y Model /E_X-_[x1 Y1l EX. [x2,y5] E_X-_[xN,m
Loss il e ~N
function
Training error <: <: y = (W, x) <:
Lin(y, f(x, W)) - W = 22?2 R B B
_ J/
dL/dW f _ } -~

Changes for machine learning framework:

1. Now must establish the mapping from inputs to outputs (here, matrix W)
2. Using large set of “training” data to first determine mapping f(x, W)
3. To do so, use a loss function L that depends upon the training inputs (x,y) and the model (W)

4. Find optimal mapping (W) using the training data, guided by gradient descent on L

—v >

Pipeline for machine learning deep imaging

Output: Test dataset — Different from Training!
y* Model (Ex. Ixoyil Ex. [xyid
N 4)
G y*= f(x,W) - ces
- W optimized - -
- J

o -/

In a separate step, we then need to do the following to test the network:

1. Evaluate model accuracy by sending new x through — need new, unique data with label

— T

Pipeline for machine learning deep imaging

Estimation error Output: Test dataset — Different from Training!
y* Model /E_X-_[x‘l ’y1] E_X._[XK,yK]\
Loss - e ~N
function N
Test Error (== = |Y = f(x,W) (==
Lou(Y,Y¥) =2 (y - y*)? — W optimized B R
This is what we care about! - J K_ L /

In a separate step, we then need to do the following to test the network:

1. valuate model accuracy by sending new x through — need new, unique data with label
2. Compare output y* to known “test data” label y

3. Evaluate performance with an error equation L,

Example: machine learning for image classification

—v >

deep imaging

Correct labels for Output: Image Training data: labeled images
test images? class
° /Ex. Ixyil Ex. [xeal Ex. [xwynl)
y Model mlm 1 1
Training error et e ~
N o000
| —
L= N ZLi(f(xiaW)ayi) &= || & | y=f(W, x) - - -
= - N J
dL/dW f \U - -

Let’s consider a simple example — image classification. What do we need for training?

N

p=il=

1. Labeled examples {(T, yz)

Example: machine learning for image classification

q

?499949%3%94n174

https://en.wikipedia.org/wiki/MNIST database

MNIST image set: http://vann.lecun.com/exdb/mnist/

http://yann.lecun.com/exdb/mnist/
https://en.wikipedia.org/wiki/MNIST_database

—v

Example: MNIST image dataset deep imaging

X = 28x28 pixel matrix
x = vec[X] = 784-long vector

Linear model would require W = 784 element matrix

Start simple: use x = (X, X1, Xo) to describe intensity
and symmetry of image X

Linear model can now use smaller w = (wg, Wy, W)

[llustration of features 4»%

deep imaging

X = (1,21, T2) 21 intensity o symmetry

X1

Dataset: 1000 examples of 1’s and 5’s mapped to Xx; @(1,Xg), with associated label y; =1 or -1

This transforms wx+b into wx [WoWi W] |1 | =wg+ WX, + WrXy
X1

X3

Caltech Learning from Data: https://work.caltech.edu/telecourse.html

https://work.caltech.edu/telecourse.html

Example: machine learning for image classification

Correct labels with Output: Image

-

.

test dataset? class
y Model
Training error P
Y a
N
1
L= Li(flw,W),y) &5 || &1y =Wx
=1 L] 9)
/

J 1. Labeled examples

— 2. A model and loss function

N

=i |

Images and class labels

/E_X._[X-] Vi1l E_X-_[szyK]\

o

‘//

Let’s consider a simple example — image classification. What do we need for training?

(&%)

— T

deep imaging

Let’s start with a simpler approach: linear regression %@

— T

deep imaging

N
1
?,szl y i(
1 _
General linear model: L = N Z L; (sz'a yz) # cIassesI H) w
1=1
1 o y x
Assume 1 class = L= N Z Li(wTwi : yz) 1var. {[]=] |]
1 linear fit i=1 w'
1 N
rli]s(;%g?SE error [= N Z(waz _ %‘)2]
i=1 —1 ifx <0,
Where labels sgn(z) :=<¢ 0 ifz =0,
determined by f(Xz) — y;" — SgH(WTXi) 1 ifz > 0.

thresholding

—A
S
— =

deep imaging

Why does linear regression with sgn() achieve classification?

Without sgn(): regression for best fit

T
f(%i) = w X
N
y 1 Z 2
 If y; can be anything, minimizing L
makes w the plane of best fit
-wo/ |w|

Why does linear regression with sgn() achieve classification?

+1

—TT >

0
o
—_—

deep imaging

Without sgn(): regression for best fit

T
® f(X:) = w'x;
@ @
o o N
1
® o @ _ 2
o © N (w' z; — y;)
Project to -1 or +1 -
° i * y;canonly be -1 or +1, which
¢ ® defines its class
® o° o ©
@

—A
S
— =

deep imaging

Why does linear regression with sgn() achieve classification?

Without sgn(): regression for best fit

f(x:) = w'x;

1 N
—Nzw i — i)

+1

* y;canonly be -1 or +1, which
defines its class

« Can still find plane of best fit

—TT >

P-o)
A
—
deep imaging

Why does linear regression with sgn() achieve classification?

With sgn() operation:

f(x:) = y; = sgn(w'x;)
+1
] o ,
. =~ Z w'z; — y;)
O i1

* Anything point to one side of y=0
intersection is class +1, anything on
the other side of intersection is
class -1

L+ 40 |- 0] paloaloid

Why does linear regression with sgn() achieve classification?

With sgn() operation:

—TT >

0
o
—_—

deep imaging

® f(x:) = yi = sgn(w'x;)
1 o ®
® — xT 0 0
0

* yaxis isn’t really need

ed now & can

view this decision boundary in 2D

—TT >

P-o)
A
—
deep imaging

Why does linear regression with sgn() achieve classification?

With sgn() operation:

f(x;) = y; = sgn(w" x;)

1 N
—Nzw i — i)

Linear classification
boundary

Sign operation takes linear regression
and makes it a classification operation!

Linear regression boundary 4,%

deep imaging

Symmetry

Average Intensity

Caltech Learning from Data: https://work.caltech.edu/telecourse.html

https://work.caltech.edu/telecourse.html

Example: machine learning for image classification

Correct labels with Output: Image

test dataset? class

y

, Training error i
1

L=+ Z(’le’z’ — yi)? -

=1
| / dL/dW

J Model
-

y = sign(wTx)

\

~N

J

\ I

1. Labeled examples

/ 2. A model and loss function

—— 3. A way to minimize the loss function L

Images and class labels

/E_X._[X-] Vi1l E_X-_[szyK]\

o

/

Let’s consider a simple example — image classification. What do we need for training?

— T

deep imaging

—tT >

— P

deep imaging

3 methods to solve for w' in the case of linear regression:

(easier) 1. Pseudo-inverse (this is one of the few cases with a closed-form solution)

2. Numerical gradient descent

v 3. Gradient descent on the cost function with respect to W
(harder)

—tT >

— P

deep imaging

3 methods to solve for w' in the case of linear regression:

(easier) | 1. Pseudo-inverse (this is one of the few cases with a closed-form solution)

2. Numerical gradient descent

v 3. Gradient descent on the cost function with respect to W
(harder)

— P

deep imaging

1. Turning linear regression for unknown weights W into a pseudo-inverse:

1 N
[= N Z;(wTacz — yZ)Q

We are multiplying many x;’s with the same w and are adding them up - let’s make a matrix!

1. Turning linear regression for unknown weights W into a pseudo-inverse:

1 N
[= N Zl(’wTwz — yz)z

We are multiplying many x;’s with the same w and are adding them up - let’s make a matrix!

Each training
image is 1 row
of X

Y1

YN

Each training
label is 1 entry
of y

—v >

deep imaging

1. Turning linear regression for unknown weights W into a pseudo-inverse:

1 N
[= N Z;(waz — yz)2

— T

deep imaging

We are multiplying many x;’s with the same w and are adding them up - let’s make a matrix!

X1 Each training
X = X2 image is 1 row
of X
XN

1
L= N I Xw —yl|”

Y1

YN

Each training
label is 1 entry
of y

This is the same form as the pseudo-inverse we were
working with before, but now we want to solve for w

—v =
deep imaging

Note: Training data goes

1 2
Write this out as a matrix equation: L = N ||Xw — y|| into “dictionary” matrix

1
L= (W XT Xw — 207 XTy + yy")

—
¥
WL
deep imaging

Note: Training data goes

1 2
Write this out as a matrix equation: L = ||Xw — y|| into “dictionary” matrix

Y

1
L = ~ (w' X" Xw — 2w X'y + yy")

Take derivative wrt w and set to O: VL(w) o EXT (Xw — y) =0

N

Solution is pseudo-inverse: w, = (XTX) _1XTy

— AW,

0
o
—_—

deep imaging

Note: Training data goes

1 2
Write this out as a matrix equation: L = ||Xw — y|| into “dictionary” matrix

Y

1
L= (W XT Xw — 20T X Ty + yy")
2

Take derivative wrt w and set to O: VL(w) o NXT (Xw — y) =0
Solution is pseudo-inverse: w, = (XTX)_lXTy
Steps for Pseudo-inverse: 1. Construct matrix X and vector y from data

Each training image is 1 row of X

Each training label is 1 entry of y

2. Compute solution for wy via above equation

6=
Example pseudo-code

deep imaging
data = np.loadtxt('train data.txt', dtype=int)
X = numpy.zeros((data.shape[0],data.shape[l]-1))
X[:,0]1=1
Y = numpy.zeros((data.shape[0],1))
for row in m:
X[row,l:X.shape[l]-1] = data[row,0O:data.shape[1l]:1]
Y[row] = data[row,data.shape[l]-1]
X dagger = np.linalg.pinv(X)
w = np.matmul (X dagger,Y)

Data: X Y

Images ones

S|=qe|

—tT >

— P

deep imaging

3 methods to solve for w' in the case of linear regression:

(easier) 1. Pseudo-inverse (this is one of the few cases with a closed-form solution)

2. Numerical gradient descent

v 3. Gradient descent on the cost function with respect to W
(harder)

Gradient descent: The iterative recipe][%

deep imaging

Initialize: Start with a guess of W

Until the gradient does not change very much: evaluate_gradient can
dL/dW = evaluate_gradient(W, x ,y ,L) be achieved numerically
W = W — step_size * dL/dW or algebraically
W_2

original W

S

negative gradient direction

Gradient descent: Numerical evaluation example *§

deep imaging

With a matrix, compute this for each entry:

L(W; + h) — L(W;)

Gradient descent: Numerical evaluation example *§

deep imaging

With a matrix, compute this for each entry:

L(W; + h) — L(W;)

Example:

=[1,2;3,4]
L(W, x,y) =12.79

Gradient descent: Numerical evaluation example *§

deep imaging

Example:

=[1,2;3,4] W,+h =[1.001,2;3,4]
L(W, x,y) =12.79 L(Wi+h, x,y) =12.8

Gradient descent: Numerical evaluation example 4§

deep imaging

With a matrix, compute this for each entry:

dL(W;) lim L(W; + h) — L(W;)
dW; h—0 h
Example:
W =11,2;3,4] W,+h =[1.001,2;3,4] dL(W,)/dW; = 12.8-12.79/.001

L(W, x,y) =12.79 L(Wi+h, x,y) =12.8

dL(W,)/dW, = 10

Gradient descent: Numerical evaluation example 4§

deep imaging

With a matrix, compute this for each entry:

dL(Wi) _ . L(Wi+h) — L(W;)
dW; N h—0 h
Example:
W =[1,2;3,4] W,+h =[1.001,2;3,4] dL(W;)/dW, = 12.8-12.79/.001

L(W, x,y) =12.79 L(Wi+h, x,y) =12.8

dL(W,)/dW, = 10

- Repeat for all entries of W, dL/dW will have NxM entries for NxM matrix
- This is a “brute force” approach — not ideal, but sometimes helpful

Some quick details about gradient descent

For non-convex functions,
local minima can obscure the
search for global minima

Analyzing critical points
(plateaus) of function of
interest is important

f(=)

This local minimum
performs nearly as well as
the global one,

so it is an acceptable
halting point.

Ideally, we would like
to arrive at the global

minimum, but this
might not be possible.

This local minimum performs
poorly and should be avoided.

—TT >

0
o
—_—

deep imaging

Some quick details about gradient descent

For non-convex functions,
local minima can obscure the
search for global minima

Analyzing critical points
(plateaus) of function of
interest is important

Critical points at df/dx =0
2nd derivative d2f/dx? tells us

the type of critical point:

« Minima at d2f/dx2 > 0
« Maxima at d2f/dx2 <0

f(=)

Ideally, we would like

minimum, but this

to arrive at the global

might not be possible.

This local minimum
performs nearly as well as
the global one,

so it is an acceptable
halting point.

This local minimum performs

poorly and should be avoided.

—TT >

0
o
—_—

deep imaging

Minimum

T
Maximum Saddle point

N

/N

— T

Some quick details about gradient descent deep imaging
Often we’ll have functions of m variables

f:R" =R (eg.,f(x) =2 (Ax-y)?)

We take partial derivatives % f(a:) and put them in gradient vector g= wa(a;)

— T

Some quick details about gradient descent deep imaging

Often we’ll have functions of m variables

f:R" =R (eg.,f(x) =2 (Ax-y)?)

We take partial derivatives % f (CE) and put them in gradient vector g= wa(a;)

82
8:132-8:133-

We have many second derivatives: H(f)(x)i; = f(x) Hessian Matrix

— T

Some quick details about gradient descent deep imaging

Often we’ll have functions of m variables

f:R" =R (eg.,f(x) =2 (Ax-y)?)

We take partial derivatives % f (CE) and put them in gradient vector g= wa(a;)

82
8:132-8:133-

We have many second derivatives: H(f)(x)i; = f(x) Hessian Matrix

In general, we’ll have functions that map m variables to n variables

f :R™— R? (e.g., f(x) = Wx, W is n x m)

JeRW>Xmof £f: Jij= B_mjf(w)z Jacobian Matrix

e

QUiCk example deep imaging

e

QUiCk example deep imaging

e

QUiCk example deep imaging

g = 2X1 2 O
'2X2 O _2

« Convex functions have positive semi-definite Hessians (Trace >= 0)

« Trace/eigenvalues of Hessian are useful evaluate critical points & guide optimization

Steepest descent and the best step size €

1. Evaluate function f(x©) at an initial guess point, x©
2. Compute gradient g = V,f(x©)
3. Next point xM = x© - g0gO)

4. Repeat — x"1) = x - gMg®, until |x*+)-x"| < threshold t

while previous step size > precision and iters < max iters:

prev_x = cur_ X
cur x -= epsilon * df(prev_x)
previous step size = abs(cur _x - prev_Xx)

**Update epsilon — see next slide

iters+=1

—TT >

—v

deep imaging

Steepest descent and the best step size €

1. Evaluate function f(x©) at an initial guess point, x©
2. Compute gradient g© = V,f(x©)
3. Next point x" = x© - g0gO)

4. Repeat: x*+1) = x - ghig™ yntil [x"+1)-x0)| < threshold t

while previous step size > precision and iters < max iters:

prev_x = cur_Xx

We computed this — computers can too
in interesting ways

deep imaging

-

VL(w)

| N
L:Ngw T; —

~

cur X -= epsilon * df(prev_x) <
previous step size = abs(cur_x - prev_Xx)

**Update epsilon - see next slide

iters+=1

—tT >

— P

Steepest descent and the best step size € deep imaging

What is a good step size £M?

—tT >

— P

Steepest descent and the best step size € deep imaging

What is a good step size £M?

To find out, take 2"d order Taylor expansion of f (a good approx. for nearby points):

f@) ~ f(@®) + (@ - 2®) g+ = (@ —) H(z — =)

2

—tT >

— P

Steepest descent and the best step size € deep imaging

What is a good step size £M?

To find out, take 2"d order Taylor expansion of f (a good approx. for nearby points):

f@) ~ f@) + (@ —2P)Tg+ L (z — 2" H(z —)

2
Then, evaluate at the next step:

f@ — g) ~ f(a%) ~ g g+, 29 Hy

—tT >

—v >

Steepest descent and the best step size € deep imaging

What is a good step size £M?

To find out, take 2"d order Taylor expansion of f (a good approx. for nearby points):

f@) ~ f@) + (@ —2P)Tg+ L (z — 2T H(z — 29)

2
Then, evaluate at the next step:

f@ — g) ~ f(a%) ~ g g+, 29 Hy

Solve for optimal step (when Hessian is positive): | € =

J. R. Shewchuck, “An Introduction to the Conjugate Gradient Method Without the Agonizing Pain”

https://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf

—tT >

—v >

deep imaging

3 methods to solve for w' in the case of linear regression:

(easier) 1. Pseudo-inverse (this is one of the few cases with a closed-form solution)

2. Numerical gradient descent

v 3. Gradient descent on the cost function with respect to W
(harder)

Next : We’ll understand why linear regression
doesn’t work so well, and extend things beyond
this simple starting point

— AW,

0
o
—_—

The linear classification model — what’s not to like? deep imaging
Output
y* Model (Ex. [xoys] Ex. [xeyid
Training error ~ r ~N][]]
Training
Ln =1l Wx - y[12] ¢=2 || 4= | y*=Wx | &= Pata

dUdw o 1 g N - /

The linear classification model — what’s not to like?

Training error

Lin =1l Wx - y||?

Output
y*

-

Model
~N
yv* = WX
J

/E_X._[X1 ,y1] E_X-_[XK,yK]\

e

deep imaging

Training
Data

1. Can only separate data with lines (hyper-planes)...

The linear classification model — what’s not to like?

Training error

Lin =1l Wx - y||?

Output
y*

-

Model
~N
yv* = WX
J

/E_X._[X1 ,y1] E_X-_[XK,yK]\

— AW,

0
o
—_—

deep imaging

Training
Data

1. Can only separate data with lines (hyper-planes)...

2. We only allowed for binary labels (y = +/- 1)

The linear classification model — what’s not to like?

Training error

Lin =1l Wx - y||?

Output
y*

— AW,

0
o
—_—

deep imaging

-

Model 4 EX. [x1,y4] E_X-_[XK,yK]\
) Training
y* = Wx | <= Data
T

1. Can only separate data with lines (hyper-planes)...

2. We only allowed for binary labels (y = +/- 1)

3. Error function L, inherently makes assumptions
about statistical distribution of data

e

Cost functions matter: a simple example deep imaging

+1 = You

-1 = Bad guy

https://www.cnet.com/how-to/apple-face-id-everything-you-need-to-know/

https://www.cnet.com/how-to/apple-face-id-everything-you-need-to-know/

e

Cost functions matter: a simple example deep imaging

+1 = You
fix, W) ——
-1 = Bad guy
Two types of error: false accept and false reject f(x, W)
+1 -1
+1 No Error False reject
(you/you)
y No Error
-1 False accept| (bad guy/
bad guy)

https://www.cnet.com/how-to/apple-face-id-everything-you:need-to-know/

https://www.cnet.com/how-to/apple-face-id-everything-you-need-to-know/

Cost functions matter: a simple example

Two types of error: false accept and false reject

On a standard phone, what’s a good cost function?

https://www.cnet.com/how-to/apple-face-id-everything-you:need-to-know/

+1

-1

e

deep imaging

+1 = You

f(x, W) ——

-1 = Bad guy

f(x, W)

+1

-1

No Error

It’s you, but you

False reject | getin...

False accept

N

No Error

Letting an intruder in

https://www.cnet.com/how-to/apple-face-id-everything-you-need-to-know/

Cost functions matter: a simple example

Two types of error: false accept and false reject

On a standard phone, what’s a good cost function?

ReLU(x)
RelLU(x) =0,x<0
=x,Xx>=0

https://www.cnet.com/how-to/apple-face-id-everything-you:need-to-know/

e

deep imaging

+1 = You
fx, W) ———

-1 = Bad guy

f(x, W)
+1 -1

It’s you, but you

+1 No Error False reject can’t get in...

F No Error

N

Letting an intruder in

https://www.cnet.com/how-to/apple-face-id-everything-you-need-to-know/

e

Cost functions matter: a simple example deep imaging

+1 = You
fx, W) ———

-1 = Bad guy

Two types of error: false accept and false reject f(x, W)
+1 -1
On a standard phone, what’s a good cost function?
No E Eal oct It’s you, but you
O Error aise rejec ’ .
Lin = ReLUIf(x, W)-y] + 10 ReLU[y-f(x, W)] + can’t get in...
y
Penalty for Large penalty for
intruder annoyance... -1 F<Ise a@ No Error

https://www.cnet.com/how-to/apple-face-id-everything-you-need-to-know/ Lettmg an intruder in

https://www.cnet.com/how-to/apple-face-id-everything-you-need-to-know/

Cost functions matter: a simple example

What if you’re a CIA agent?

https://www.cnet.com/how-to/apple-face-id-everything-you:need-to-know/

+1

-1

e

deep imaging

+1 = You

-1 = Bad guy

f(x, W)

+1

-1

No Error

It’s you, but you

False reject | getin...

False accept

N

No Error

Letting an intruder in

https://www.cnet.com/how-to/apple-face-id-everything-you-need-to-know/

Cost functions matter: a simple example

What if you’re a CIA agent?

L, = 100,000 ReLUI[f(x, W)-y] + ReLU[y-f(x, W)]

BIG penalty Don’t mind about
for intruder annoyance...

https://www.cnet.com/how-to/apple-face-id-everything-you:need-to-know/

e

deep imaging

+1 = You

-1 = Bad guy

f(x, W)

+1

-1

+1 No Error

It’s you, but you

False reject | getin...

-1 | False accept

N

No Error

Letting an intruder in

https://www.cnet.com/how-to/apple-face-id-everything-you-need-to-know/

e

Cost functions matter: a simple example deep imaging

+1 = You
fix, W) ——
-1 = Bad guy
Establishing cost function tied to conditional probabilities: f(x, W)
+1 -1
Py = -1 f(x,W) = +1) Establish L, W to .1 | NoEror glse reject)| o /O PUEYOu
balance and y can't get In...
.~ minimize these

Py = +1 | f(x,W) = -1) probabilities 1 lee a@ No Erfor

https://www.cnet.com/how-to/apple-face-id-everything-you-need-to-know/ Lettmg an intruder in

https://www.cnet.com/how-to/apple-face-id-everything-you-need-to-know/

