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deep imaging

Final Project Details

* - Final code and presentation due via email: Thursday May 2, 5pm
* - Final presentation time slots: Thursday May 2, 7pm - 10pm

* - Final presentation paper write-up, website template and permission
form due: Saturday May 4 at 11:59pm

* - Final presentations will occur via Zoom, please coordinate with team
members and practice ahead of time!



Resources for this lecture:

Stanford CS231n, Lecture 12
Stanford CS230 course slides

Deep Learning book, chapter 15

Number of papers cited throughout slides

deep imaging
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Recurrent neural networks in a nutshell deep imaging

RNN'’s: Examine signals as a function of time

E.g., establish if mouse was scared from this EEG recording
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Example: Sample | ¢ : ;
Character-level o3 || |2 (| [ f|
Language Model ormax S B | Bl | B
. t t t }
Sampling
output layer %% (;3(’) ?g (1)?
41 12 14 2.2

Vocabulary: T i T Py
[h.e,l,0] e FE1 0 FTY I P P
0.9 0.1 -0.3 0.7

At test-time sample I R B
characters one at a time, e é E 513 §
feed back to model | 0 0 0 0
input chars:  “h” \* ey v \}|

From Stanford CS231n Lecture 10 slides



Example: Image captioning H%é

deep imaging

| image | <

conv-64

test image

conv-64
maxpool

conv-128

conv-128
maxpool

COI’\V-::: yo y1 y2
— r o T\ sample

<END> token

conv-512
conv-512 — . .
maxpool hO —»{ h1 —»| h2 => f|n|Sh
conv-512
conv-512 T T T
maxpool
FC-4096 o
FC-4096 <STA straw hat

RT>

<START>

From Stanford CS231n Lecture 10 slides



Prospective identification
of hematopoietic lineage
choice by deep learning

Felix Buggenthin!-, Florian Buettner!->9,

Philipp S Hoppe**, Max Endele?, Manuel Kroiss!>,
Michael Strasser!, Michael Schwarzfischer!,

Dirk Loeffler3#, Konstantinos D Kokkaliaris34,
Oliver Hilsenbeck?#, Timm Schroeder3*,

Fabian J Theis!»> & Carsten Marr!

a
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GATA1‘
CD16/32*
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GATA1™ —> erythroid
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Output generative processing - be careful...

Output-generative: “Let’s figure out the
next output based on the other outputs”

Sample

Softmax

output layer &

0.
hidden layer |

[IE=

“Non-output generative”: “I'll just use all of
my input data to determine my final output”

Cell
patches

Patch
featu res

T e & ]

Cell

11T l> | "" |* lineage

score

deep imaging
Hidden
layer
1t-1
i =g Cell
t -). =) lineage
I . score
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deep imaging

Output generative processing - be careful...

Output-generative: “Let’s figure out the “Non-output generative”: “I'll just use all of
next output based on the other outputs” my input data to determine my final output”

e Patch
Cell features
patches S —

T e & ]

1t-1|o-ge I
R CNN Cell Cell
. i | "" |-}I|neage : t| e -b :-}hneage
)\ 3 ‘ score | ‘ A score
RNN t+1 | i RNNI

Hidden
layer

Sample

Softmax

P

output layer .

0.3
hidden layer |
0

input layer

Pros: You get a lot more “bang for your buck” Pros: More repeatable and interpretable results

Cons: Fine line between hallucination and Cons: Hard to get more outputs from inputs
trustworthy output... (and not as “cool”)
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What are we possibly missing from the many-to-many model?

1. Not taking advantage of structure of output labels (assuming they are conditionally independent)

logp(y | =V),...,z®)

Let the network become dependent on past labels as well:

logp(y” |V, 4y .yl
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Conditional recurrent neural network deep imaging
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deep imaging

What are we possibly missing from the many-to-many model?

1. Not taking advantage of structure of output labels (assuming they are conditionally independent)

logp(y | =V),...,z®)

Let the network become dependent on past labels as well:

logp(y” |V, 4y .yl

2. Only considering one direction in sequence/time...



Other extensions: bi-directional analysis

Consider future and past events jointly

Add a third matrix that takes future
hidden states in as well

E.g., sentence structure is not purely
causal

Handwriting recognition, speech
analysis, etc.

deep imaging



deep imaging

What are we possibly missing from the many-to-many model?

1. Not taking advantage of structure of output labels (assuming they are conditionally independent)

logp(y | =V),...,z®)

Let the network become dependent on past labels as well:

logp(y” |V, 4y .yl

2. Only considering one direction in sequence/time...

3. Chaining things together is not necessarily the ideal way to maintain long connections



deep imaging

RNN’s have limited memory and can suffer from exploding gradients

Hidden weights effectively follow a recursive relationship:

h(t) _ WTh(t—l) h(t) _ (Wt)T h(o)-_



deep imaging

RNN’s have limited memory and can suffer from exploding gradients

Hidden weights effectively follow a recursive relationship:

h® — WwThptD h® — (W) h©

If W admits it, can perform eigenvvector decomposition to obtain,

W =QAQ".



deep imaging

RNN’s have limited memory and can suffer from exploding gradients

Hidden weights effectively follow a recursive relationship:

h® — WwThptD h® — (W) h©

If W admits it, can perform eigenvvector decomposition to obtain,
- T
W =QAQ .
In this space, power relationship Wt alters just eigenvalues, does not rotate eigenvectors:

h® — QT A*QR)

Thus, if the eigenvector is large (the largest), it will explode. Remaining eigenvectors eventually vanish
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S. Hochreiter and J. Schmidhuber (1997) Hé%@

Long Short-Term Memory

The |Ong short-term memory network https://dl.acm.org » citation
by S Hochreiter - 1997 - Cited by 24398 - Related articles

Nov 1, 1997 - Hochreiter, S., & Schmidhuber, J. (1996). Bridging long time lags by weight
guessing and "long short-term memory." In F. L. Silva, J. C. Principe, ...

Addlt'OﬂS output

« Self-loop to maintain “memory”
« Allow gradients to flow for a long time

self-loop

+ Weight of self-loop gated by “Forget gate”
» Forgetting depends on data
« Memory time scale is thus dynamic

« Qutput gate
« Can turn on/shut off everything

input input gate output gate



S. Hochreiter and J. Schmidhuber (1997) H%
Long Short-Term Memory

The Iong short-term memory network https://dl.acm.org > citation
by S Hochreiter - 1997 - Cited by 24398 - Related articles
Forget gate: Nov 1, 1997 - Hochreiter, S., & Schmidhuber, J. (1996). Bridging long time lags by weight

guessing and "long short-term memory." In F. L. Silva, J. C. Principe, ...
tput
(t) _ f f o) fop(t=1)
fi7=o bl + ) ULal)+ > Wlin
J J

Internal state:

self-loop
(t—1)

SZ(-t) = fz.(t)sz + gl(-t)U bi+ Z Ui,jxét) + ZWi,jhg-t_l) :
j ] <>!)state

External input gate:

(t) _ (t) (t—1)
g, =0 bf+ZU£j33j —I—ZW/;gjhj
J J

L STM ou tpu t' input input gate orget gate output gate
)Y (@) JD

h = tanh (5”) g /N /\N/\N/\



deep imaging

Brainstorming time - physical layers in an RNN???
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Brainstorming time - physical layers in an RNN???

Simple example, “Output generative” flavor

Design an optimal X to produce the best image captions

e — Physical
conv-64 CN N

conv-64

test image

maxpool

conv-128

conv-128
maxpool

conv-256

y0 y1 y2
conv-256
maxpool A A T \ Sample
<END> token
h2 => finish.

conv-512
conv-512

\4
=
Y

maxpool ho

conv-512

conv-512

maxpool

FC-4096

X
<STA straw hat
FC-4096 il

<START>
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Brainstorming time - physical layers in an RNN???

Simple example, “Non-output generative” flavor

e Patch
b Annotated Cell features
patches P SR ]

|. ~ B % I cel

‘ Y lllll} |ﬂ:{ I |»Iineage
{ score

| = P

Brightfield

CD16/32
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Brainstorming time - physical layers in an RNN??? espmeane
Simple example, “Non-output generative” flavor
Physical model down-samples movie sequence
1 0 0 1 0 0 o0 O 1 ... Optimize selected frames to reduce overhead

e Patch
b Annotated Cell features
i patches P SR ]

l. B CNN '&‘77 I Cell
‘ Y lIllI} | "" "a: |*Iineage
N I)i\%X(\\‘I o | score

/
% _ W= W

Brightfield

CD16/32
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Brainstorming time - physical layers in an RNN??? espmeane
Simple example, “Non-output generative” flavor
Physical model down-samples movie sequence
1 0 0 0 O 1 ... Optimize selected frames to reduce overhead

Or, optimize illumination/sampling pattern

e Patch

b Latent Annotated Cell features

- 1 1 1 Y
o L LT[ [ | [ Yea
— - ‘ “___ Illll> |M:{ I |-)Iineage
{ score

-EEEEEEEE UL

patches o L = =
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Brainstorming time - physical layers in an RNN???

Take a bit of time and try to think about/write down the following:

« With your image data (or some data that you are interested), what do you measure over time?
« What would your input data for an RNN be, and what might be a useful output?

» What physical parameters influence how you measure data over time?

« What physical parameters might be useful to tweak to improve your output?

» Can you think of a way to model that parameter in an RNN?



Supervised versus unsupervised learning

deep imaging

Supervised Unsupervised
 Have data x with labels y « Just have data x with no labels
« Goal is to learn function * Figure out and exploit underlying

fix) =y structure of data
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deep imaging

Supervised versus unsupervised learning

Supervised Unsupervised
 Have data x with labels y « Just have data x with no labels
« Goal is to learn function * Figure out and exploit underlying
fix) =y structure of data

Example: K-means clustering Example: PCA Example: tSNE
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Unsupervised learning example: autoencoder -

deep imaging
U-Net Architecture
1 64 64
128 64 64 2
input
image |w{» Iy Y Output
tile 21 9 4 ¢ image tile
™ ™) off ™M
ol ol o x X X x
5518 gl o & 8
x x x
N| Off ®©
bl B B
' 128 128
256 128
ol A E B
U-Net: Convolutional Networks for Biomedical N E E o T

Image Segmentation ¥ 256 256 512 256 t

I S ki %[I'?I?I =>conv 3x3, ReLU
Olaf Ronneberger, Philipp Fischer, and Thomas Brox S Sl S S e o
Y s s t = = copy and crop
Computer Science Department and BIOSS Centre for Biological Signalling Studies, . 1024 512
University of Freiburg, Germany %It.?- %\:-t-?- ' max pool 2x2
ronneber@informatik.uni-freiburg.de, hred 3 ' 1024 ‘ 3 N ‘ up-conv %2

WWW home page: http://1mb.informatik.uni-freiburg.de/ < I
@ = ®

o N

=» conv 1x1
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Unsupervised learning example: autoencoder

deep imaging
U-Net Architecture
« Compress spatial features into T
. 128 64 64 2
learned filters
: Compress Decompress
« Then, decompress learned filters input
back into same spatial mage fele »|» |+ Output
. . | all ol oo o 1 H
dimensions © encoder)  (decoder) 5| ¢ g g image tile
' 128 128 I
256 128
U-Net: Convolutional Networks for Biomedical SENR Jl;l;l
Image Segmentation ¥V 56 256 . t
Olaf Ronneberger, Philipp Fischer, and Thomas Brox N% l% *N% Né[llglgl =>conv 3x3, ReLU
T s o t ST copy and crop
1024 512

Computer Science Department and BIOSS Centre for Biological Signalling Studies,

University of Freiburg, Germany %It.?- Ng\:-t-?- ' max pool 2x2
o 5 &

ronneber@informatik.uni-freiburg.de, © © ’ 1024 ‘ = o ‘ up-conv 2x2
WWW home page: http://1mb.informatik.uni-freiburg.de/ < I
© =) % =» cONnv 1x1

o™ N



—v >
deep imaging

Example: Learned compression

U-Net Architecture

164 64

128 64 64 2

Compress Decompress

Input image

i input
Input image mage

tile

“Label” is
image!

\
A/
\/

388x388 W

encoder) (decoder)

392 x 392
390 x390 ¥
388 x 388

572 x 572
570 x 570
568 x 568

)

'128 128
256 128
A E B
slale < ;IE.
NNl N t
' 256 256 512 256

NOI"N I"Nl ‘%r[l? I"IN =»conv 3x3, ReLU
SH S 3 S N el
- o o
— — t — —

¥ s s oss oo copy and crop
== 3 -E-T § max pool 2x2
c ¥ o 3 B 4 up-conv 2x2
o, I o> [ >

&S % =» conv 1x1



Example: Learned compression .

deep imaging
U-Net Architecture
1 64 64
Compress
New image _input
image |»|»-
il
e encoder)
'128 128
' 256 256
A Lq b
e 2’ 512 512
. % , Smartphone
wl'g.'g’ s 5 Smaller, compressed representation > P

A . memory

o o
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Example: Denoising Autoencoder

deep imaging

U-Net Architecture

164 64

128 64 64 2

Compress Decompress _
Input noisy "Label” is

image

¥
A/

\/

388 x388 W

390 x390 ¥

392 x 392
388 x 388

572 x 572
570 x 570
568 x 568

noiseless
encoder) (decoder) image!
' 128 128 I :
25‘65:is S

/

2007

2842
2822
2802

¥ oo o 512 256
A b bt > %[I'N’I'N’I =»conv 3x3, ReLU
<l X Q S N o
L - S S ~» copy and crop
’ 512 512 1024 512
wl".’- — o|:-.>-..- ¥ max pool 2x2
¥ 102 3 4 up-conv 2x2
m-g_t e =» conv 1x1

[ee]
[32] N
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Generative Models

Given training data, generate new samples from same distribution

B =

Training data ~ p,.(X) Generated samples ~p_ . (X)

Want to learn p (x) similar to p,_..(X)

model

Stanford CS231n, Lecture 12
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deep imaging

Generative Models
Given training data, generate new samples from same distribution

4 B

Training data ~ p,_,.(X) Generated samples ~p_ . (X)

Want to learn p (x) similar to p_,.(X)

model

Addresses density estimation, a core problem in unsupervised learning

Several flavors:
- Explicit density estimation: explicitly define and solve forp_ . (X)
- Implicit density estimation: learn model that can sample from p_ . (x) w/o explicitly defining it

Stanford CS231n, Lecture 12
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deep imaging

Taxonomy of Generative Models Direct
© T GAN

Generative models

/\

Explicit density Implicit density
Tractable density Approximate density LY
" : GSN
Fully Visible Belief Nets \
- NADE ) / .
- MADE Variational Markov Chain
- PixelRNN/CNN

. Variational Autoencoder Boltzmann Machine
Change of variables models

nonlinear ICA
( ) Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Stanford CS231n, Lecture 12
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deep imaging

Taxonomy of Generative Models Direct
GAN

Generative models

/\

Explicit density Implicit density
Tractable density Approximate density LY
" : GSN
Fully Visible Belief Nets \
- NADE ) / .
- MADE Variational Markov Chain
- PixelRNN/CNN

. Variational Autoencoder Boltzmann Machine
Change of variables models

(nonlinear ICA)

Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Stanford CS231n, Lecture 12
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Example: Variational Autoencoder (VAE)

Force this vector to follow a Gaussian PDF

=

* Good generative model

Encoder Decoder - . .
Network | = = | Network * Have a clean probability distribution to
(conv) (iccony) select from to generate new examples

latent vector / variables

Minimize (KL) distance between latent
vector and Gaussian normal

VAE reconstruction




— P
deep imaging

Example: Variational Autoencoder (VAE)

* With Gaussian PDF, can start to
add/subtract latent vector in a

Force this vector to follow a Gaussian PDF normalized vector space
Encoder Decoder
Network — = | Network
(conv) (deconv)
latent vector / variables Face without glasses

Minimize (KL) distance between latent

_ Adding new features to samples
vector and Gaussian normal

Glasses

Generative Example (once trained):

* Encode image with glasses, obtain latent vector PDF P,
* Encode image without glasses, obtain PDF Py,

* Compute diff = P,- P,

* Encode new image to obtain P, , add in diff

* Decode P, + diff to get guy with glasses!

Exploring a specific variation of input data[1]



Example: Variational Autoencoder (VAE)

Force this vector to follow a Gaussian PDF

Encoder
Network

(conv)

=

—

Decoder
Network

(deconv)

latent vector / variables

Sample from
true conditional

pe-(z | 2%)

Sample from
true prior

Po-(2)

b
)

Decoder
network

Z

[IE=

deep imaging
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A very simple example — MNIST digits

See https://deepimaging.github.io/data/Simple_Autoencoder.ipynb

On the way towards generating “fake” images of handwritten digits?
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Taxonomy of Generative Models Direct
© T GAN

Generative models

/\

Explicit density Implicit density

L ——

Tractable density Approximate density Markov Chain

Fully Visible Belief Nets / \ GSN
NADE

 MADE Variational Markov Chain

IVi7r\J

. Variational Autoencoder Boltzmann Machine
hange of variables models

nonlinear ICA
( ) Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Stanford CS231n, Lecture 12



Fully visible belief network

Explicit density model
Use chain rule to decompose likelihood of an image x into product of 1-d

distributions:
T

p(x) = Hp(:vz-kcl, ooy Li—1)
o

Likelihood of Probability of i'th pixel value
Image x given all previous pixels

Then maximize likelihood of training data
Stanford CS231n, Lecture 12



Fully visible belief network

Explicit density model

Use chain rule to decompose likelihood of an image x into product of 1-d
distributions:

n
This is a really complex
p(iU) — H p(CEz |.T]_ g seesy ',L.’l,—l) distribution, obviously
T t=1 T Simplify by going
through image pixel by
Likelihood of Probability of i'th pixel value  pixel, rely on RNN
Image X given all previous pixels

Then maximize likelihood of training data
Stanford CS231n, Lecture 12



PIX6| RN N [van der Oord et al. 2016]

Generate image pixels starting from corner

Dependency on previous pixels modeled
using an RNN (LSTM)

Drawback: sequential generation is slow!

© O

© O

© O O

© O O O
© 0 O O O

Stanford CS231n, Lecture 12
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occluded completions

Figure 1. Image completlons sampled from a PixelRNN.

A. Van der Oord et al., https://arxiv.org/abs/1601.06759



https://arxiv.org/abs/1601.06759

[IE=

eep imaging

P|Xe|C N N [van der Oord et al. 2016]

Softmax loss at each pixel

Still generate image pixels starting from

corner 0 : 255
. : AT~

Dependency on previous pixels now

modeled using a CNN over context region /

Training: maximize likelihood of training

iImages
n

p(z) = HP($i|$1, vy L—1)

i=1

Figure copyright van der Oord et al., 2016. Reproduced with permission.



GARBAGE IN, NON-GARBAGE OUT —

Google Brain super-resolution image

I”
°

tech makes “zoom, enhance!” real

Google Brain creates new image details out of thin air.

SEBASTIAN ANTHONY - 2/7/2017, 8:38 AM

[IE=

deep imaging
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So far...

PixelCNNs defin% tractable density function, optimize likelihood of training data:

po(z) = | [ po(@ilz1, ... zi—1)
=1

VAEs define intractable density function with latent z:

po(z) = / po(2)pe (z]2)dz

Cannot optimize directly, derive and optimize lower bound on likelihood instead

Stanford CS231n, Lecture 12
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So far...

PixelCNNs defin% tractable density function, optimize likelihood of training data:
po(z) = | [ po(wilz1, ..., i)
=1

VAEs define intractable density function with latent z:

po(e) = [ poleIpolole)a:
Cannot optimize directly, derive and optimize lower bound on likelihood instead
What if we give up on explicitly modeling density, and just want ability to sample?
GANSs: don’t work with any explicit density function!

Instead, take game-theoretic approach: learn to generate from training distribution
through 2-player game

Stanford CS231n, Lecture 12



l. A. Attacking a network with adversarial examples %

naging

Goal: Given a network pretrained on ImageNet, find an input image that is not a iguana
but will be classified as an iguana.

(O_M\ "&’!‘f'
0.85 “iguana
Neural network 0.0 | o
X — > (pretrainedon | =) |o07| =
ImageNet) 081 f e
\0‘02) “erab’
(0)
1. Rephrasing what we want: 1 2. Defining the loss function 3. Optimize the image
. n R 1 R Net\fvork L A
Find x such that: $(x)=y,,,.=|0 L33)= S|P ..0)~ Y g [ X | =] e (o) L(Y, )
0
. After many iterations l
\OJ ? 9L X=x—0 oL
. 0x ox
[lan J. Goodfellow, Jonathon Shlens & Christian Szegedy (2015): Explaining and harnessing adversarial examples] Kian Katanforoosh, Andrew Ng, Younes Bensouda Mourri

Stanford CS230, Lecture 3
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l. A. Attacking a network with adversarial examples

Question: Will the forged image x look like an iguana?
-~ Ny

75 632x32x3 ~1 07400 Sp_ace of possible Space of images classified
= input images as iguanas

e

Space of real images

Kian Katanforoosh, Andrew Ng, Younes Bensouda Mourri

Stanford CS230, Lecture 3



l. A. Attacking a network with adversarial examples ﬂ%

deep imaging

Goal: Given a network pretrained on ImageNet, find an input image that is a cat but will

be classify as an iguana.

f0.04\
0.85
Neural network 0.02
(pretrained on | > |00
ImageNet) 0.1
\0'02)
1. Rephrasing what we want: 0 2. Defining the loss function
1
Find x such that: #0=>..=|0 LG =5 PV 5.5) -7 g
0
: 2
0 +2«||X_xcat >

And: x=x

cat

[lan J. Goodfellow, Jonathon Shlens & Christian Szegedy (2015): Explaining and harnessing adversarial examples]

“car"

“iguana
“tomato”
“hike"

“cat”

3. Optimize the image

Network A
E 5 V| e L)

After many iterations 1 \/

Kian Katanforoosh, Andrew Ng, Younes Bensouda Mourri

Stanford CS230, Lecture 3



l. A. Attacking a network with adversarial examples

25632323 _ 17400 Space of possible Space of images classified
o~ input images % as iguanas

i

Space of real images

Space of images that look real to humans

Kian Katanforoosh, Andrew Ng, Younes Bensouda Mourri




l. B. Defenses against adversarial examples %E

1aging

Knowledge of the attacker:

White-box
Black-box

Solution 1

* Create a SafetyNet _ FEs

Solution 2
Train on correctly labelled adversarial examples

Solution 3

* Adversarial training L = L(W,b,x,y)+AL(W,b,x_, ,y)
+ Adversarial logit pairing L, = LO¥,b,x,y)+ A||f (x;W,b) — £ (x,,:;W.,b)[

[Lu et al. (2017): SafetyNet: Detecting and Rejecting Adversarial Examples Robustly]
[Harini Kannan et al. (2018): Adversarial Logit Pairing] Kian Katanforoosh, Andrew Ng, Younes Bensouda Mourri

Stanford CS230, Lecture 3



—tT >

Generative adversarial networks

—v

deep imaging

IlLA - Motivation

Probability distributions:

“real data distribution”

Matching distributions

Goal

Image space
“generated distribution”

Image space

Image space

[Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaogang Wang, Xiaolei Huang, Dimitris Metaxas (2017): StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks] KI an Katanforoosh . And rew Ng y YOU nes Bensouda MOU rrl
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deep imaging

100-d (64,64,3)
random code generated image
047

Generator “G”
(Neural Network)

0.19
Z
How can we train G to generate images from the true data
distributions?
[Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaogang Wang, Xiaolei Huang, Dimitris Metaxas (2017): StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks] Kian Katanforoosh' Andrew Ng 2 YOU nes Bensouda Mourri
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] deep imaging

100-d (64,64,3)
random code generated image
0.47

Generator “G” w '!\ N
(Neural Network) # =i

0.19
Z
3
DCGAN Generator Network:
256
r—‘ﬁ
512
1024 ' : ‘ Stride 2
4 8
100 z = . -
.::‘8
Code Project and b ] Stride 2
reshape econv
P Deconv 2 64
Deconv 3
Deconv 4
Image
[Han Zhang, Teo Xu, Hongsheng Li, Shaoting Zhang, Xizogang Wang, Xiaolei Huang, Dimitris Metaxas (2017): StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks] Kian Katanforoosh, Andrew Ng, Younes Bensouda Mourri

Machine Learning and Imaging — Roarke Horstmeyer (2024)



100-d
random code

0.47

0.19
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[IE=

".B = G/D Game deep imaging

(64,64,3)
generated image

Generator “G”
(Neural Network)

Run Adam simultaneously on two minibatches
(true data / generated data)

Real images
(database)

Gradients Binary classification

;5 y=0 if x=G(2)

Discriminator “D”
(Neural Network)

y=1 otherwise

Probability distributions

Image space

Kian Katanforoosh, Andrew Ng, Younes Bensouda Mourri

Stanford CS230, Lecture 3



100-d
random code
0.47
Generator “G”
(Neural Network)
0.19
Z

End goal: G is outputting
images that are
indistinguishable from real
images for D

Real images
(database)

II.B - G/D Game

(64,64,3)
generated image

—tT >

GradientsBinary classification

Discriminator “D”
(Neural Network)

;S y=0 if x=G(2)

y=1 otherwise

Probability distribution

Image space

Kian Katanforoosh, Andrew Ng, Younes Bensouda Mourri

Stanford CS230, Lecture 3
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Training procedure, we want to minimize: Labels: < Vrea is always 1
| Veen is always O

 The cost of the discriminator

1 M,y eal gen

(D) _ (i) (1) (1) (i)
TP = =3 30 log(D(x®))-—— ¥ (1- y2)log(1- D(G(z")
real =1 ) gen i=1
cross-entropy 1: cross-entropy 2:Y
“D should correctly label real data as 1” “D should correctly label generated data as 0”
e The cost of the generator
@_ o 1 & ()
— l “G should try to fool D: by minimizing th
J J Z 108(1 D (G(Z ))) opSogil:e ofrzvr?atolg is tryi);\gr;n Lglrrrr]mlifwli?ﬁize?
gen i=1
“Maximize probability that the discriminator is wrong and labels the fake
examp|e as a real examp|e” Kian Katanforoosh, Andrew Ng, Younes Bensouda Mourri

Stanford CS230, Lecture 3
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Typical # of weights
100 Million

ining

Typical tra
dataset

20GB (e.g.,
Imagenet)



Il. D. In terms of code

# Build and compile the discriminator

self.discriminator =|self.build_discriminator()
self.discriminator.compile(loss='binary_crossent;:;;TT---—--"“-~—______’.
optimizer=optimizer,
metrics=['accuracy'])

# Build the generator
self.generator =|self.build_generator()

# The generator takes noise as input and generates imgs
z = Input(shape=(self.latent_dim,))
img = self.generator(z)

# For the combined model we will only train the generator
self.discriminator.trainable = False

# The discriminator takes generated images as input and determines validity

def build_discriminator(self):

model = Sequential()

model.add(Flatten(input_shape=self.img_shape))
model.add(Dense(512))
model.add(LeakyReLU(alpha=0.2))
model.add(Dense(256))
model.add(LeakyReLU(alpha=0.2))
model.add(Dense(1, activation='sigmoid'))
model.summary()

img = Input(shape=self.img_shape)
validity = model(img)

return Model(img, validity)

validity = self.discriminator(img)

# The combined model (stacked generator and discriminator)

# Trains the generator to fool the discriminator

self.combined = Model(z, validity)
self.combined.compile(loss="binary_crossentropy', optimizer=optimizer)

Erik Linder-Norén (Github): eriklindernoren/Keras-GAN: link]

Kian Katanforoosh, Andrew Ng, Younes Bensouda Mourri

imaging

Machine Learning and Imaging — Roarke Horstmeyer (2024)



Qperation on codes

Code 1

0.12

0.92

Code 2

Code 3

0.42

0.07

SN

SN

Generator “G”
(Neural Network)

Generator “G”
(Neural Network)

-

Generator “G”
(Neural Network)

Il.LE - Nice results

(64,64,3)
generated image

(64,64,3)
generated image

(64,64,3)
generated image

-

[Radford et al. (2015): UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS)]

s

1aging

Code1 Code?2 Code3

0.12 047\ (0.42
Generator “G”

& ':{> (Neural Network) :{>

0.92 0.19) 10.07

Man with glasses - man + woman = woman with glasses

Kian Katanforoosh, Andrew Ng, Younes Bensouda Mourri

Stanford CS230, Lecture 3



Image Generation:

[Zhang et al. (2017): StackGAN++]

Il.LE - Nice results

Samples from the “generated distribution”
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p imaging

Kian Katanforoosh, Andrew Ng, Younes Bensouda Mourri
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NO Need to Worry about Adversarial Examples in Object Detection in
Autonomous Vehicles

Jiajun Lu? Hussein Sibai] Evan Fabry, David Forsyth
University of Illinois at Urbana Champaign
{jlu23, sibai2, efabry2, daf} @illinois.edu

Machine Learning and Imaging — Roarke Horstmeyer (2023)



It has been shown that most machine learning algorithms
are susceptible to adversarial perturbations. Slightly per-
turbing an image in a carefully chosen direction in the im-
age space may cause a trained neural network model to mis-
classify it. Recently, it was shown that physical adversarial
examples exist: printing perturbed images then taking pic-
tures of them would still result in misclassification. This
raises security and safety concerns.

Original hypothesis: "Do adversarial examples exist?"

To prove true: need just one example

To prove false: seems challenging... (do unicorns exist?)

[IE=

deep imaging



However, these experiments ignore a crucial property of %
physical objects: the camera can view objects from differ- —Va-

ent distances and at different angles. In this paper, we show deep imaging
experiments that suggest that current constructions of phys-

ical adversarial examples do not disrupt object detection

from a moving platform. Instead, a trained neural network

classifies most of the pictures taken from different distances

and angles of a perturbed image correctly. We believe this is

because the adversarial property of the perturbation is sen-

sitive to the scale at which the perturbed picture is viewed,

so (for example) an autonomous car will misclassify a stop

sign only from a small range of distances.

New hypothesis: "Are adversarial examples robust?"

To prove true: need just one example implementation

To prove false: Need to show all possible implementations fail



4 different adversarial examples for object detector:

No Attack FastSign Attack  Iterative Attack LBFGS Attack

" 4

4 different adversarial examples for object classifier:

No Attack

FastSign Attack  Iterative Attack

s -

LBFGS Attack

[IE=

deep imaging
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Figure 3: This figure shows experiment setup, and we use the printed stop signs to simulate real stop signs with natural
background. These are examples for successful 0.5 meters and 1.5 meters detection: both original images and adversarial
examples are detected in both distances. It demonstrates that adversarial examples in a physical setting do not reliably fool
stop sign detectors.



deep imaging

Within 5 days (!), a blog post from OpenAl:

https://blog.openai.com/robust-adversarial-inputs/



