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Continuous
complex fields

(last class)

Black box transformations
• Convolution
• Fourier Transform

(last class)

Digitization 

Sampling Theorem

Discrete math & 
Linear algebra

Machine Learning

(this class)

Optimization

Linear classification

Logistic classifier

Neural networks

Convolutional NN’s

ML+Imaging pipeline introduction

γ -> e-

Month 2 Month 3

(next few weeks)
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Additional Details:
• Goodman Chapter 2.1
• Mathworld/Wikipedia, Fourier Transform

U is absolutely integrable & no infinite discontinuities. The inverse Fourier transform is, 

Decomposition of a signal into elementary functions of form, :

Review - continuous Fourier transforms – for 2D images
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U1(x,y) U2(x,y)
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Û1(fx, fy)

Û2(fx, fy)
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“The convolution of two functions in space can be performed by a 
multiplication in the Fourier domain (spatial frequency domain)”
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U1(x)

x

U2(x)=sinc(ax)

x
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U1(x)

F [U1]

Û1(fx)

x

U2(x)=sinc(ax)

x

•

F [U2]

fx fx

Û2(fx) = rect(fx/a)
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U1(x)

F [U1]

Û1(fx)

x

U2(x)=sinc(ax)

x

•

F [U2]

fx fx

Û2(fx) = rect(fx/a)

fx

=
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U1(x)

F [U1]

Û1(fx)

F -1[Û2Û1]

x

=

U2(x)=sinc(ax)

x

•

U1(x) * U2(x)

F [U2]

fx

x

fx

Û2(fx) = rect(fx/a)

fx

=
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Conceptual questions: 

2. Repeat with wider convolution filter:

U(x) h(x)

=

Û(fx)

•

H(fx)

fx0

x0 x

fx

x

fx
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Conceptual questions: 

2. Repeat with wider convolution filter:

U(x) h(x)

=

Û(fx)

•

H(fx)

fx0

x0 x

fx

x

fx

Flatter/more ”blurred”

NARROWER NARROWER
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Real World
Measurement device

Digitization 
Machine LearningML+Imaging pipeline introduction

γ -> e-
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Signal sampling occurs with:

- CMOS (pixel) sensors, PMTs, SPADs
- A-to-D after antennas
- A-to-D after acoustic transducers

Sampling interval width X and Y
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Signal sampling occurs with:

- CMOS (pixel) sensors, PMTs, SPADs
- A-to-D after antennas
- A-to-D after acoustic transducers

Sampling interval width X and Y
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Signal extends from (-Bx, -By) 
to (Bx, By) in Fourier domain
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Signal extends from (-Bx, -By) 
to (Bx, By) in Fourier domain Bandwidth (Bx, By) of signal 

Mask out copies with a rect function:
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Signal extends from (-Bx, -By) 
to (Bx, By) in Fourier domain

•
Mask out copies with a rect function:
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F [•] F [•]
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F [•]
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F [•]
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F [•]
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F [•]
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F [•]

Us(x,y) (from beginning) = 
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Continuous signal: 
- EM field
- Sound wave
- MR signal

Discretized signal: 
- Detected EM field
- Sampled sound wave
- Sampled MR signal

The Sampling Theorem

When sampled appropriately, a discrete signal can exactly reproduce a continuous signal:
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Continuous fields
Discretize vectors 

(and matrices)
17

20

22

21

23

25

24

26

29

(*) Under certain 
conditions

*
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• Sampling must be proportional to bandwidth (2Bx and 2By)
• “Nyquist” sampling: X = 1/2Bx, Y = 1/2By
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• Sampling must be proportional to bandwidth (2Bx and 2By)
• “Nyquist” sampling: X = 1/2Bx, Y = 1/2By

x

U(x)comb(x/X)

Interval width X

X < 1/2Bx
 

Half-period ~ 1/2Bx

(Assume largest spatial 
freq. in signal here)
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• Sampling must be proportional to bandwidth (2Bx and 2By)
• “Nyquist” sampling: X = 1/2Bx, Y = 1/2By

x

U(x)comb(x/X)

Interval width X

X = 1/2Bx
 

Half-period ~ 1/2Bx

Nyquist sampling – still 
sampling peak and trough 

(Assume largest spatial 
freq. in signal here)
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• Sampling must be proportional to bandwidth (2Bx and 2By)
• “Nyquist” sampling: X = 1/2Bx, Y = 1/2By

x

U(x)comb(x/X)

Interval width X

X > 1/2Bx
 

Half-period ~ 1/2Bx

Can’t detect the frequency 
anymore!

(Assume largest spatial 
freq. in signal here)
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• Sampling must be proportional to bandwidth (2Bx and 2By)
• “Nyquist” sampling: X = 1/2Bx, Y = 1/2By
• Needed to avoid aliasing

x x

U(x) U(x)comb(x/X)

Interval width X

F [ ] fx

1/X > 2Bx
 

2Bx
Û(fx)

X < 1/2Bx
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• Sampling must be proportional to bandwidth (2Bx and 2By)
• “Nyquist” sampling: X = 1/2Bx, Y = 1/2By
• Needed to avoid aliasing

x x

U(x) U(x)comb(x/X)

Longer interval X

F [ ] fx

1/X = 2Bx
 

2Bx
Û(fx)

X = 1/2Bx
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• Sampling must be proportional to bandwidth (2Bx and 2By)
• “Nyquist” sampling: X = 1/2Bx, Y = 1/2By
• Needed to avoid aliasing

x x

U(x) U(x)comb(x/X)

Even longer interval X

F [ ] fx

1/X < 2Bx
 

2Bx
Û(fx)

X > 1/2Bx

Problem: 
signal 
“overlaps” 
(aliasing)
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• We’ll (try to) write column vectors as lower case variables

• Row vectors will be denoted as the transpose

• We’ll try to write matrices as upper case variables

• We’ll try to denote if a matrix/vector is real, complex etc. and its size with a certain notation
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Some basic vector operations you should know:

• Conjugate, transpose, conjugate transpose

• Inner product

• Hadamard (element-wise, dot-times) product

• outer product

• Vector (matrix) addition

• matrix-vector product

• convolution
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1 2 3

4 5 6

7 8 9

10

11

12

68

=
10

11

12

T u
1 2 3

T(1,:) v

1. Inner products per entry:

u
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1 2 3

4 5 6

7 8 9

10

11

12

68

167 =
10

11

12

T u
4 5 6

T(2,:) v

1. Inner products per entry:

u
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1 2 3

4 5 6

7 8 9

10

11

12

68

167

266
=

10

11

12

T u
7 8 9

T(3,:) v

1. Inner products per entry:

u
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1 2 3

4 5 6

7 8 9

10

11

12

68

167

266
=

T uv

1. Inner products per entry:

2. Weighted column sum:
68

167

266

v

3

6

9

T(:,3)

12

1

4

7

T(:,1)

10= +
2

5

8

T(:,2)

11 +
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Discrete convolution
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Discrete 1D Convolution – an example

http://host.uniroma3.it/laboratori/sp4te/teaching/sp4bme/documents/LectureConvolution.pdf
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http://host.uniroma3.it/laboratori/sp4te/teaching/sp4bme/documents/LectureConvolution.pdf
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y: 9
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y: 9 6+3
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y: 9 6+3 3+2+6
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y: 9 6+3 3+2+6 1+4+0
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y: 9 6+3 3+2+6 1+4+0

y: 9 9 11 5 2 0[ ]
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Discrete convolution Discrete 2D convolution
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https://www.psi.toronto.edu/~jimmy/ece521/Tut1.pdf

Discrete 2D convolution



Machine Learning and Imaging – Roarke Horstmeyer (2024)

deep imaging
Discrete 2D convolution: edge conditions and even kernels

i=1, j=1: Start in the upper left corner at A(1,1) with lower right of flipped version of B [B(1,1)]:

From MATLAB definition of conv2:

- For corner-to-corner 
alignment, doesn’t matter 
if matrix size is even or 
odd

- Output matrix will be 
larger than input matrices

Output: 8 x 8
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Discrete 2D convolution: edge conditions and even kernels

From Tensorflow definition of conv2:

Start convolution kernel inside image: align upper-left of image 
A with upper right of kernel B

• Output matrix will be smaller than input image and filter

• We will work through these numbers carefully!
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Some basic types of matrices & terms that you should know about:

• Symmetric (Hermitian) matrix: A=AT if A is real, A=AH if A is complex

• Square, hot-dog and hamburger matrices

• Invertible matrix 

• Diagonal matrix

• Toeplitz matrix

• Banded matrix
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• np.fft(u), np.fftshift(np.fft(np.ifftshift(u)))
• fft = fast Fourier transform, much more comp. efficient than matrix multiplication!

FT Matrix uû

=

fx=0

Inner product of u with different complex expon.
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• np.fft(u), np.fftshift(np.fft(np.ifftshift(u)))
• fft = fast Fourier transform, much more comp. efficient than matrix multiplication!

FT Matrix uû

=
fx=1

Inner product of u with different complex expon.
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• np.fft(u), np.fftshift(np.fft(np.ifftshift(u)))
• fft = fast Fourier transform, much more comp. efficient than matrix multiplication!

FT Matrix uû

=
fx=2

Inner product of u with different complex expon.

…
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np.fft(np.eye(10))

Treats 1st entry of û as fx=0

FT Matrix, θ uû

=
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FT Matrix, θ uû

=

np.fftshift(np.fft(np.ifftshift(np.eye(10)))))

Treats middle entry of û as fx=0
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Discrete convolution theorem example –same thing as continuous case

U1(x,y) U2(x,y)=
Input image Output image

Convolution filter h

F [U1]
F [h]

Û1(fx,fy)

Input 
spectrum 

• =

F -1[HÛ1]
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u

u1
u2
u3

un
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Last thing – matrix and vector derivatives

• When confused, write out one entry, solve derivative and generalize

• Use dimensionality to help (if x has N elements, and y has M, then dy/dx must be NxM

• Take advantage of The Matrix Cookbook:

• https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
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• https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
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Last thing – matrix and vector derivatives

• When confused, write out one entry, solve derivative and generalize

• Use dimensionality to help (if x has N elements, and y has M, then dy/dx must be NxM

• Take advantage of The Matrix Cookbook:

• https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf


