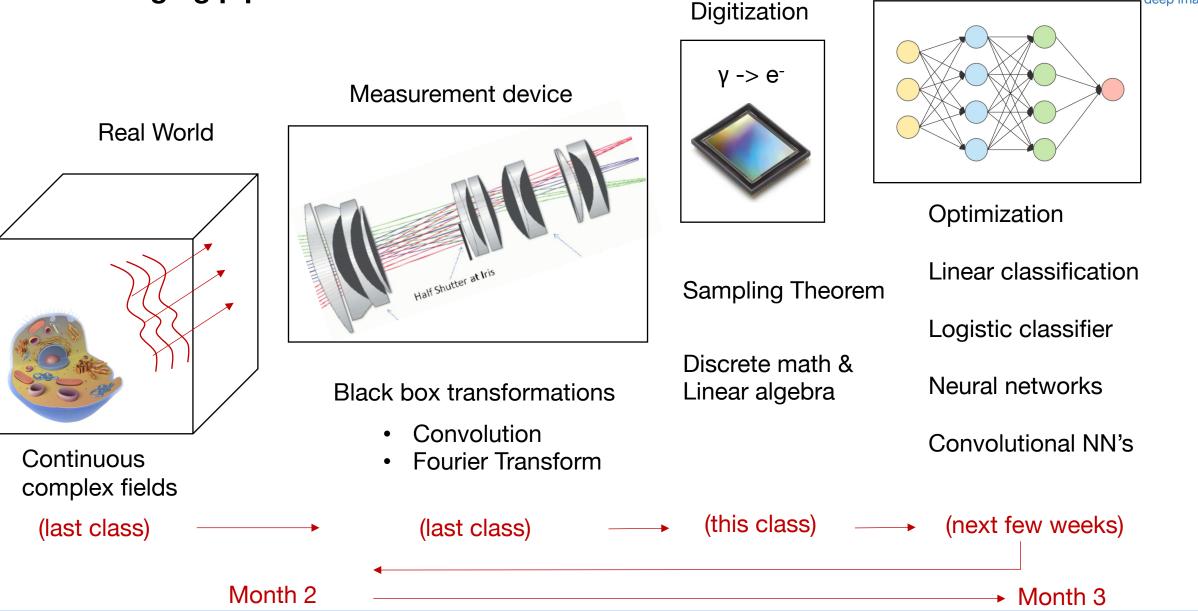


Lecture 4: Mathematical preliminaries for discrete functions

Machine Learning and Imaging

BME 548L Roarke Horstmeyer

Machine Learning and Imaging – Roarke Horstmeyer (2024



Machine Learning

deep imaging

ML+Imaging pipeline introduction

Machine Learning and Imaging – Roarke Horstmeyer (2024

Review - continuous Fourier transforms – for 2D images

Decomposition of a signal into elementary functions of form, $\exp\left(-2\pi i(f_x x + f_y y)\right)$:

$$\mathcal{F}\{U(x,y)\} = \hat{U}(f_x, f_y) = \iint_{-\infty}^{\infty} U(x,y) \exp\left(-2\pi i(f_x x + f_y y)\right) dx \, dy$$

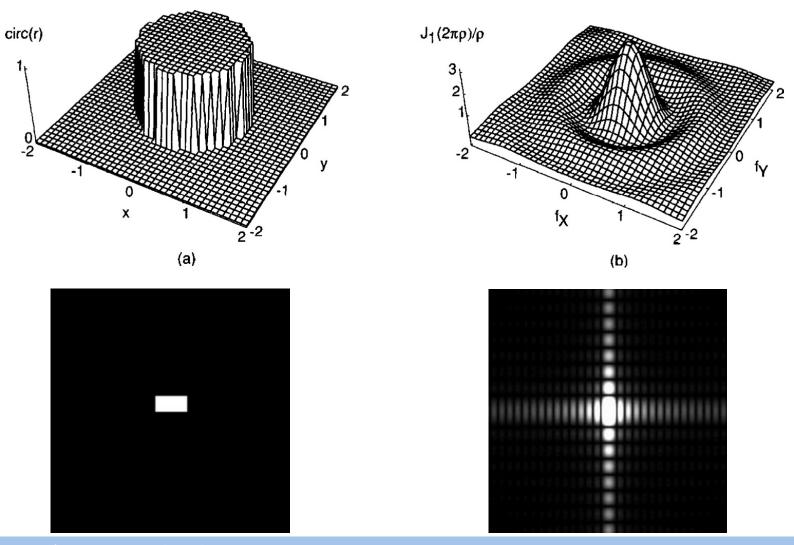
U is absolutely integrable & no infinite discontinuities. The inverse Fourier transform is,

$$\mathcal{F}^{-1}\{\hat{U}(f_x, f_y)\} = U(x, y) = \iint_{-\infty}^{\infty} \hat{U}(f_x, f_y) \exp(2\pi i (f_x x + f_y y)) \, df_x \, df_y$$

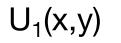
Additional Details:

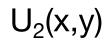
- Goodman Chapter 2.1
- Mathworld/Wikipedia, Fourier Transform

Examples of Fourier transform pairs, 2D

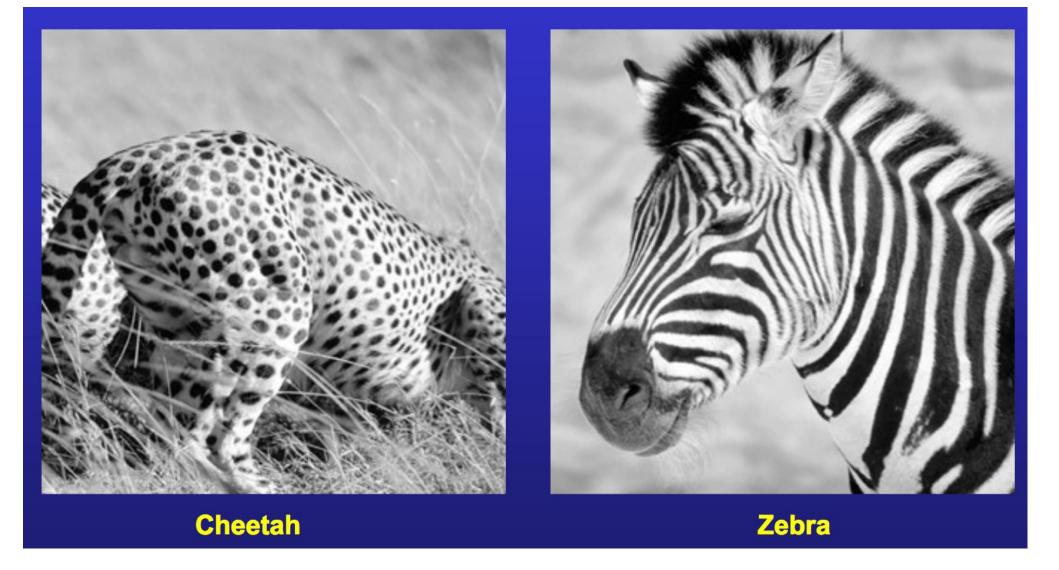


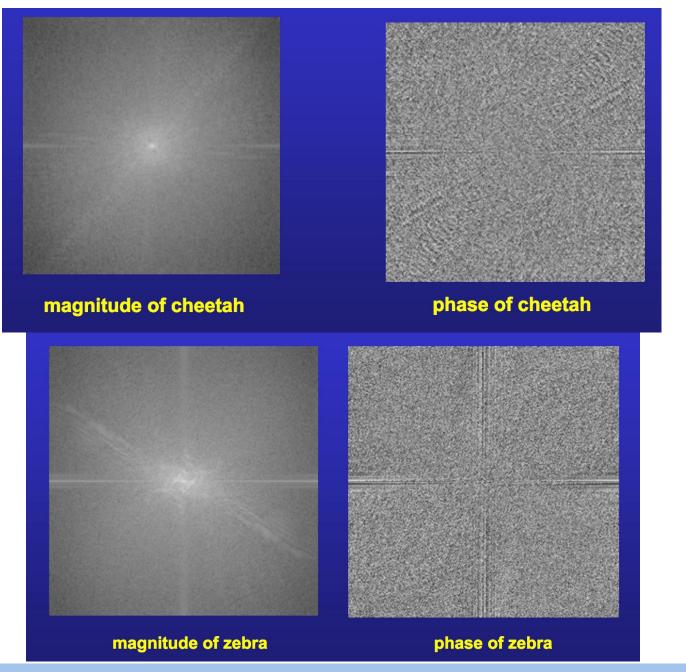
Machine Learning and Imaging – Roarke Horstmeyer (2024)



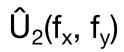


deep imaging





$\hat{U}_1(f_x, f_y)$

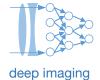


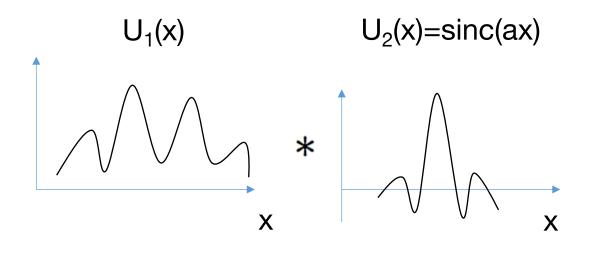
Convolution - Fourier Transform relationship: Convolution Theorem

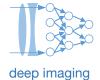
Convolution theorem. If $\mathcal{F}\{g(x, y)\} = G(f_X, f_Y)$ and $\mathcal{F}\{h(x, y)\} = H(f_X, f_Y)$, then

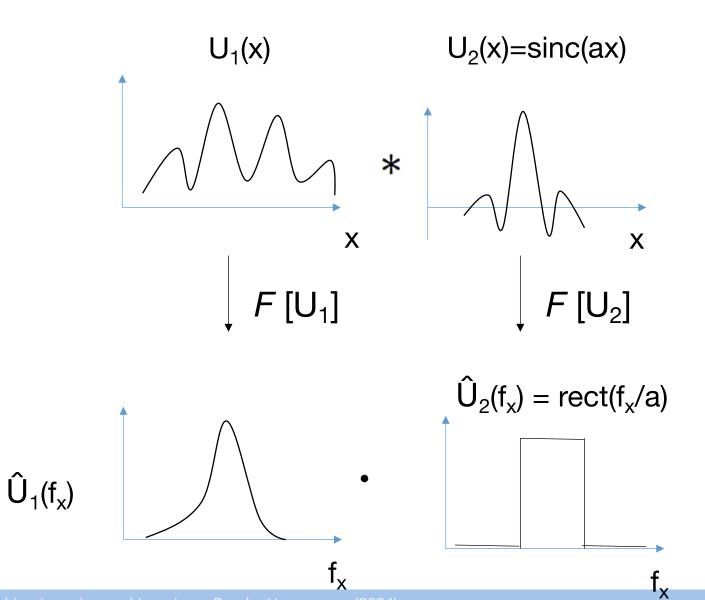
$$\mathcal{F}\left\{\iint_{-\infty}^{\infty}g(\xi,\eta)\ h(x-\xi,y-\eta)\ d\xi\ d\eta\right\}=G(f_X,f_Y)H(f_X,f_Y).$$

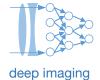
"The convolution of two functions in space can be performed by a multiplication in the Fourier domain (spatial frequency domain)"

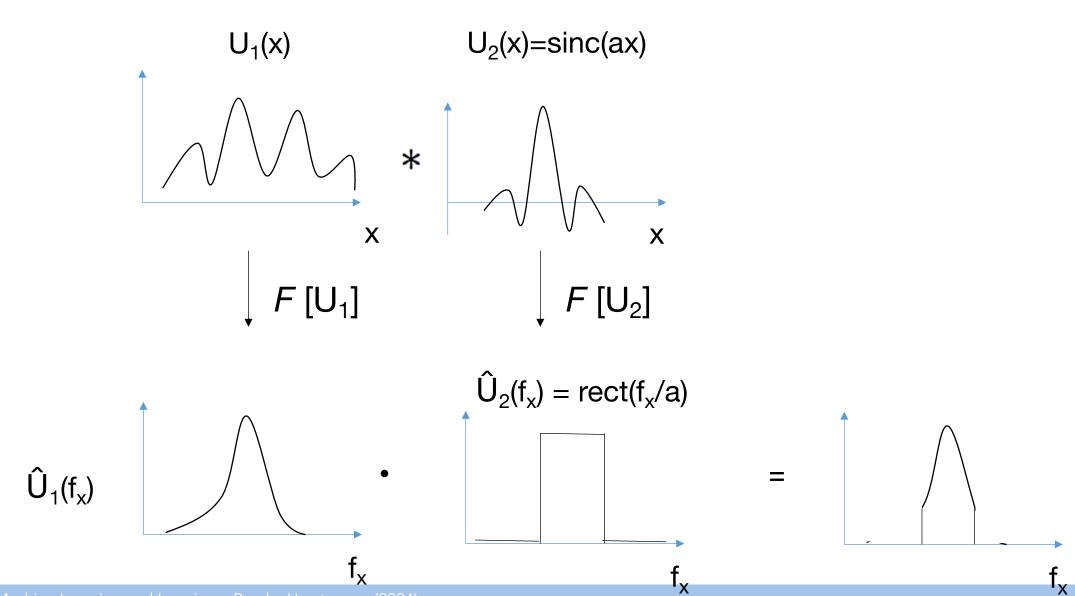


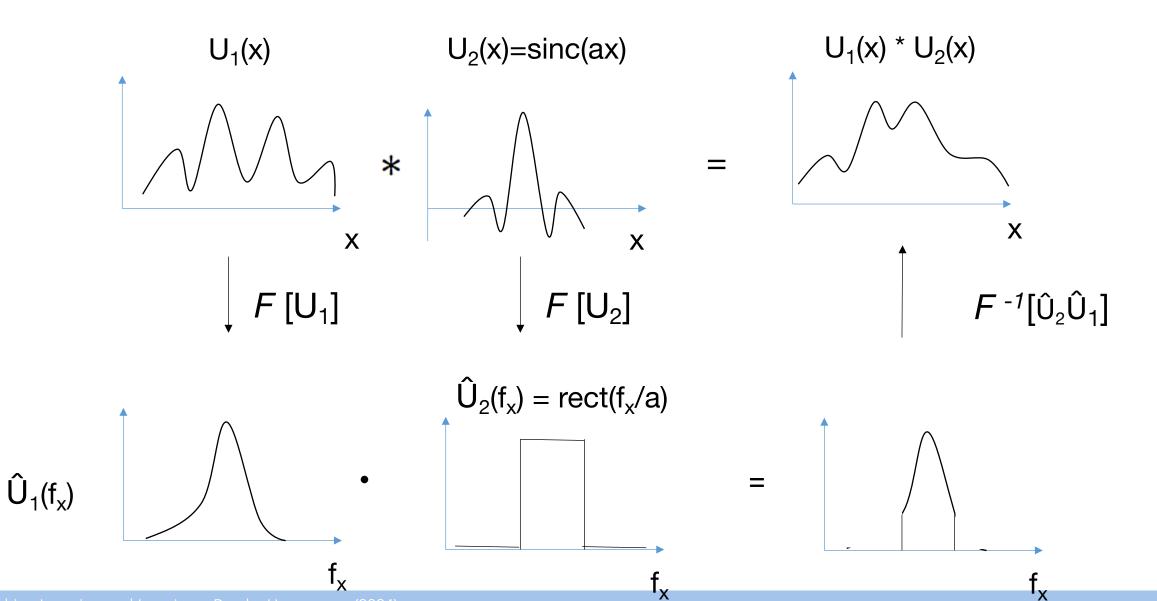








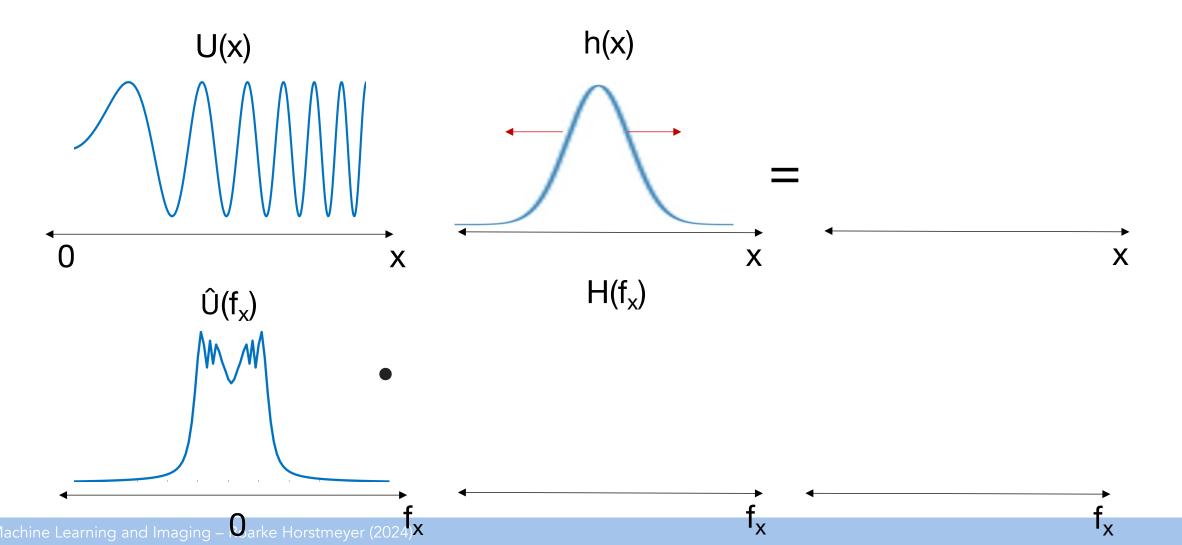




Machine Learning and Imaging – Roarke Horstmeyer (2024)

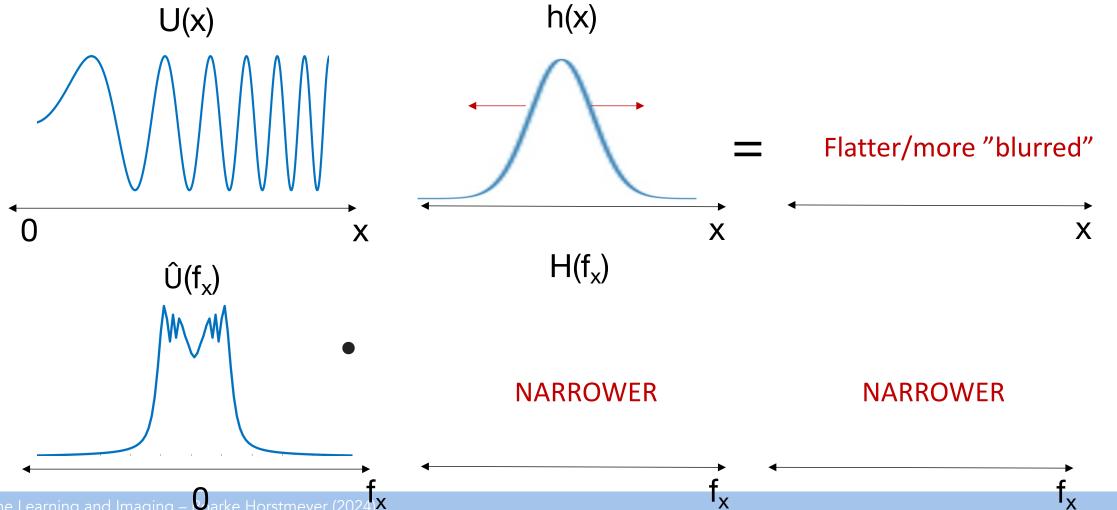
Conceptual questions:

2. Repeat with wider convolution filter:



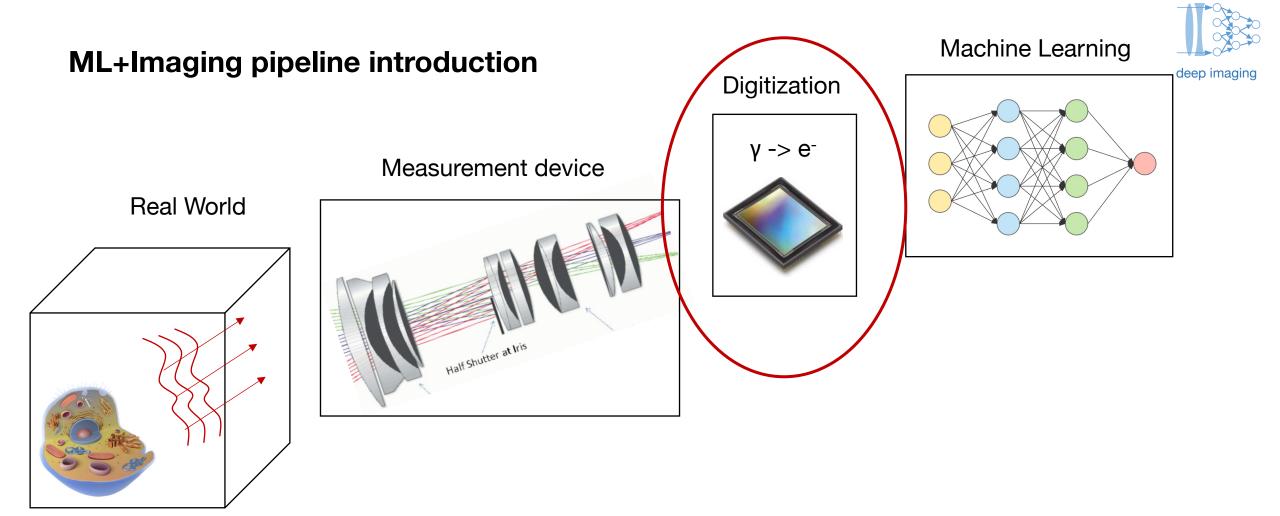
Conceptual questions:

2. Repeat with wider convolution filter:

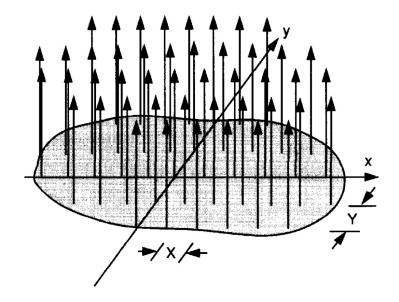


deep imaging

Qarke Horstmeyer (2024)X



$$U_s(x,y) = \operatorname{comb}(x/X)\operatorname{comb}(y/Y)U(x,y)$$

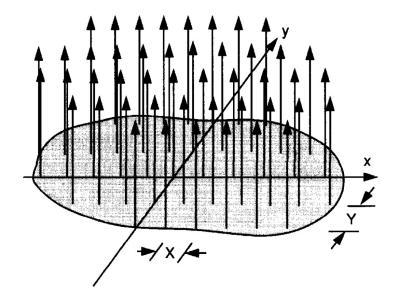


Signal sampling occurs with:

- CMOS (pixel) sensors, PMTs, SPADs
- A-to-D after antennas
- A-to-D after acoustic transducers

Sampling interval width X and Y

$$U_s(x,y) = \operatorname{comb}(x/X)\operatorname{comb}(y/Y)U(x,y)$$



Signal sampling occurs with:

- CMOS (pixel) sensors, PMTs, SPADs
- A-to-D after antennas
- A-to-D after acoustic transducers

Sampling interval width X and Y

$$\hat{U}_s(f_x, f_y) = \mathcal{F}\left[\operatorname{comb}(x/X)\operatorname{comb}(y/Y)\right] * \hat{U}(f_x, f_y)$$

 $\hat{U}_s(f_x, f_y) = \mathcal{F}\left[\operatorname{comb}(x/X)\operatorname{comb}(y/Y)\right] * \hat{U}(f_x, f_y)$

 $\hat{U}_s(f_x, f_y) = \mathcal{F}\left[\operatorname{comb}(x/X)\operatorname{comb}(y/Y)\right] * \hat{U}(f_x, f_y)$

$$\mathcal{F}\left[\operatorname{comb}(x/X)\operatorname{comb}(y/Y)\right] = \sum_{n=-\infty}^{\infty}\sum_{m=-\infty}^{\infty}\delta\left(f_x - \frac{n}{X}, f_y - \frac{m}{Y}\right)$$

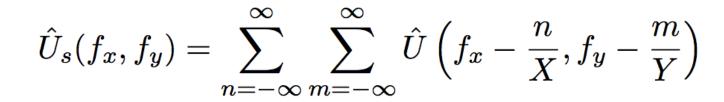


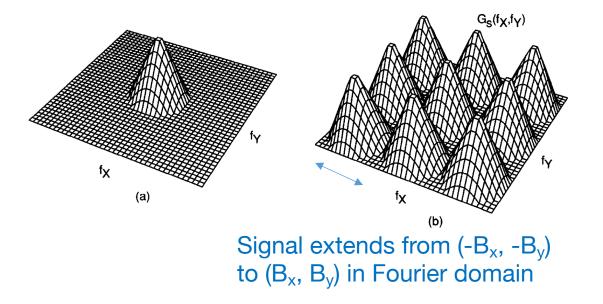
 $\hat{U}_s(f_x, f_y) = \mathcal{F}\left[\operatorname{comb}(x/X)\operatorname{comb}(y/Y)\right] * \hat{U}(f_x, f_y)$

$$\mathcal{F}\left[\operatorname{comb}(x/X)\operatorname{comb}(y/Y)\right] = \sum_{n=-\infty}^{\infty}\sum_{m=-\infty}^{\infty}\delta\left(f_x - \frac{n}{X}, f_y - \frac{m}{Y}\right)$$

$$\hat{U}_s(f_x, f_y) = \sum_{n = -\infty}^{\infty} \sum_{m = -\infty}^{\infty} \hat{U}\left(f_x - \frac{n}{X}, f_y - \frac{m}{Y}\right)$$

$$\mathcal{F}\left[\operatorname{comb}(x/X)\operatorname{comb}(y/Y)\right] = \sum_{n=-\infty}^{\infty}\sum_{m=-\infty}^{\infty}\delta\left(f_x - \frac{n}{X}, f_y - \frac{m}{Y}\right)$$





$$\mathcal{F}\left[\operatorname{comb}(x/X)\operatorname{comb}(y/Y)\right] = \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} \delta\left(f_x - \frac{n}{X}, f_y - \frac{m}{Y}\right)$$
$$\hat{U}_s(f_x, f_y) = \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} \hat{U}\left(f_x - \frac{n}{X}, f_y - \frac{m}{Y}\right)$$

$$\int_{(a)} \int_{(a)} \int_{(a)} \int_{(a)} \int_{(b)} \int_{($$

 $n=-\infty m=-\infty$

Mask out copies with a rect function:

$$\operatorname{rect}\left(\frac{f_x}{2B_x}\right)\operatorname{rect}\left(\frac{f_y}{2B_y}\right)\hat{U}_s(f_x, f_y) = \hat{U}(f_x, f_y)$$

Bandwidth (B_x, B_y) of signal

$$\mathcal{F}\left[\operatorname{comb}(x/X)\operatorname{comb}(y/Y)\right] = \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} \delta\left(f_x - \frac{n}{X}, f_y - \frac{m}{Y}\right)$$

$$\hat{U}_s(f_x, f_y) = \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} \hat{U}\left(f_x - \frac{n}{X}, f_y - \frac{m}{Y}\right)$$

$$\overset{\bullet}{\overset{\bullet}}_{\overset{\bullet$$

$$\operatorname{rect}\left(\frac{f_x}{2B_x}\right)\operatorname{rect}\left(\frac{f_y}{2B_y}\right)\hat{U}_s(f_x, f_y) = \hat{U}(f_x, f_y)$$

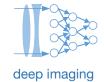
$$F[\bullet] \qquad h(x, y) = 4B_x B_y \operatorname{sinc}(2B_x x)\operatorname{sinc}(2B_y y)$$

Machine Learning and Imaging – Roarke Horstmeyer (2024)

$$\operatorname{rect}\left(\frac{f_x}{2B_x}\right)\operatorname{rect}\left(\frac{f_y}{2B_y}\right)\hat{U}_s(f_x, f_y) = \hat{U}(f_x, f_y)$$

$$F[\bullet] \qquad h(x, y) = 4B_x B_y \operatorname{sinc}(2B_x x)\operatorname{sinc}(2B_y y)$$

 $h(x,y) * (U(x,y) \operatorname{comb}(x/X) \operatorname{comb}(y/Y)) = U(x,y)$



$$\operatorname{rect}\left(\frac{f_x}{2B_x}\right)\operatorname{rect}\left(\frac{f_y}{2B_y}\right)\hat{U}_s(f_x, f_y) = \hat{U}(f_x, f_y)$$

$$F[\bullet] \qquad h(x, y) = 4B_x B_y \operatorname{sinc}(2B_x x)\operatorname{sinc}(2B_y y)$$

h(x,y) * (U(x,y) comb(x/X) comb(y/Y)) = U(x,y)

$$U(x,y)\operatorname{comb}(x/X)\operatorname{comb}(y/Y) = XY\sum_{n=-\infty}^{\infty}\sum_{m=-\infty}^{\infty}U(nX,mY)\delta(x-nX,y-mY)$$

$$\operatorname{rect}\left(\frac{f_x}{2B_x}\right)\operatorname{rect}\left(\frac{f_y}{2B_y}\right)\hat{U}_s(f_x, f_y) = \hat{U}(f_x, f_y)$$

$$F[\bullet] \qquad h(x, y) = 4B_x B_y \operatorname{sinc}(2B_x x)\operatorname{sinc}(2B_y y)$$

h(x,y) * (U(x,y) comb(x/X) comb(y/Y)) = U(x,y)

$$U_{s}(x,y) \text{ (from beginning)} = U(x,y) \text{ comb}(x/X) \text{ comb}(y/Y) = XY \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} U(nX,mY) \delta(x-nX,y-mY)$$

$$U(x,y) = 4B_x B_y XY \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} U(nX, mY) \operatorname{sinc} \left[2B_x(x-nX)\right] \operatorname{sinc} \left[2B_y(y-mY)\right]$$

The Sampling Theorem

$$\underline{U(x,y)} = 4B_x B_y XY \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} \underbrace{U(nX,mY)}_{\text{sinc}} \left[2B_x(x-nX)\right] \operatorname{sinc}\left[2B_y(y-mY)\right]$$

Continuous signal:

- EM field
- Sound wave
- MR signal

Discretized signal:

- Detected EM field
- Sampled sound wave
- Sampled MR signal

What does the Sampling Theorem mean for us?

Continuous fields (*) Under certain conditions

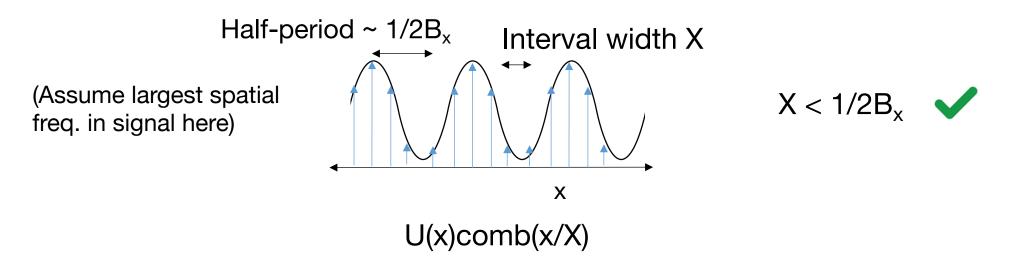
Discretize vectors (and matrices)

$$U(x,y) = 4B_x B_y XY \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} U(nX, mY) \operatorname{sinc} \left[2B_x (x-nX)\right] \operatorname{sinc} \left[2B_y (y-mY)\right]$$

- Sampling must be proportional to bandwidth $(2B_x \text{ and } 2B_y)$
 - "Nyquist" sampling: $X = 1/2B_x$, $Y = 1/2B_y$

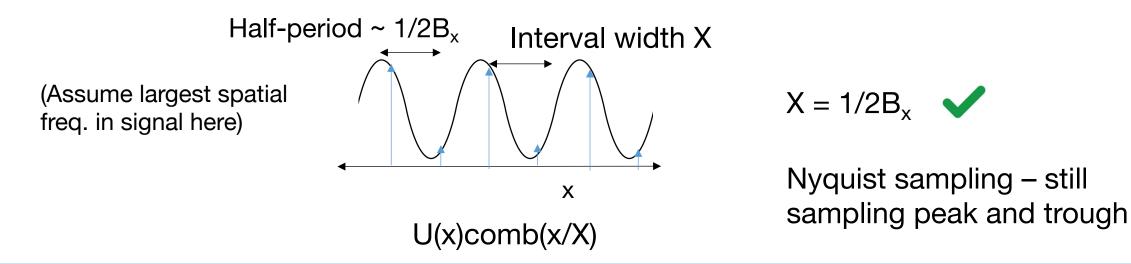
$$U(x,y) = 4B_x B_y XY \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} U(nX, mY) \operatorname{sinc} \left[2B_x (x-nX)\right] \operatorname{sinc} \left[2B_y (y-mY)\right]$$

- Sampling must be proportional to bandwidth $(2B_x \text{ and } 2B_y)$
 - "Nyquist" sampling: $X = 1/2B_x$, $Y = 1/2B_y$



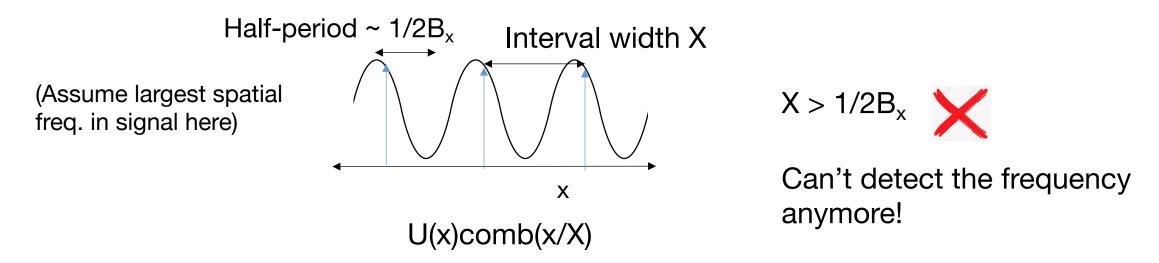
$$U(x,y) = 4B_x B_y XY \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} U(nX, mY) \operatorname{sinc} \left[2B_x (x-nX)\right] \operatorname{sinc} \left[2B_y (y-mY)\right]$$

- Sampling must be proportional to bandwidth (2B_x and 2B_y)
 - "Nyquist" sampling: $X = 1/2B_x$, $Y = 1/2B_y$



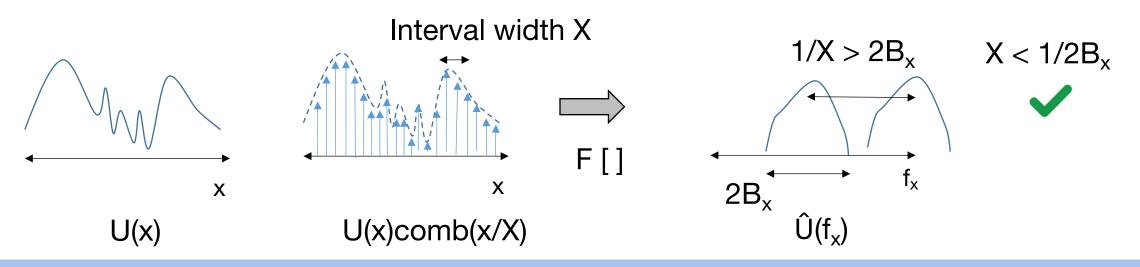
$$U(x,y) = 4B_x B_y XY \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} U(nX, mY) \operatorname{sinc} \left[2B_x (x-nX)\right] \operatorname{sinc} \left[2B_y (y-mY)\right]$$

- Sampling must be proportional to bandwidth (2B_x and 2B_y)
 - "Nyquist" sampling: $X = 1/2B_x$, $Y = 1/2B_y$



$$U(x,y) = 4B_x B_y XY \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} U(nX, mY) \operatorname{sinc} \left[2B_x (x-nX)\right] \operatorname{sinc} \left[2B_y (y-mY)\right]$$

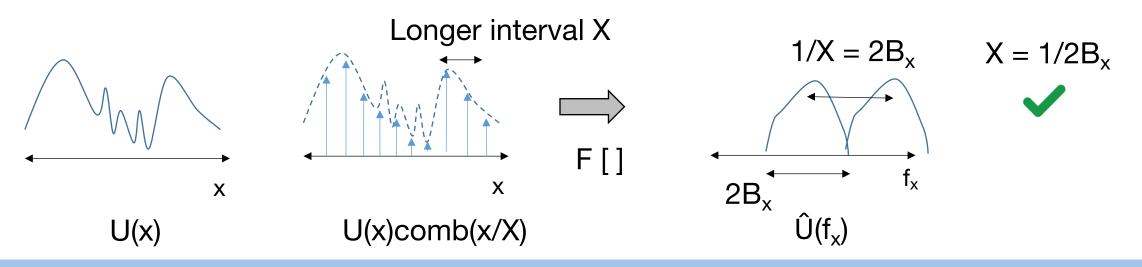
- Sampling must be proportional to bandwidth (2B_x and 2B_y)
 - "Nyquist" sampling: $X = 1/2B_x$, $Y = 1/2B_y$
 - Needed to avoid aliasing



Machine Learning and Imaging – Roarke Horstmeyer (2024)

$$U(x,y) = 4B_x B_y XY \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} U(nX, mY) \operatorname{sinc} \left[2B_x (x-nX)\right] \operatorname{sinc} \left[2B_y (y-mY)\right]$$

- Sampling must be proportional to bandwidth (2B_x and 2B_y)
 - "Nyquist" sampling: $X = 1/2B_x$, $Y = 1/2B_y$
 - Needed to avoid aliasing

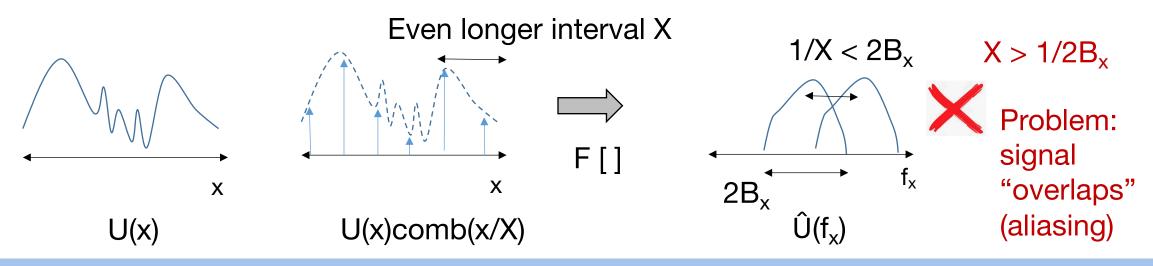


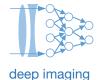
Machine Learning and Imaging – Roarke Horstmeyer (2024)

Conditions to safely apply the sampling theorem

$$U(x,y) = 4B_x B_y XY \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} U(nX, mY) \operatorname{sinc} \left[2B_x (x-nX)\right] \operatorname{sinc} \left[2B_y (y-mY)\right]$$

- Sampling must be proportional to bandwidth (2B_x and 2B_y)
 - "Nyquist" sampling: $X = 1/2B_x$, $Y = 1/2B_y$
 - Needed to avoid aliasing





Linear Algebra – notation and basics

• We'll (try to) write *column* vectors as lower case variables

• Row vectors will be denoted as the transpose

• We'll try to write matrices as upper case variables

• We'll try to denote if a matrix/vector is real, complex etc. and its size with a certain notation

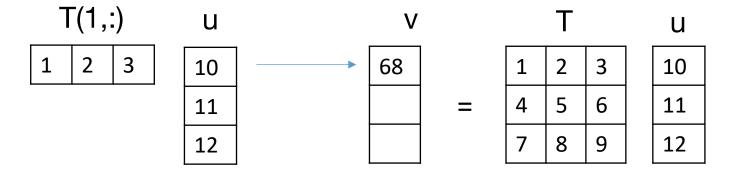
Linear Algebra – notation and basics

Some basic vector operations you should know:

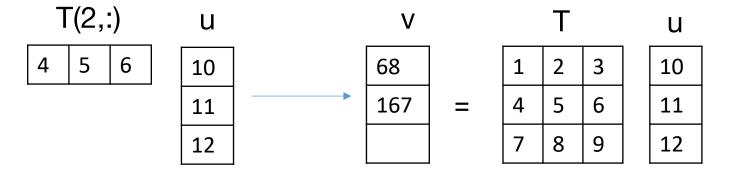
- Conjugate, transpose, conjugate transpose
- Inner product
- Hadamard (element-wise, dot-times) product
- outer product

- Vector (matrix) addition
- matrix-vector product
- convolution

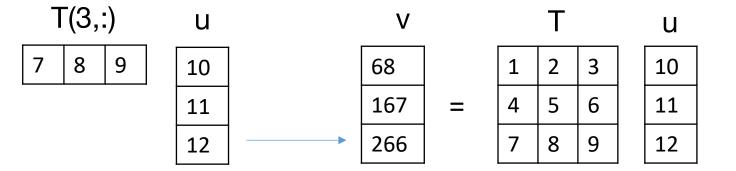
1. Inner products per entry:



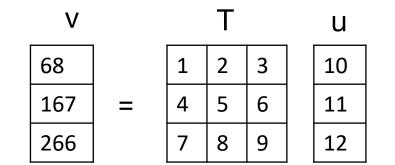
1. Inner products per entry:

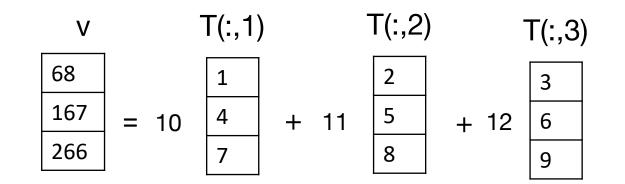


1. Inner products per entry:



1. Inner products per entry:





2. Weighted column sum:

Discrete convolution

$$V(x_o) = \int_{-\infty}^{\infty} U(x_i)h(x_o - x_i)dx_i$$
$$v[x_0] = \sum_{x_i = -M}^{M} u[x_i]h[x_o - x_i]$$

Machine Learning and Imaging – Roarke Horstmeyer (2024

Steps to follow:

Step 1	List the index 'k' covering a sufficient range
Step 2	List the input x[k]
Step 3	Obtain the reversed sequence h[-k], and align the rightmost element of h[n-k] to the leftmost element of $x[k]$
Step 4	Cross-multiply and sum the nonzero overlap terms to produce y[n]
Step 5	Slide h[n-k] to the right by one position
Step 6	Repeat step 4; stop if all the output values are zero or if required.

http://host.uniroma3.it/laboratori/sp4te/teaching/sp4bme/documents/LectureConvolution.pdf

$$x[k] = [3 1 2] \quad h[k] = [3 2 1]$$

k:	-2	-1	0	1	2	3	4	5	
x[k]:			3	1	2				
h[-k]:	1	2	3						
h[1-k]:		1	2	3					
h[2-k]:			1	2	3				
h[3-k]:				1	2	3			
h[4-k]:					1	2	3		
h[5-k]:						1	2	3	

Hint: The value of k starts from (- length of h + 1) and continues till (length of h + length of x - 1)

Here k starts from -3 + 1 = -2 and continues till 3 + 3 - 1 = 5

ine Learning and http://host.uniroma3.it/laboratori/sp4te/teaching/sp4bme/documents/LectureConvolution.pdf

$$x[k] = [3 | 2] \quad h[k] = [3 | 2]$$

k:	-2	-1	0	1	2	3	4	5	
x[k]:			3	1	2				
h[-k]:	1	2	3						
h[1-k]:		1	2	3					
h[2-k]:			1	2	3				
h[3-k]:				1	2	3			
h[4-k]:					1	2	3		
h[5-k]:						1	2	3	
L									

y:

9

Machine Learning an

$$x[k] = [3 1 2] h[k] = [3 2 1]$$

deep imaging	

k:	-2	-1	0	1	2	3	4	5	
x[k]:			3	1	2				
h[-k]:	1	2	3						
h[1-k]:		1	2	3					
h[2-k]:			1	2	3				
h[3-k]:				1	2	3			
h[4-k]:					1	2	3		
h[5-k]:						1	2	3	
y:			9	<mark>6+3</mark>					

$$x[k] = [3 1 2] h[k] = [3 2 1]$$

deep imaging

k:	-2	-1	0	1	2	3	4	5	
x[k]:			3	1	2				
h[-k]:	1	2	3						
h[1-k]:		1	2	3					
h[2-k]:			1	2	3				
h[3-k]:				1	2	3			
h[4-k]:					1	2	3		
h[5-k]:						1	2	3	
y:			9	<mark>6+3</mark>	<mark>3+2+6</mark>				

$$x[k] = [3 1 2] h[k] = [3 2 1]$$

deep imaging

k:	-2	-1	0	1	2	3	4	5
x[k]:			3	1	2			
h[-k]:	1	2	3					
h[1-k]:		1	2	3				
h[2-k]:			1	2	3			
h[3-k]:				1	2	3		
h[4-k]:					1	2	3	
h[5-k]:						1	2	3
y:			9	<mark>6+3</mark>	<mark>3+2+6</mark>	1 +4+0		

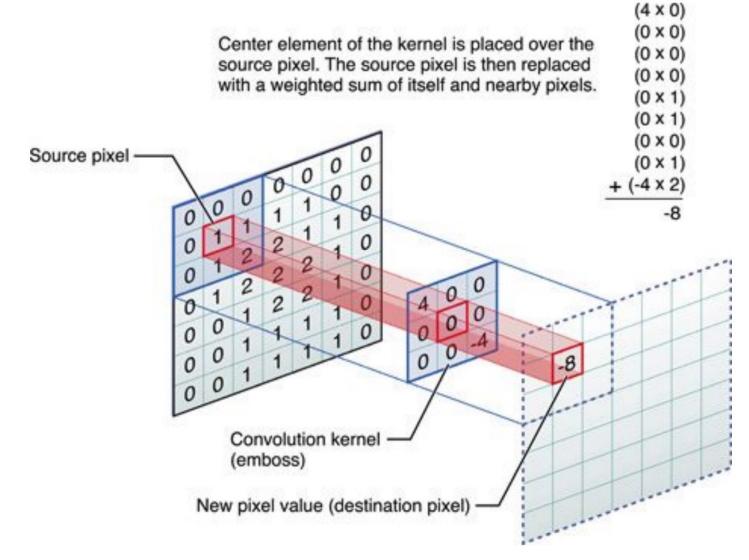
(deep imaging

k:	-2	-1	0	1	2	3	4	5
x[k]:			3	1	2			
h[-k]:	1	2	3					
h[1-k]:		1	2	3				
h[2-k]:			1	2	3			
h[3-k]:				1	2	3		
h[4-k]:					1	2	3	
h[5-k]:						1	2	3
y:			9	<mark>6+3</mark>	<mark>3+2+6</mark>	1+4+0		
y:			[9	9	11	5	2	0]

Discrete convolution

Discrete 2D convolution

Discrete 2D convolution



https://www.psi.toronto.edu/~jimmy/ece521/Tut1.pdf

Machine Learning and Imaging – Roarke Horstmeyer (2024

Discrete 2D convolution: edge conditions and even kernels

From MATLAB definition of conv2:

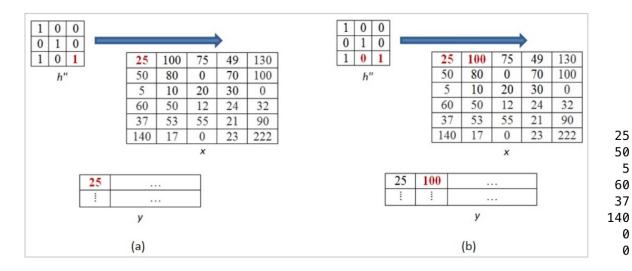
2-D Convolution For discrete, two-dimensional variables *A* and *B*, the following equation defines the convolution of *A* and *B*: $C(j,k) = \sum_p \sum_q A(p,q) B(j-p+1,k-q+1)$ p and q run over all values that lead to legal subscripts of A(p,q) and B(j-p+1,k-q+1).

i=1, j=1: Start in the upper left corner at A(1,1) with *lower right* of flipped version of B [B(1,1)]:

5

0

0



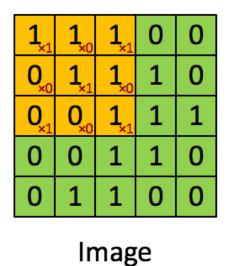
(ວutpເ	ut: 8	x 8				alignn if mat
100	100	149	205	49	130		odd
105	150	225	149	200	100		•
60	130	140	165	179	130	-	Outpu
55	132	174	74	94	132		largar
113	147	96	189	83	90		larger
54	253	145	255	137	254		
140	54	53	78	243	90		
0	140	17	0	23	222		

- For corner-to-corner ment, doesn't matter trix size is even or
- ut matrix will be r than input matrices

Discrete 2D convolution: edge conditions and even kernels

From Tensorflow definition of conv2:

```
output[b, i, j, k] =
sum_{di, dj, q} input[b, strides[1] * i + di, strides[2] * j + dj, q]
* filter[di, dj, q, k]
```



4	

Convolved

Feature

Start convolution kernel *inside* image: align upper-left of image A with *upper right* of kernel B

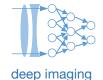
• Output matrix will be smaller than input image and filter

Ē

Ð

• We will work through these numbers carefully!

Machine Learning and Imaging – Roarke Horstmeyer (20)



Linear Algebra – notation and basics

Some basic types of matrices & terms that you should know about:

- Symmetric (Hermitian) matrix: $A=A^{T}$ if A is real, $A=A^{H}$ if A is complex
- Square, hot-dog and hamburger matrices
- Invertible matrix
- Diagonal matrix
- Toeplitz matrix
- Banded matrix

$$\hat{U}(f_x) = \int_{-\infty}^{\infty} U(x) \exp\left(-2\pi i(f_x x)\right) dx \quad f_x=0$$

$$\hat{u}[f_x] = \sum_{x=0}^{M-1} u[x] \exp\left(-2\pi i f_x x/M\right)$$
Inner product of u with different complex expon.

- np.fft(u), np.fftshift(np.fft(np.ifftshift(u)))
- fft = fast Fourier transform, much more comp. efficient than matrix multiplication!

- np.fft(u), np.fftshift(np.fft(np.ifftshift(u)))
- fft = fast Fourier transform, much more comp. efficient than matrix multiplication!

$$\hat{U}(f_x) = \int_{-\infty}^{\infty} U(x) \exp\left(-2\pi i(f_x x)\right) dx$$

$$f_x=2$$

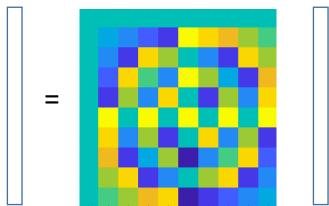
$$\hat{u}[f_x] = \sum_{x=0}^{M-1} u[x] \exp\left(-2\pi i f_x x/M\right)$$
Inner product of u with different complex expon.

- np.fft(u), np.fftshift(np.fft(np.ifftshift(u)))
- fft = fast Fourier transform, much more comp. efficient than matrix multiplication!

$$\hat{U}(f_x) = \int_{-\infty}^{\infty} U(x) \exp\left(-2\pi i(f_x x)\right) dx$$

$$\hat{u}[f_x] = \sum_{x=0}^{M-1} u[x] \exp\left(-2\pi i f_x x/M\right)$$

 \hat{u} FT Matrix, θ u



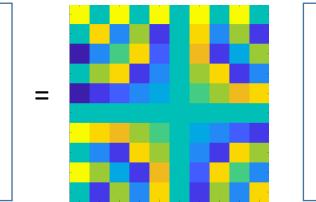
np.fft(np.eye(10))

Treats 1^{st} entry of \hat{u} as $f_x=0$

$$\hat{U}(f_x) = \int_{-\infty}^{\infty} U(x) \exp\left(-2\pi i(f_x x)\right) dx$$

$$\hat{u}[f_x] = \sum_{x=0}^{M-1} u[x] \exp\left(-2\pi i f_x x/M\right)$$

û FT Matrix, θ u



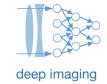
np.fftshift(np.fft(np.ifftshift(np.eye(10))))

Treats middle entry of \hat{u} as $f_x=0$

Discrete convolution theorem

Convolution theorem. If $\mathcal{F}\{g(x, y)\} = G(f_X, f_Y)$ and $\mathcal{F}\{h(x, y)\} = H(f_X, f_Y)$, then

$$\mathcal{F}\left\{\iint_{-\infty}^{\infty} g(\xi,\eta) \ h(x-\xi,y-\eta) \ d\xi \ d\eta\right\} = G(f_X,f_Y) H(f_X,f_Y). \quad (2-15)$$



Discrete convolution theorem

Convolution theorem. If $\mathcal{F}\{g(x, y)\} = G(f_X, f_Y)$ and $\mathcal{F}\{h(x, y)\} = H(f_X, f_Y)$, then

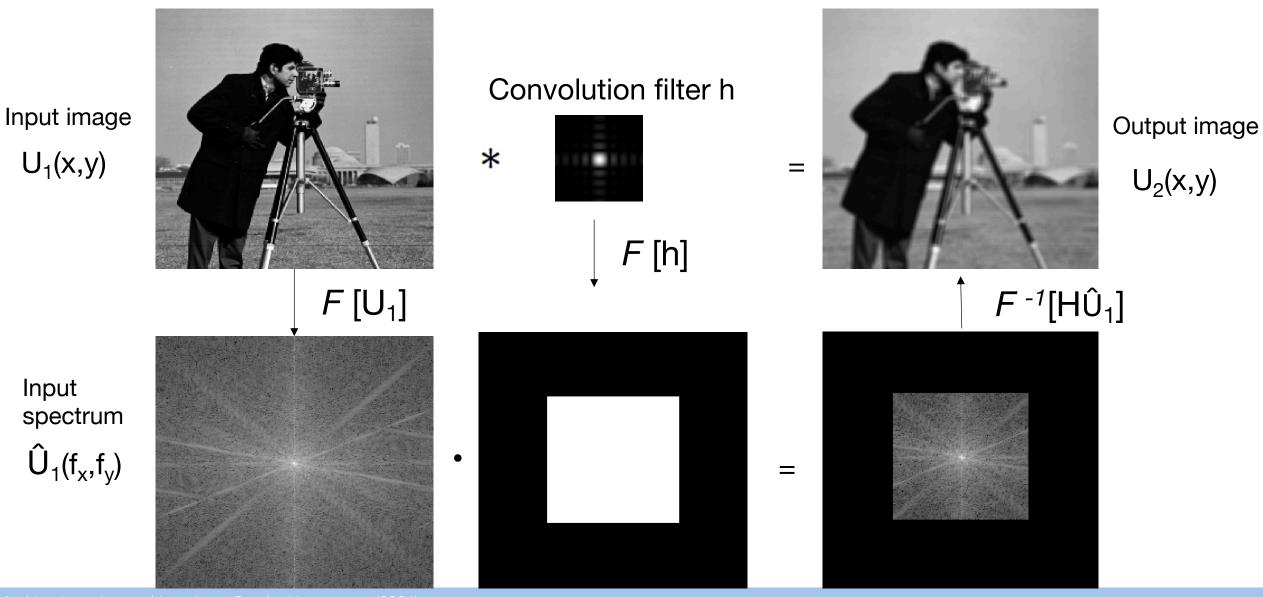
$$\mathcal{F}\left\{\iint_{-\infty}^{\infty} g(\xi,\eta) \ h(x-\xi,y-\eta) \ d\xi \ d\eta\right\} = G(f_X,f_Y) H(f_X,f_Y). \quad (2-15)$$

If
$$\mathcal{F}[g[x,y]] = G[f_x, f_y]$$
 and $\mathcal{F}[h[x,y]] = H[f_x, f_y]$, and if we know that
$$g[x,y] * h[x,y] = \sum_{l=-L}^{L} \sum_{m=-M}^{M} g[m,l]h[x-m,y-l],$$

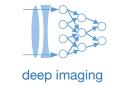
then from the Convolution Theorem we have,

$$\mathcal{F}[g[x,y] * h[x,y]] = G[f_x, f_y]H[f_x, f_y]$$

Discrete convolution theorem example –same thing as continuous case



Machine Learning and Imaging – Roarke Horstmeyer (2024



Convolutions as a big matrix multiplication

$$(u*h)[x] = \sum_{m=0}^{N+M-2} u[m]h[x-m] \longrightarrow y = u*h = \begin{bmatrix} h_1 & 0 & \dots & 0 & 0 \\ h_2 & h_1 & \dots & \vdots & \vdots \\ h_3 & h_2 & \dots & 0 & 0 \\ \vdots & h_3 & \dots & h_1 & 0 \\ h_{m-1} & \vdots & \dots & h_2 & h_1 \\ h_m & h_{m-1} & \vdots & \vdots & h_2 \\ 0 & h_m & \dots & h_{m-1} & h_{m-2} \\ \vdots & \vdots & \vdots & h_m & h_{m-1} \\ 0 & 0 & 0 & \dots & h_m \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ \vdots \\ u_n \end{bmatrix}$$

 $\mathbf{u} = \mathbf{W}\mathbf{v}$ $\frac{d\mathbf{u}}{d\mathbf{v}} =$

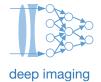
$$\mathbf{u} = \mathbf{W}\mathbf{v}$$

$$\frac{d\mathbf{u}}{d\mathbf{v}} =$$

$$\mathbf{u}_3 = W_{3,1}v_1 + W_{3,2}v_2 + \dots + W_{3,M}v_M$$

$$\frac{\partial u_3}{\partial v_2} = \frac{\partial}{\partial v_2}(W_{3,1}v_1 + W_{3,2}v_2 + \dots + W_{3,M}v_M) = \frac{\partial}{\partial v_2}W_{3,2}v_2 = W_{3,2}$$

- -



$$\mathbf{u} = \mathbf{W}\mathbf{v}$$

$$\frac{d\mathbf{u}}{d\mathbf{v}} =$$

$$\mathbf{u}_3 = W_{3,1}v_1 + W_{3,2}v_2 + \dots + W_{3,M}v_M$$

$$\frac{\partial u_3}{\partial v_2} = \frac{\partial}{\partial v_2}(W_{3,1}v_1 + W_{3,2}v_2 + \dots + W_{3,M}v_M) = \frac{\partial}{\partial v_2}W_{3,2}v_2 = W_{3,2}$$

$$\frac{\partial u_i}{\partial v_j} = W_{i,j}$$

$$\frac{d\mathbf{u}}{d\mathbf{v}} = \mathbf{W}$$

- -

$$\mathbf{u} = \mathbf{W}\mathbf{v}$$

$$\frac{d\mathbf{u}}{d\mathbf{v}} =$$

$$\mathbf{u}_3 = W_{3,1}v_1 + W_{3,2}v_2 + \dots + W_{3,M}v_M$$

$$\frac{\partial u_3}{\partial v_2} = \frac{\partial}{\partial v_2}(W_{3,1}v_1 + W_{3,2}v_2 + \dots + W_{3,M}v_M) = \frac{\partial}{\partial v_2}W_{3,2}v_2 = W_{3,2}$$

$$\frac{\partial u_i}{\partial v_j} = W_{i,j}$$

$$\frac{d\mathbf{u}}{d\mathbf{v}} = \mathbf{W}$$

- When confused, write out one entry, solve derivative and generalize
- Use dimensionality to help (if **x** has N elements, and **y** has M, then dy/dx must be NxM
- Take advantage of *The Matrix Cookbook*:
 - https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf

Machine Learning and Imaging – Roarke Horstmeyer (2024)