

Machine Learning and Imaging

BME 548L Roarke Horstmeyer

Generative models, adversarial examples, and more

Machine Learning and Imaging – Roarke Horstmeyer (2023)

Final Project Details

- - Final code and presentation due via email: Thursday May 2, 5pm
- - Final presentation time slots: Thursday May 2, 7pm 10pm
- Final presentation paper write-up, website template and permission form due: Saturday May 4 at 11:59pm
- Final presentations will occur via Zoom, please coordinate with team members and practice ahead of time!

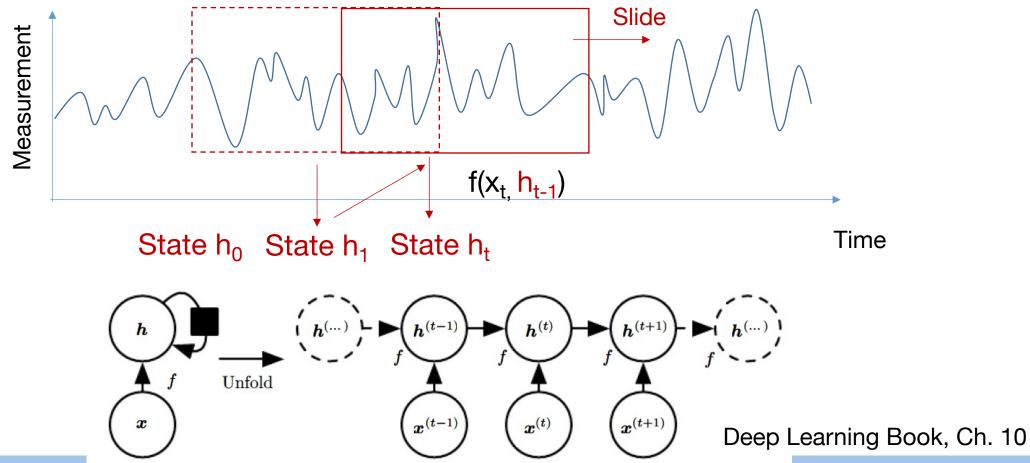
Resources for this lecture:

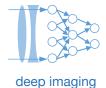
- Stanford CS231n, Lecture 12
- Stanford CS230 course slides
- Deep Learning book, chapter 15
- Number of papers cited throughout slides

Recurrent neural networks in a nutshell

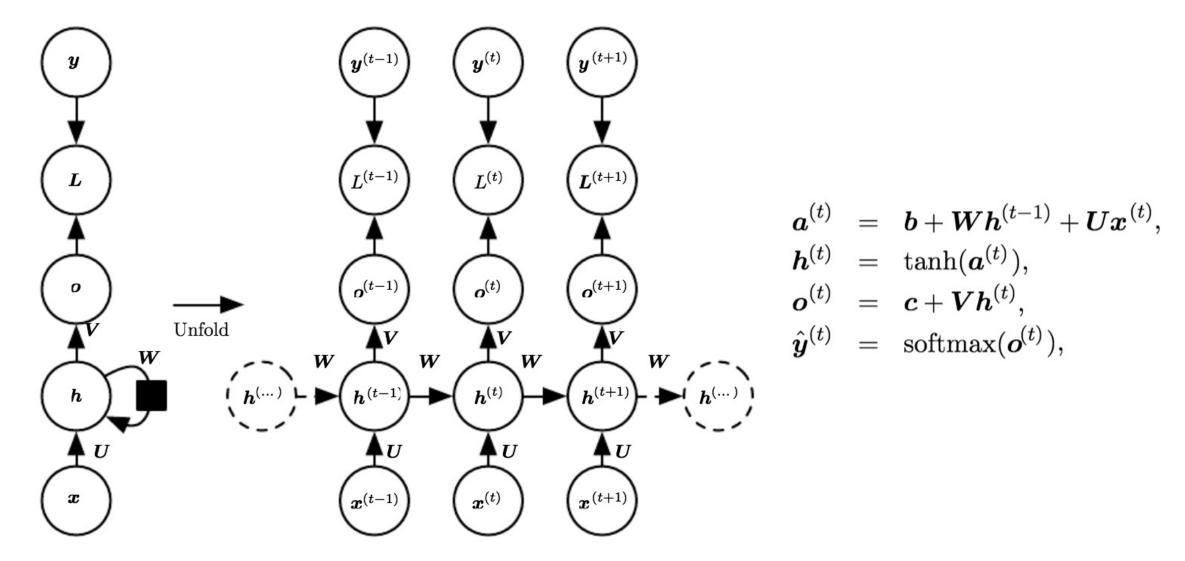
RNN's: Examine signals as a function of time

E.g., establish if mouse was scared from this EEG recording





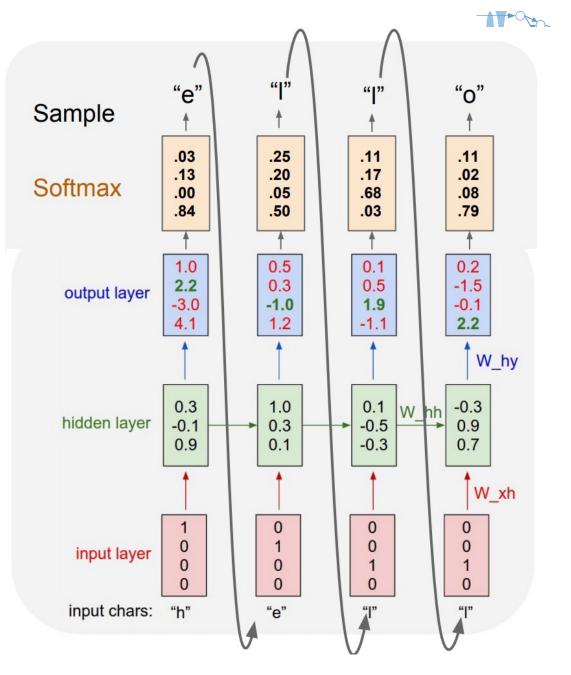
Many-to-many recurrent neural network



Example: Character-level Language Model Sampling

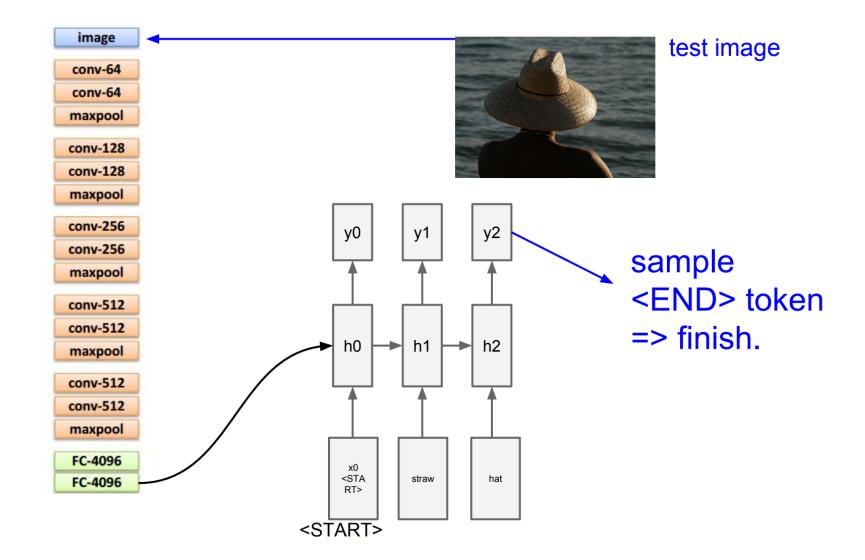
Vocabulary: [h,e,l,o]

At test-time sample characters one at a time, feed back to model



From Stanford CS231n Lecture 10 slides

Example: Image captioning

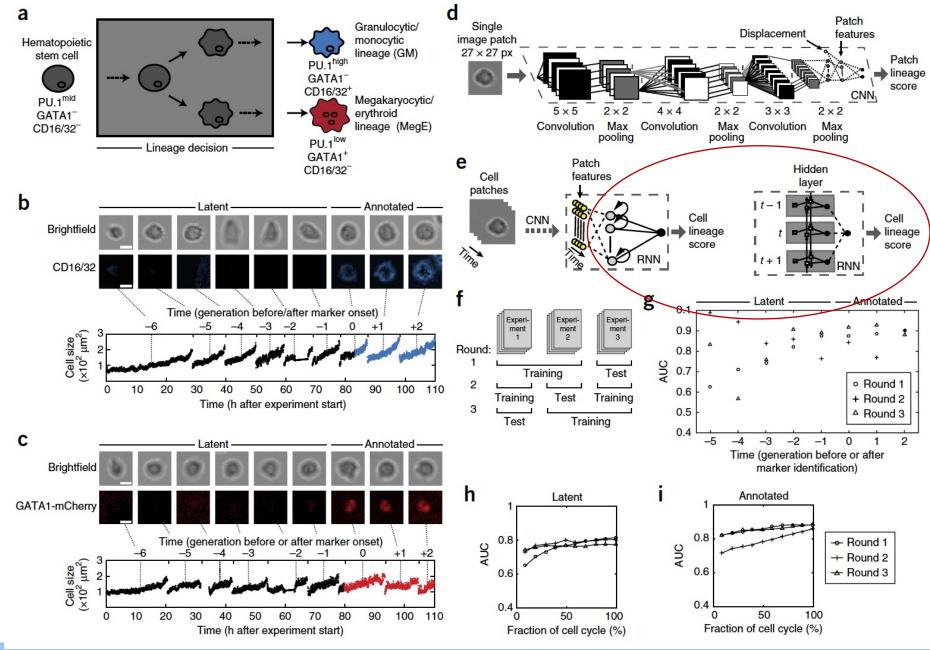


From Stanford CS231n Lecture 10 slides

Machine Learning and Imaging – Roarke Horstmeyer (2024

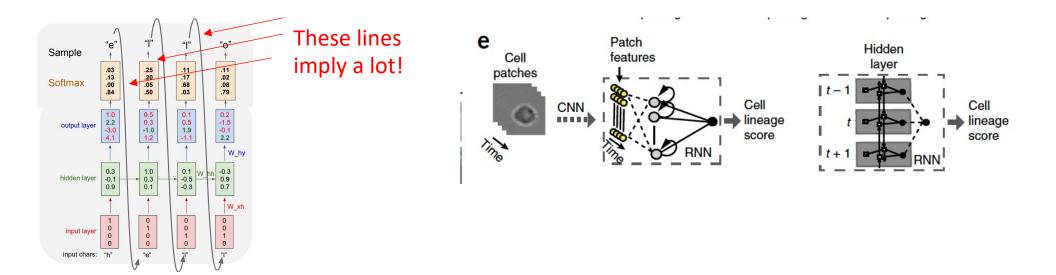
Prospective identification of hematopoietic lineage choice by deep learning

Felix Buggenthin^{1,6}, Florian Buettner^{1,2,6}, Philipp S Hoppe^{3,4}, Max Endele³, Manuel Kroiss^{1,5}, Michael Strasser¹, Michael Schwarzfischer¹, Dirk Loeffler^{3,4}, Konstantinos D Kokkaliaris^{3,4}, Oliver Hilsenbeck^{3,4}, Timm Schroeder^{3,4}, Fabian J Theis^{1,5} & Carsten Marr¹



Output generative processing - be careful...

Output-generative: "Let's figure out the next output based on the other outputs"

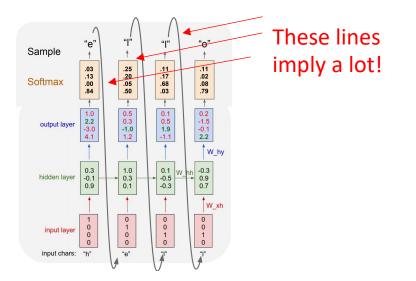


"Non-output generative": "I'll just use all of

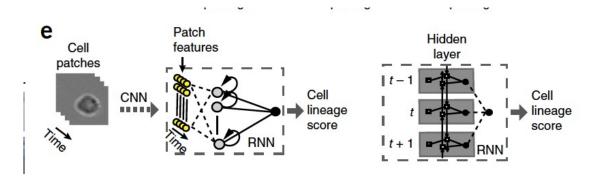
my input data to determine my final output"

Output generative processing - be careful...

Output-generative: "Let's figure out the next output based on the other outputs"



"Non-output generative": "I'll just use all of my input data to determine my final output"

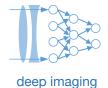


Pros: You get a lot more "bang for your buck"

Cons: Fine line between hallucination and trustworthy output...

Pros: More repeatable and interpretable results

Cons: Hard to get more outputs from inputs (and not as "cool")



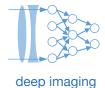
What are we possibly missing from the many-to-many model?

1. Not taking advantage of structure of output labels (assuming they are conditionally independent)

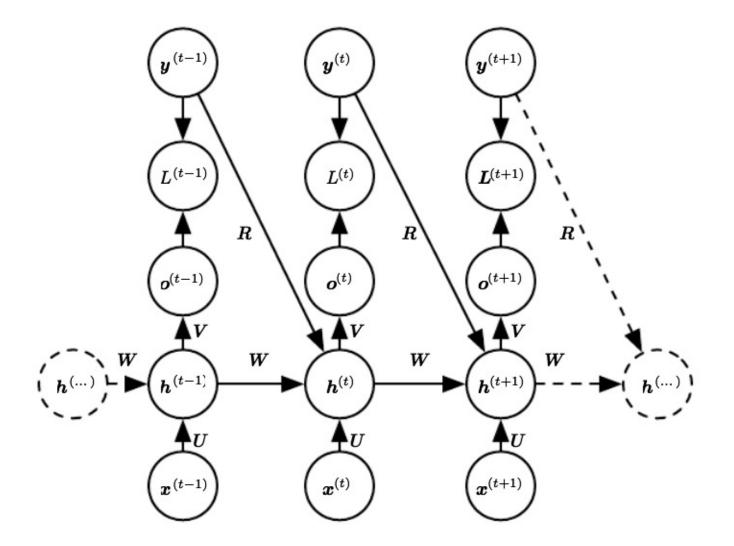
$$\log p(\boldsymbol{y}^{(t)} \mid \boldsymbol{x}^{(1)}, \dots, \boldsymbol{x}^{(t)})$$

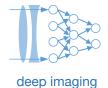
Let the network become dependent on past labels as well:

$$\log p(y^{(t)} | x^{(1)}, \dots, x^{(t)}, y^{(1)}, \dots, y^{(t-1)})$$



Conditional recurrent neural network





What are we possibly missing from the many-to-many model?

1. Not taking advantage of structure of output labels (assuming they are conditionally independent)

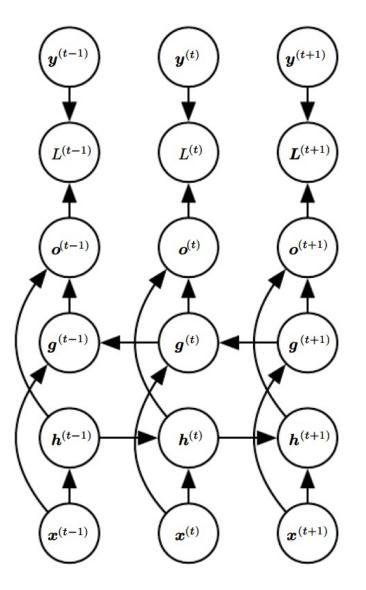
$$\log p(\boldsymbol{y}^{(t)} \mid \boldsymbol{x}^{(1)}, \dots, \boldsymbol{x}^{(t)})$$

Let the network become dependent on past labels as well:

$$\log p(y^{(t)} | x^{(1)}, \dots, x^{(t)}, y^{(1)}, \dots, y^{(t-1)})$$

2. Only considering one direction in sequence/time...

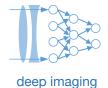
Other extensions: bi-directional analysis



• Consider future and past events jointly

deep imaging

- Add a third matrix that takes future hidden states in as well
- E.g., sentence structure is not purely causal
- Handwriting recognition, speech analysis, etc.



What are we possibly missing from the many-to-many model?

1. Not taking advantage of structure of output labels (assuming they are conditionally independent)

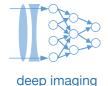
$$\log p(\boldsymbol{y}^{(t)} \mid \boldsymbol{x}^{(1)}, \dots, \boldsymbol{x}^{(t)})$$

Let the network become dependent on past labels as well:

$$\log p(y^{(t)} | x^{(1)}, \dots, x^{(t)}, y^{(1)}, \dots, y^{(t-1)})$$

2. Only considering one direction in sequence/time...

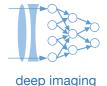
3. Chaining things together is not necessarily the ideal way to maintain long connections



RNN's have limited memory and can suffer from exploding gradients

Hidden weights effectively follow a recursive relationship:

$$oldsymbol{h}^{(t)} = oldsymbol{W}^ op oldsymbol{h}^{(t-1)} \quad extstyle \quad oldsymbol{h}^{(t)} = oldsymbol{(W^t)}^ op oldsymbol{h}^{(0)} \, ,$$



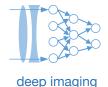
RNN's have limited memory and can suffer from exploding gradients

Hidden weights effectively follow a recursive relationship:

$$oldsymbol{h}^{(t)} = oldsymbol{W}^ op oldsymbol{h}^{(t-1)} \quad extstyle \quad oldsymbol{h}^{(t)} = oldsymbol{(W^t)}^ op oldsymbol{h}^{(0)},$$

If W admits it, can perform eigenvvector decomposition to obtain,

 $oldsymbol{W} = oldsymbol{Q} oldsymbol{\Lambda} oldsymbol{Q}^ op$



RNN's have limited memory and can suffer from exploding gradients

Hidden weights effectively follow a recursive relationship:

$$oldsymbol{h}^{(t)} = oldsymbol{W}^ op oldsymbol{h}^{(t-1)} \quad extstyle \quad oldsymbol{h}^{(t)} = oldsymbol{(W^t)}^ op oldsymbol{h}^{(0)},$$

If W admits it, can perform eigenvvector decomposition to obtain,

 $\boldsymbol{W} = \boldsymbol{Q} \boldsymbol{\Lambda} \boldsymbol{Q}^{ op}$

In this space, power relationship W^t alters just eigenvalues, does not rotate eigenvectors:

$$oldsymbol{h}^{(t)} = oldsymbol{Q}^ op oldsymbol{\Lambda}^t oldsymbol{Q} oldsymbol{h}^{(0)}$$

Thus, if the eigenvector is large (the largest), it will explode. Remaining eigenvectors eventually vanish

The long short-term memory network

Additions:

- Self-loop to maintain "memory"
 - Allow gradients to flow for a long time
- Weight of self-loop gated by "Forget gate"
 - Forgetting depends on data
 - Memory time scale is thus dynamic
- Output gate
 - Can turn on/shut off everything

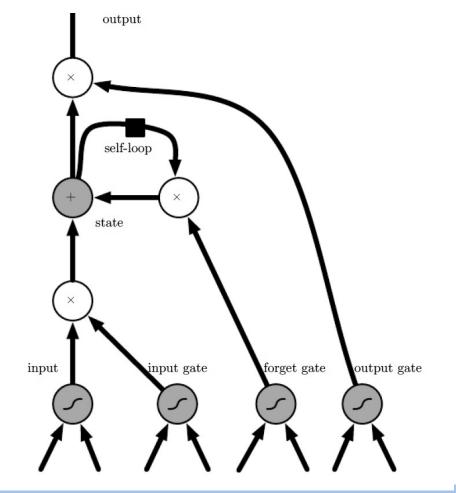
S. Hochreiter and J. Schmidhuber (1997)

Long Short-Term Memory

https://dl.acm.org > citation

by S Hochreiter - 1997 - Cited by 24398 - Related articles

Nov 1, 1997 - Hochreiter, S., & Schmidhuber, J. (1996). Bridging long time lags by weight guessing and **"long short-term memory."** In F. L. Silva, J. C. Principe, ...



The long short-term memory network

Forget gate:

$$f_{i}^{(t)} = \sigma \left(b_{i}^{f} + \sum_{j} U_{i,j}^{f} x_{j}^{(t)} + \sum_{j} W_{i,j}^{f} h_{j}^{(t-1)} \right)$$

Internal state:

$$s_{i}^{(t)} = f_{i}^{(t)} s_{i}^{(t-1)} + g_{i}^{(t)} \sigma \left(b_{i} + \sum_{j} U_{i,j} x_{j}^{(t)} + \sum_{j} W_{i,j} h_{j}^{(t-1)} \right)$$

External input gate:

$$g_{i}^{(t)} = \sigma \left(b_{i}^{g} + \sum_{j} U_{i,j}^{g} x_{j}^{(t)} + \sum_{j} W_{i,j}^{g} h_{j}^{(t-1)} \right)$$

LSTM output:

$$h_i^{(t)} = \tanh\left(s_i^{(t)}\right)q_i^{(t)}$$

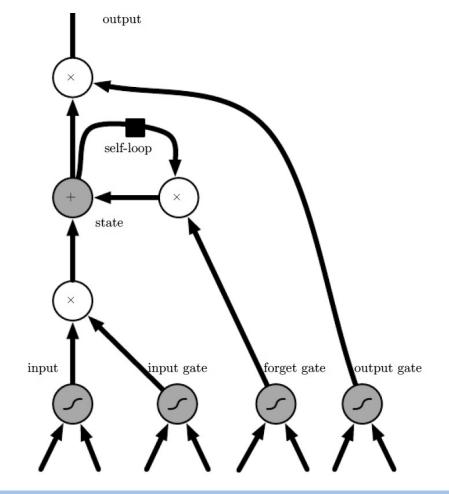
S. Hochreiter and J. Schmidhuber (1997)

Long Short-Term Memory

https://dl.acm.org > citation

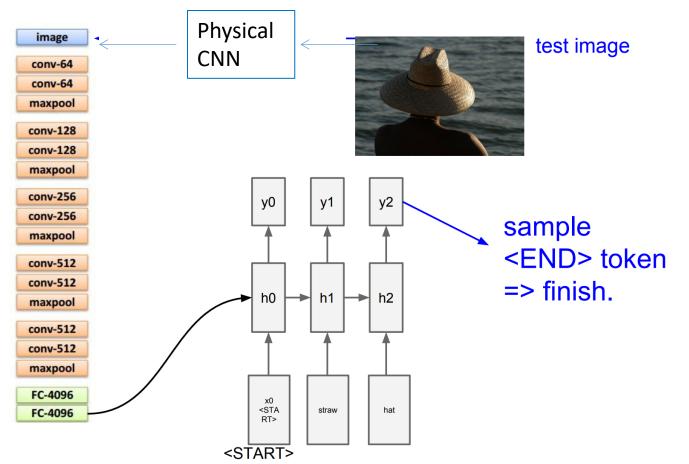
by S Hochreiter - 1997 - Cited by 24398 - Related articles

Nov 1, 1997 - Hochreiter, S., & Schmidhuber, J. (1996). Bridging long time lags by weight guessing and **"long short-term memory."** In F. L. Silva, J. C. Principe, ...



Machine Learning and Imaging – Roarke Horstmeyer (2024

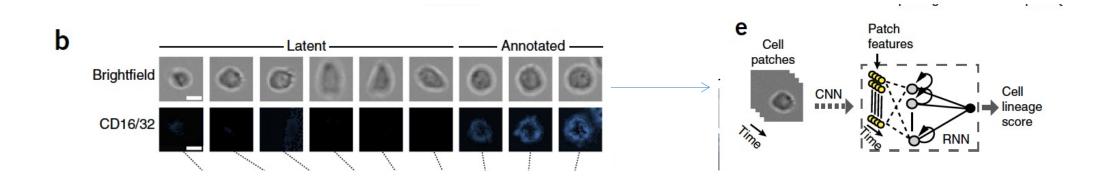
Simple example, "Output generative" flavor



Design an optimal X to produce the best image captions



Simple example, "Non-output generative" flavor

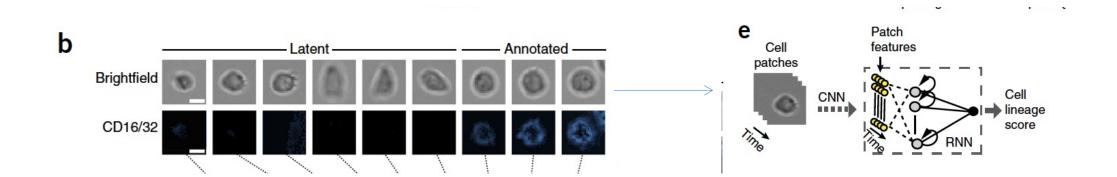


Simple example, "Non-output generative" flavor

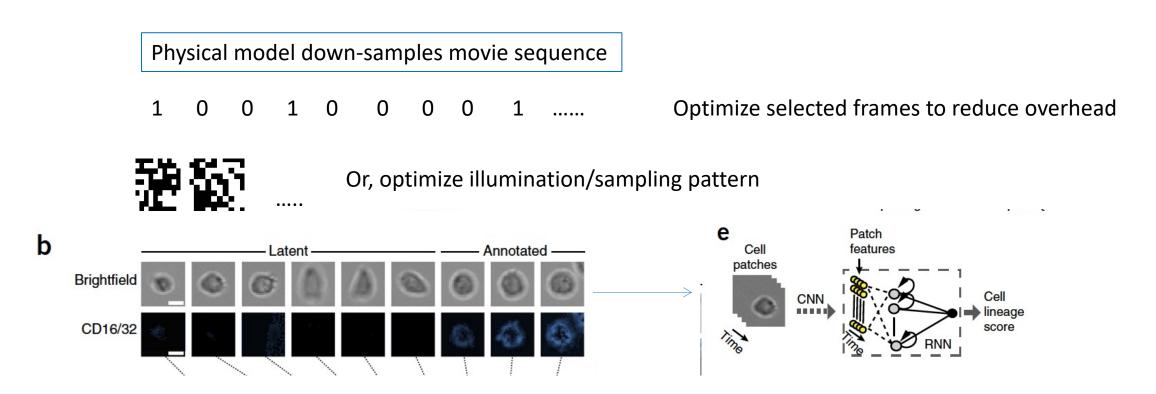
Physical model down-samples movie sequence

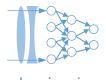
1 0 0 1 0 0 0 0 1

Optimize selected frames to reduce overhead



Simple example, "Non-output generative" flavor





Take a bit of time and try to think about/write down the following:

- With your image data (or some data that you are interested), what do you measure over time?
- What would your input data for an RNN be, and what might be a useful output?
- What physical parameters influence how you measure data over time?
- What physical parameters might be useful to tweak to improve your output?
- Can you think of a way to model that parameter in an RNN?

Supervised versus unsupervised learning

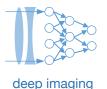
Supervised

- Have data **x** with labels **y**
- Goal is to learn function
 f(x) = y

Unsupervised

- Just have data **x** with *no* labels
- Figure out and exploit underlying structure of data

Supervised versus unsupervised learning

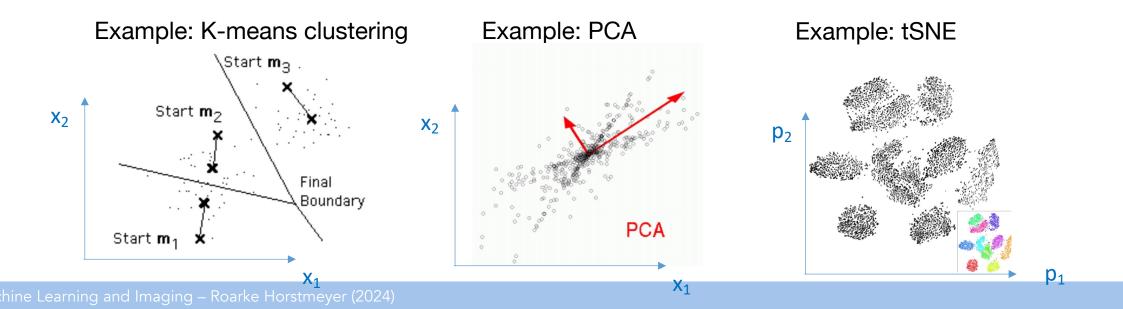


Supervised

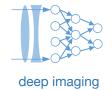
- Have data **x** with labels **y**
- Goal is to learn function
 f(x) = y

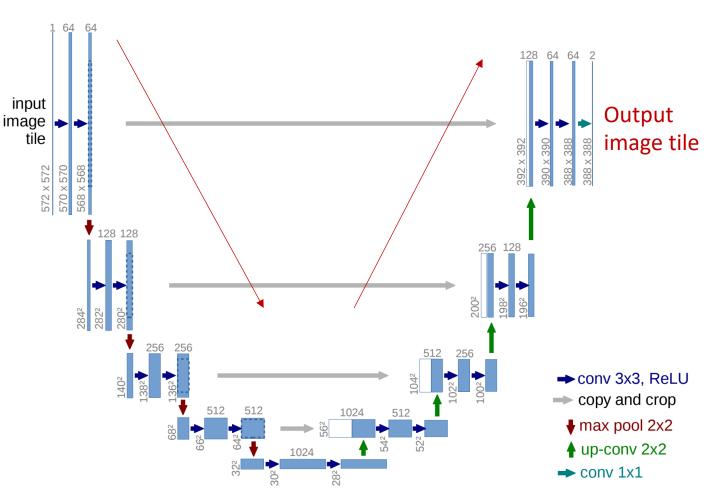
Unsupervised

- Just have data **x** with *no* labels
- Figure out and exploit underlying structure of data



Unsupervised learning example: autoencoder





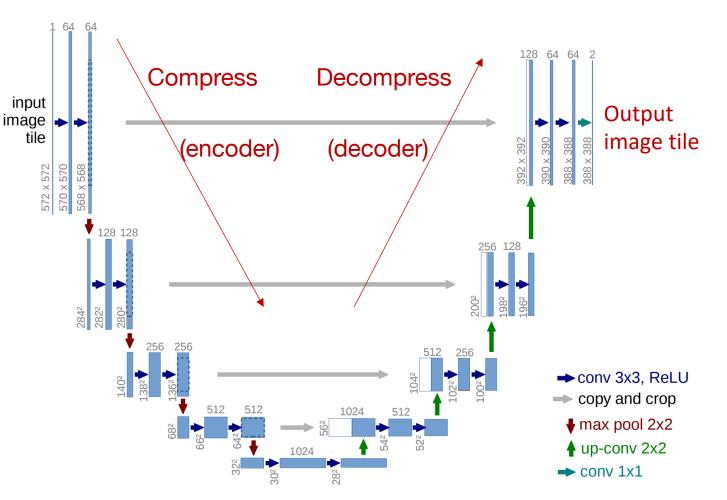
U-Net Architecture

U-Net: Convolutional Networks for Biomedical Image Segmentation

Olaf Ronneberger, Philipp Fischer, and Thomas Brox

Computer Science Department and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany ronneber@informatik.uni-freiburg.de, WWW home page: http://lmb.informatik.uni-freiburg.de/

Unsupervised learning example: autoencoder



U-Net Architecture

- Compress spatial features into learned filters
- Then, decompress learned filters back into same spatial dimensions

U-Net: Convolutional Networks for Biomedical Image Segmentation

Olaf Ronneberger, Philipp Fischer, and Thomas Brox

Computer Science Department and BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany ronneber@informatik.uni-freiburg.de, WWW home page: http://lmb.informatik.uni-freiburg.de/

Example: Learned compression

64 128 64 64 2 Decompress Compress Input image input Input image "Label" is image 🔶 tile 390 x 390 388 x 388 388 x 388 392 x 392 (encoder) (decoder) image! 572 x 572 570 x 570 568 128 128 256 128 2002 198² 196² 284² 282² 256 256 256 512 ➡ conv 3x3, ReLU → copy and crop 512 512 1024 512 I max pool 2x2 ↓ up-conv 2x2 1024 ➡ conv 1x1

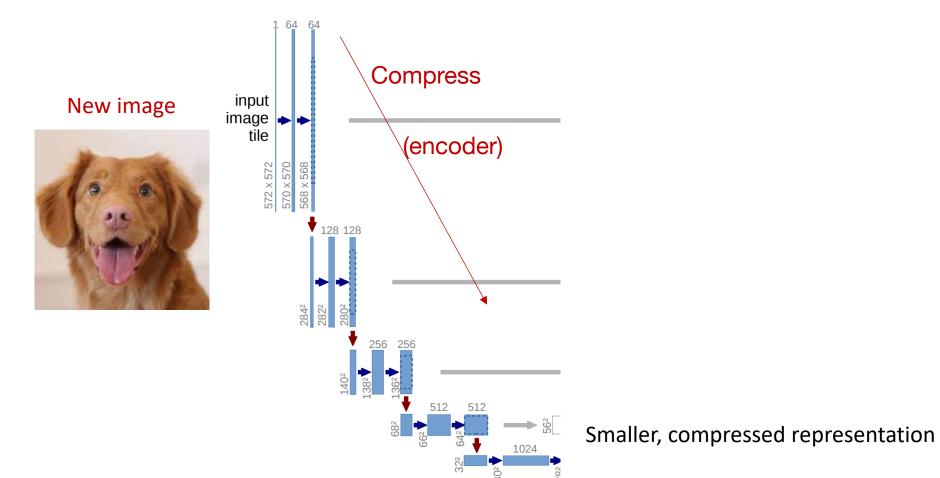
U-Net Architecture

Machine Learning and Imaging – Roarke Horstmeyer (2024)

Example: Learned compression

Smartphone

memory



U-Net Architecture

Machine Learning and Imaging – Roarke Horstmeyer (2024

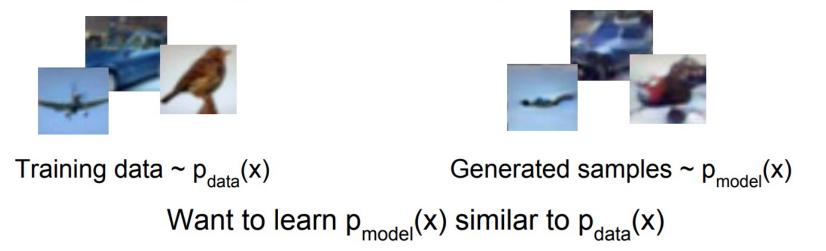
Example: Denoising Autoencoder

64 128 64 64 2 Decompress Compress Input noisy "Label" is noiseless image 388 x 388 388 x 388 392 x 392 390 x 390 (encoder) (decoder) image! 572 x 572 570 × 570 568 128 128 256 128 2002 198² 196² 284² 282² 256 256 256 512 ➡ conv 3x3, ReLU → copy and crop 512 512 1024 512 I max pool 2x2 ↓ up-conv 2x2 1024 ➡ conv 1x1

U-Net Architecture

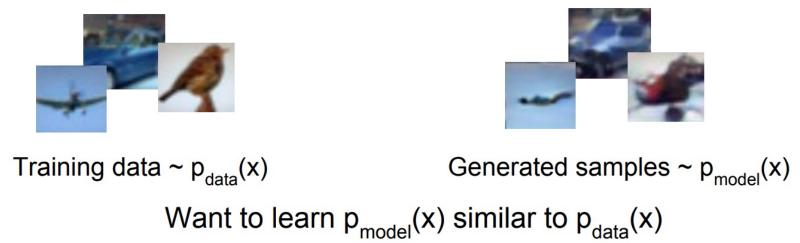
Generative Models

Given training data, generate new samples from same distribution



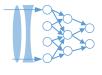
Generative Models

Given training data, generate new samples from same distribution



Addresses density estimation, a core problem in unsupervised learning **Several flavors:**

- Explicit density estimation: explicitly define and solve for p_{model}(x)
- Implicit density estimation: learn model that can sample from p_{model}(x) w/o explicitly defining it



deep imaging

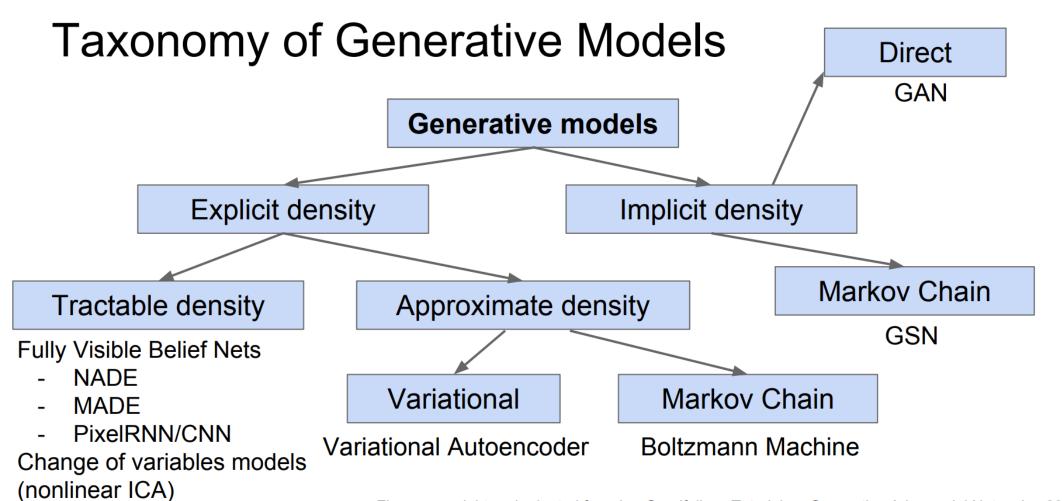
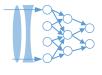


Figure copyright and adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Stanford CS231n, Lecture 12



deep imaging

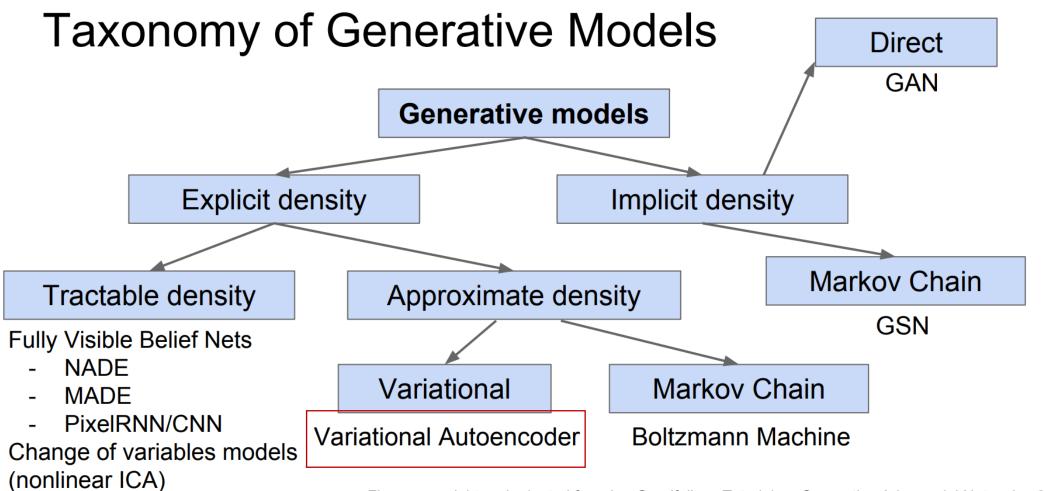
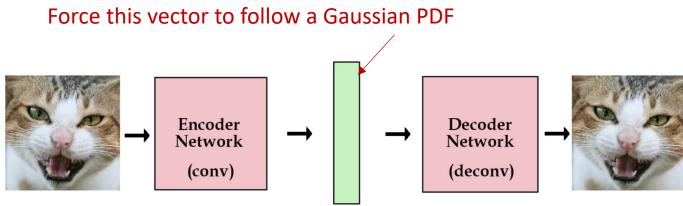


Figure copyright and adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Example: Variational Autoencoder (VAE)





latent vector / variables

Minimize (KL) distance between latent vector and Gaussian normal

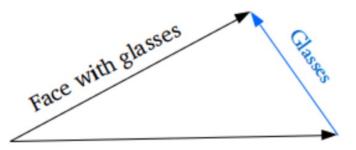
- Good generative model •
- Have a clean probability distribution to ٠ select from to generate new examples

Input

VAE reconstruction

Example: Variational Autoencoder (VAE)

 With Gaussian PDF, can start to add/subtract latent vector in a normalized vector space



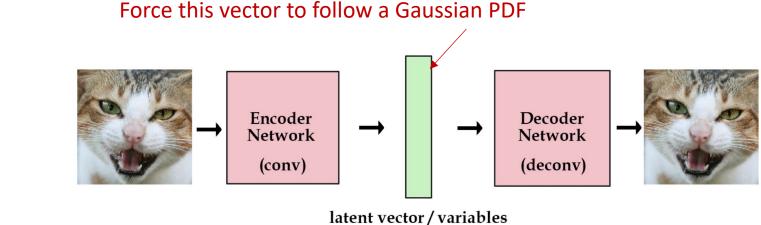
Face without glasses

Adding new features to samples

Glasses



deep imagi



Minimize (KL) distance between latent vector and Gaussian normal

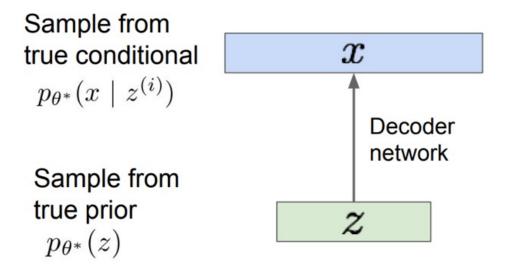
Generative Example (once trained):

- Encode image with glasses, obtain latent vector PDF P_g
- Encode image without glasses, obtain PDF P_{ng}
- Compute diff = $P_g P_{ng}$
- Encode new image to obtain $\mathbf{P}_{\mathsf{new}}$, add in diff
- Decode **P**_{new} + **diff** to get guy with glasses!

Example: Variational Autoencoder (VAE)

Force this vector to follow a Gaussian PDF $= \bigoplus_{i=1}^{n} \bigoplus_{l \in I} \bigoplus_{i=1}^{n} \bigoplus_{l \in I} \bigoplus_{i=1}^{n} \bigoplus_{l \in I} \bigoplus_{i=1}^{n} \bigoplus_{l \in I} \bigoplus_{i=1}^{n} \bigoplus_{i=1}^{n} \bigoplus_{l \in I} \bigoplus_{i=1}^{n} \bigoplus_{i=1}^{n} \bigoplus_{l \in I} \bigoplus_{i=1}^{n} \bigoplus_{i=$

latent vector / variables

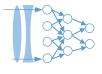


A very simple example – MNIST digits

See https://deepimaging.github.io/data/Simple_Autoencoder.ipynb

On the way towards generating "fake" images of handwritten digits?

Machine Learning and Imaging – Roarke Horstmeyer (2024



deep imaging

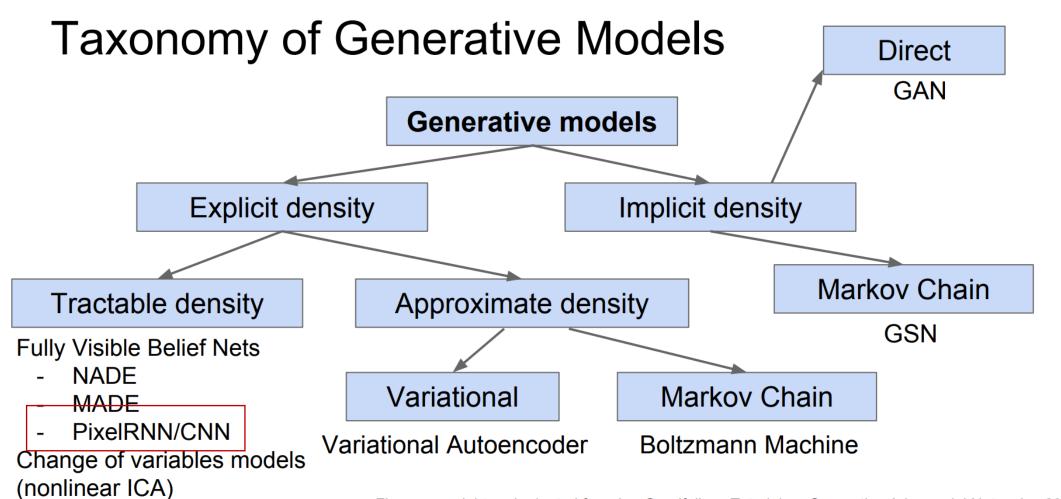


Figure copyright and adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Stanford CS231n, Lecture 12

Fully visible belief network

Explicit density model

Use chain rule to decompose likelihood of an image x into product of 1-d distributions:

$$p(x) = \prod_{i=1}^{n} p(x_i | x_1, ..., x_{i-1})$$

$$\uparrow \qquad \uparrow$$

$$ikelihood of$$

$$ikelihoo$$

Then maximize likelihood of training data

L

ng

Fully visible belief network

Explicit density model

Use chain rule to decompose likelihood of an image x into product of 1-d distributions:

$$p(x) = \prod_{i=1}^{n} p(x_i | x_1, ..., x_{i-1})$$
 Thi dis
 $i = 1$ $i =$

This is a really complex distribution, obviously

Simplify by going through image pixel by pixel, rely on RNN

Then maximize likelihood of training data

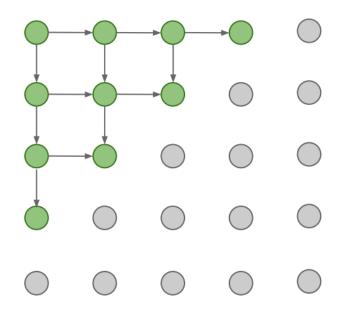
L

PixeIRNN [van der Oord et al. 2016]

Generate image pixels starting from corner

Dependency on previous pixels modeled using an RNN (LSTM)

Drawback: sequential generation is slow!



Stanford CS231n, Lecture 12

aging

Figure 1. Image completions sampled from a PixelRNN.

A. Van der Oord et al., <u>https://arxiv.org/abs/1601.06759</u>

PixelCNN [van der Oord et al. 2016]

Still generate image pixels starting from corner

Dependency on previous pixels now modeled using a CNN over context region

Training: maximize likelihood of training images

$$p(x) = \prod_{i=1}^{n} p(x_i | x_1, ..., x_{i-1})$$

Softmax loss at each pixel

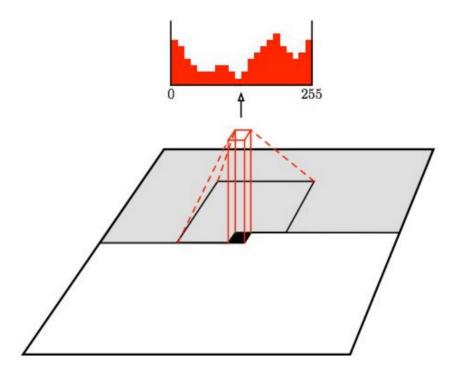
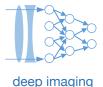


Figure copyright van der Oord et al., 2016. Reproduced with permission.

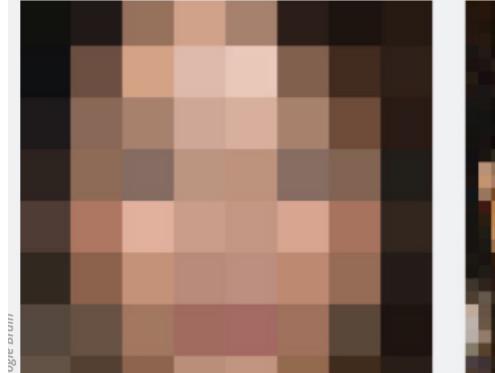


GARBAGE IN, NON-GARBAGE OUT ----

Google Brain super-resolution image tech makes "zoom, enhance!" real

Google Brain creates new image details out of thin air.

SEBASTIAN ANTHONY - 2/7/2017, 8:38 AM



So far...

PixelCNNs define tractable density function, optimize likelihood of training data: $p_{\theta}(x) = \prod_{i=1}^{n} p_{\theta}(x_i | x_1, ..., x_{i-1})$

VAEs define intractable density function with latent **z**:

$$p_{\theta}(x) = \int p_{\theta}(z) p_{\theta}(x|z) dz$$

Cannot optimize directly, derive and optimize lower bound on likelihood instead

So far...

PixelCNNs define tractable density function, optimize likelihood of training data: $p_{\theta}(x) = \prod p_{\theta}(x_i | x_1, ..., x_{i-1})$

VAEs define intractable density function with latent **z**:

$$p_{\theta}(x) = \int p_{\theta}(z) p_{\theta}(x|z) dz$$

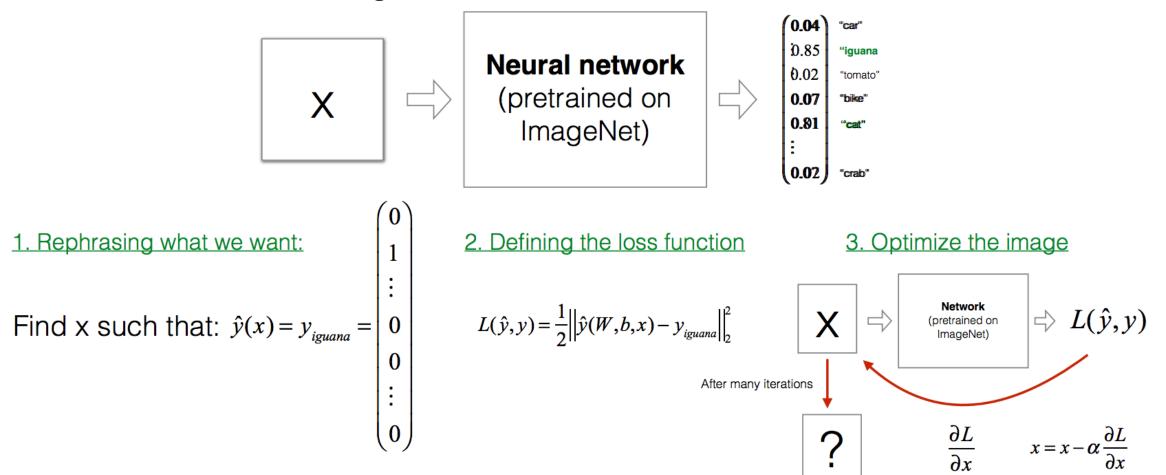
i=1

Cannot optimize directly, derive and optimize lower bound on likelihood instead

What if we give up on explicitly modeling density, and just want ability to sample?

GANs: don't work with any explicit density function! Instead, take game-theoretic approach: learn to generate from training distribution through 2-player game

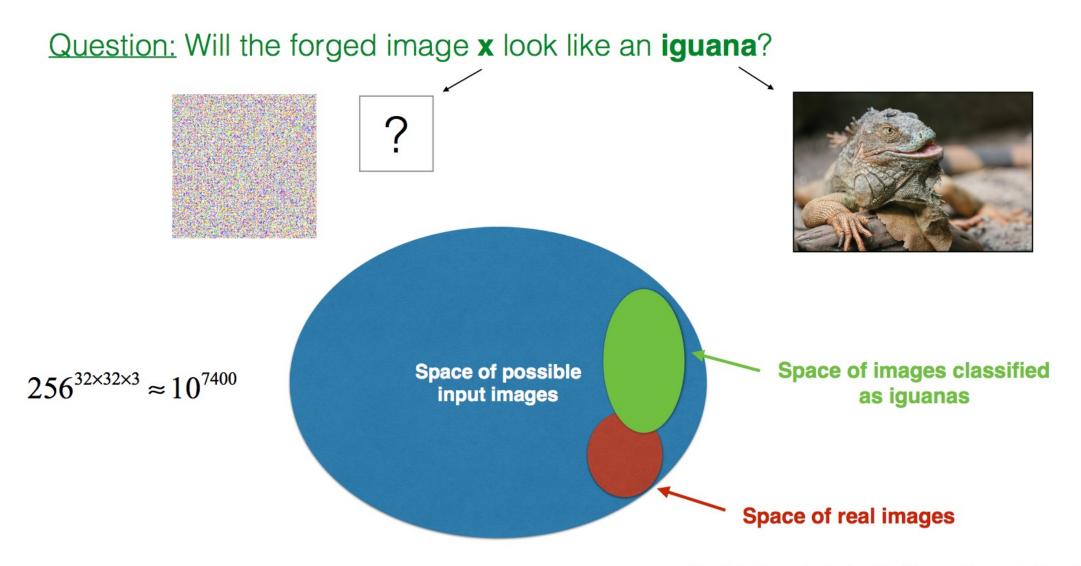
Goal: Given a network pretrained on ImageNet, find an input image that is not a iguana but will be classified as an iguana.



[Ian J. Goodfellow, Jonathon Shlens & Christian Szegedy (2015): Explaining and harnessing adversarial examples]

Kian Katanforoosh, Andrew Ng, Younes Bensouda Mourri

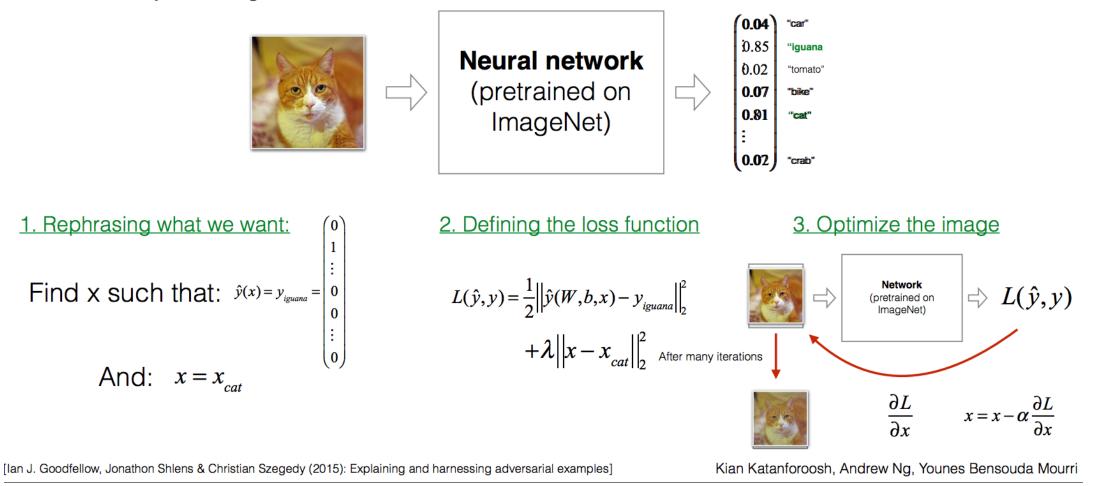
Stanford CS230, Lecture 3



Kian Katanforoosh, Andrew Ng, Younes Bensouda Mourri Stanford CS230, Lecture 3

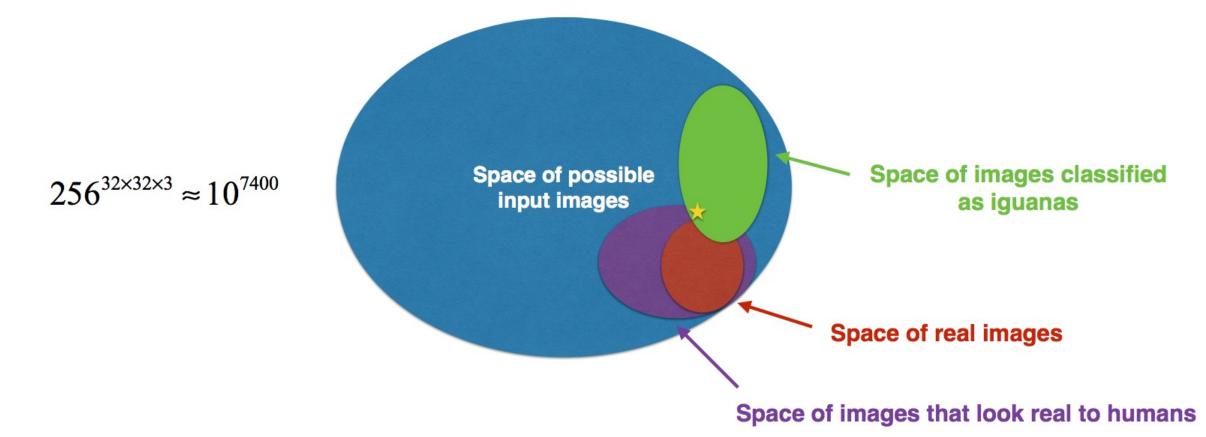
naging

Goal: Given a network pretrained on ImageNet, find an input image that is a cat but will be classify as an iguana.



Stanford CS230, Lecture 3

deep imaging



Kian Katanforoosh, Andrew Ng, Younes Bensouda Mourri

Knowledge of the attacker:

- White-box
- Black-box

Solution 1

• Create a SafetyNet

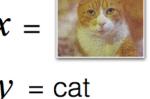
Solution 2

• Train on correctly labelled adversarial examples

Solution 3

- Adversarial training $L_{new} = L(W, b, x, y) + \lambda L(W, b, x_{adv}, y)$
- Adversarial logit pairing $L_{new} = L(W,b,x,y) + \lambda \left\| f(x;W,b) f(x_{adv};W,b) \right\|_{2}^{2}$

[Lu et al. (2017): SafetyNet: Detecting and Rejecting Adversarial Examples Robustly] [Harini Kannan et al. (2018): Adversarial Logit Pairing]



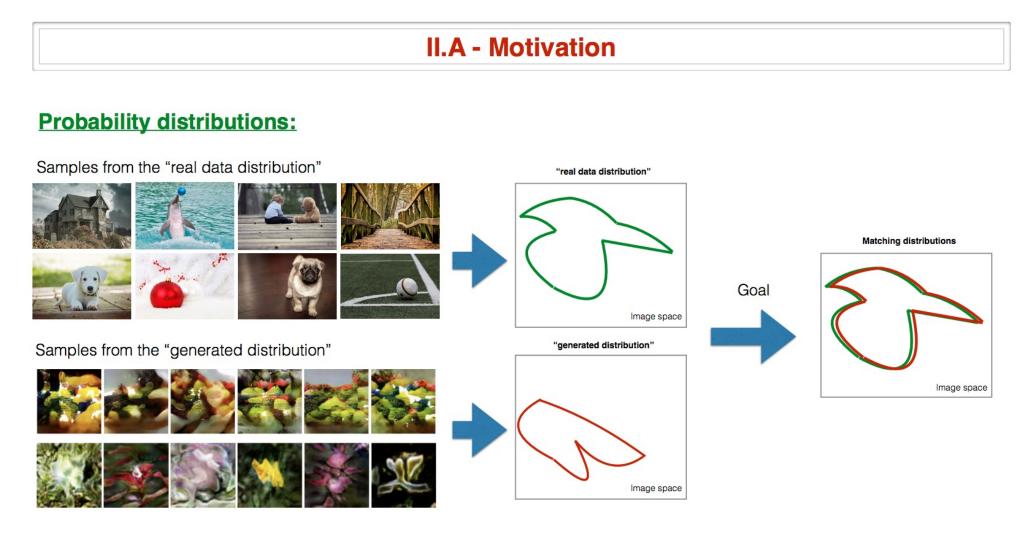
Kian Katanforoosh, Andrew Ng, Younes Bensouda Mourri

Ment

naging

Generative adversarial networks

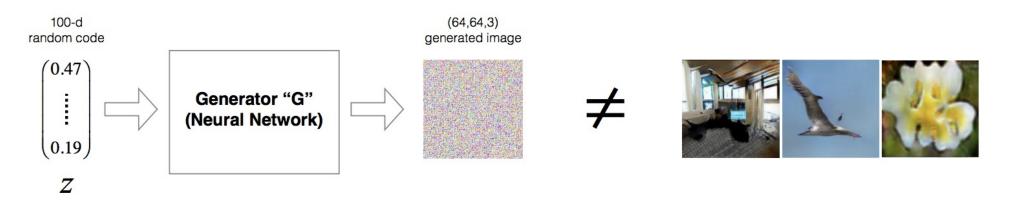
deep imaging



[Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaogang Wang, Xiaolei Huang, Dimitris Metaxas (2017): StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks]

Kian Katanforoosh, Andrew Ng, Younes Bensouda Mourri

Stanford CS230, Lecture 3



How can we train G to generate images from the true data distributions?

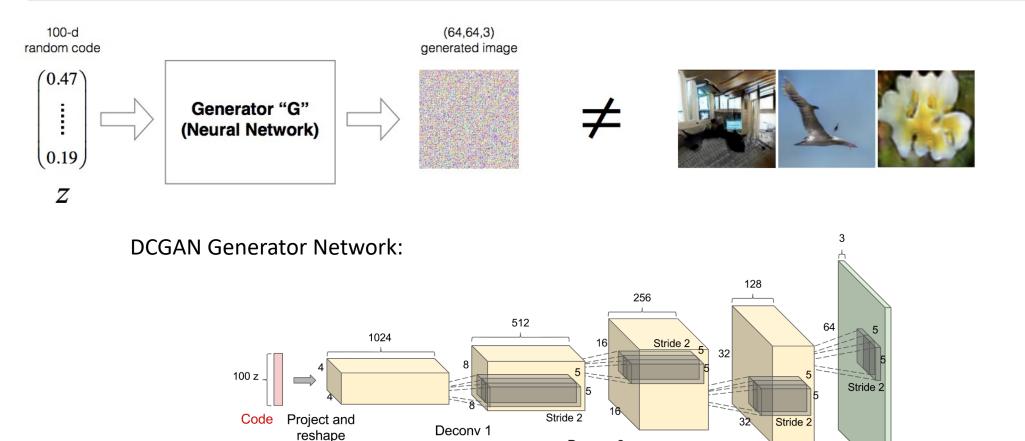
[Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaogang Wang, Xiaolei Huang, Dimitris Metaxas (2017): StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks]

Kian Katanforoosh, Andrew Ng, Younes Bensouda Mourri

Stanford CS230, Lecture 3

deep imaging

Machine Learning and Imaging – Roarke Horstmeyer (2024



Deconv 2

[Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaolei Huang, Dimitris Metaxas (2017): StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks]

Kian Katanforoosh, Andrew Ng, Younes Bensouda Mourri

Image

64

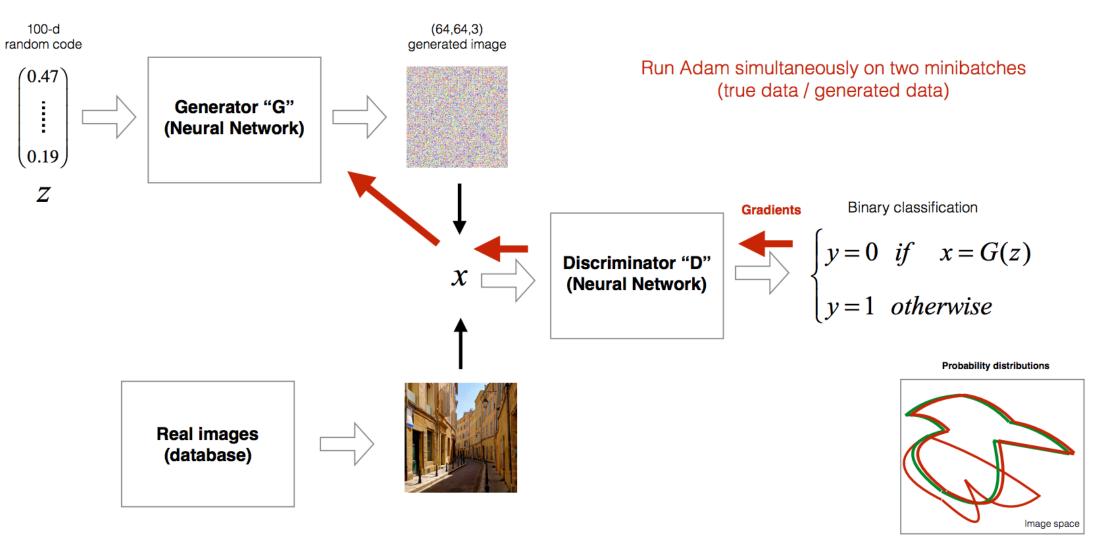
Deconv 4

Deconv 3

Stanford CS230, Lecture 3

deep imaging

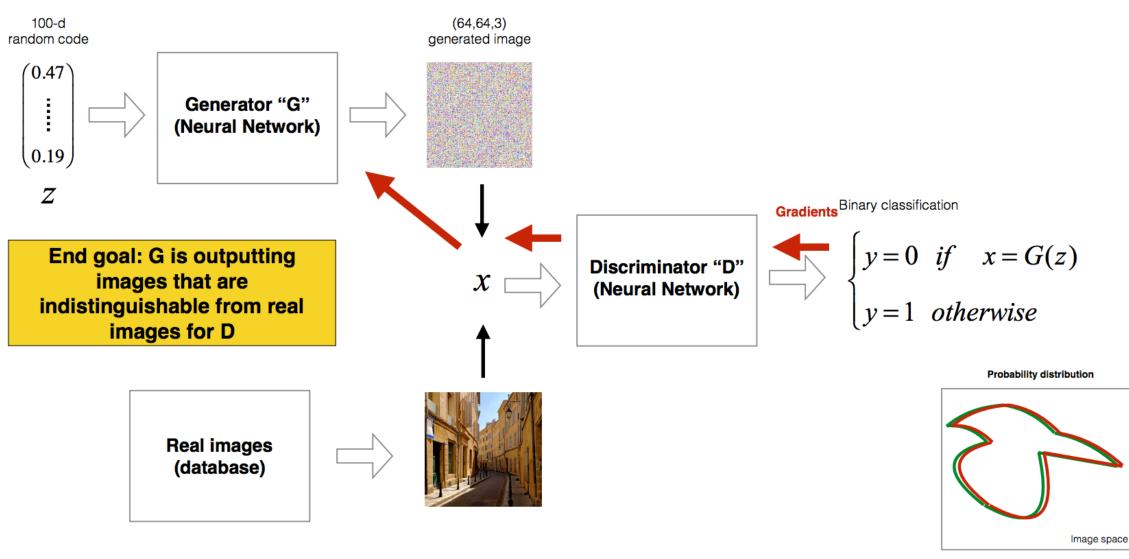
Machine Learning and Imaging – Roarke Horstmeyer (2024



Kian Katanforoosh, Andrew Ng, Younes Bensouda Mourri

Stanford CS230, Lecture 3

deep imaging



Kian Katanforoosh, Andrew Ng, Younes Bensouda Mourri

Stanford CS230, Lecture 3

naging

II.B - G/D Game Labels: $\begin{cases} \mathcal{Y}_{real} \text{ is always 1} \\ \mathcal{Y}_{gen} \text{ is always 0} \end{cases}$ Training procedure, we want to minimize: The cost of the discriminator $J^{(D)} = -\frac{1}{m_{real}} \sum_{i=1}^{m_{real}} y^{(i)}_{real} \cdot \log(D(x^{(i)})) - \frac{1}{m_{gen}} \sum_{i=1}^{m_{gen}} (1 - y^{(i)}_{gen}) \cdot \log(1 - D(G(z^{(i)})))$ cross-entropy 1: cross-entropy 2: "D should correctly label generated data as 0" "D should correctly label real data as 1"

• The cost of the generator

$$J^{(G)} = -J^{(D)} = \frac{1}{m_{gen}} \sum_{i=1}^{m_{gen}} \log(1 - D(G(z^{(i)})))$$

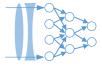
"G should try to fool D: by minimizing the opposite of what D is trying to minimize"

naging

"Maximize probability that the discriminator is wrong and labels the fake example as a real example"

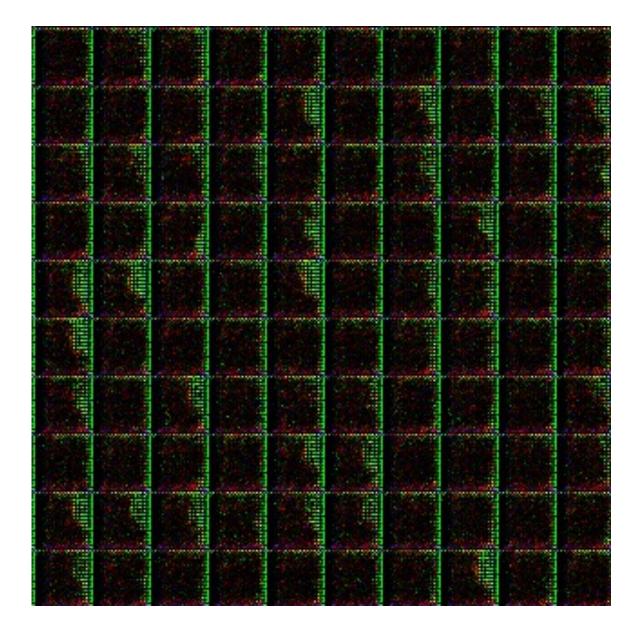
Kian Katanforoosh, Andrew Ng, Younes Bensouda Mourri

Stanford CS230, Lecture 3



Typical # of weights: 100 Million

Typical training dataset: 20GB (e.g., Imagenet)



deep imaging

II. D. In terms of code

imaging

def build_discriminator(self): # Build and compile the discriminator self.discriminator = self.build_discriminator() model = Sequential() self.discriminator.compile(loss='binary_crossentropy', optimizer=optimizer, model.add(Flatten(input_shape=self.img_shape)) metrics=['accuracy']) model.add(Dense(512)) model.add(LeakyReLU(alpha=0.2)) # Build the generator self.generator = self.build_generator() model.add(Dense(256)) model.add(LeakyReLU(alpha=0.2)) # The generator takes noise as input and generates imgs model.add(Dense(1, activation='sigmoid')) z = Input(shape=(self.latent_dim,)) model.summary() img = self.generator(z)img = Input(shape=self.img_shape) # For the combined model we will only train the generator validity = model(imq) self.discriminator.trainable = False return Model(img, validity)

The discriminator takes generated images as input and determines validity
validity = self.discriminator(img)

The combined model (stacked generator and discriminator)
Trains the generator to fool the discriminator
self.combined = Model(z, validity)
self.combined.compile(loss='binary_crossentropy', optimizer=optimizer)

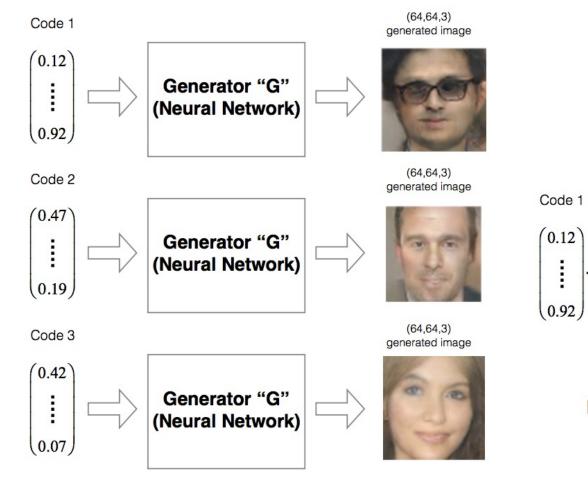
```
Erik Linder-Norén (Github): eriklindernoren/Keras-GAN: link]
```

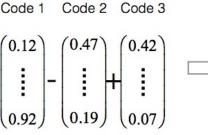
Kian Katanforoosh, Andrew Ng, Younes Bensouda Mourri

Stanford CS230, Lecture 3

II.E - Nice results

Operation on codes





Generator "G" (Neural Network)

Man with glasses - man + woman = woman with glasses

[Radford et al. (2015): UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS]

Kian Katanforoosh, Andrew Ng, Younes Bensouda Mourri

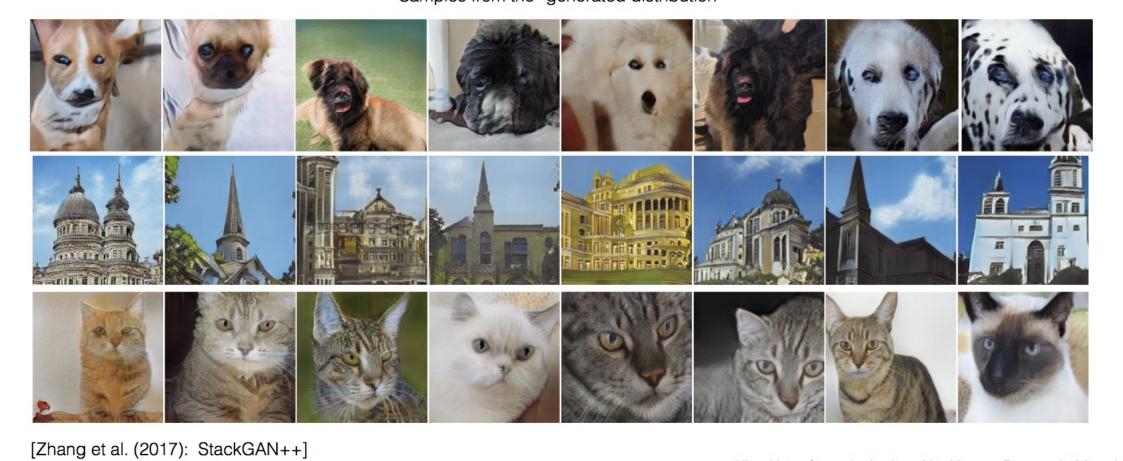
Stanford CS230, Lecture 3

Machine Learning and Imaging - Roarke Horstmeyer (2024)

Image Generation:

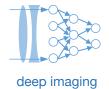
II.E - Nice results

Samples from the "generated distribution"



Kian Katanforoosh, Andrew Ng, Younes Bensouda Mourri

Stanford CS230, Lecture 3



NO Need to Worry about Adversarial Examples in Object Detection in Autonomous Vehicles

Jiajun Lu^{*}, Hussein Sibai^{*}, Evan Fabry, David Forsyth University of Illinois at Urbana Champaign {jlu23, sibai2, efabry2, daf}@illinois.edu

It has been shown that most machine learning algorithms are susceptible to adversarial perturbations. Slightly perturbing an image in a carefully chosen direction in the image space may cause a trained neural network model to misclassify it. Recently, it was shown that physical adversarial examples exist: printing perturbed images then taking pictures of them would still result in misclassification. This raises security and safety concerns.

Original hypothesis: "Do adversarial examples exist?"

To prove true: need just one example

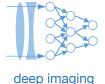
<u>To prove false</u>: seems challenging... (do unicorns exist?)

However, these experiments ignore a crucial property of physical objects: the camera can view objects from different distances and at different angles. In this paper, we show experiments that suggest that current constructions of physical adversarial examples do not disrupt object detection from a moving platform. Instead, a trained neural network classifies most of the pictures taken from different distances and angles of a perturbed image correctly. We believe this is because the adversarial property of the perturbation is sensitive to the scale at which the perturbed picture is viewed, so (for example) an autonomous car will misclassify a stop sign only from a small range of distances.

New hypothesis: "Are adversarial examples robust?"

<u>To prove true</u>: need just one example implementation

<u>To prove false</u>: Need to show *all possible* implementations fail



4 different adversarial examples for object detector:

4 different adversarial examples for object classifier:

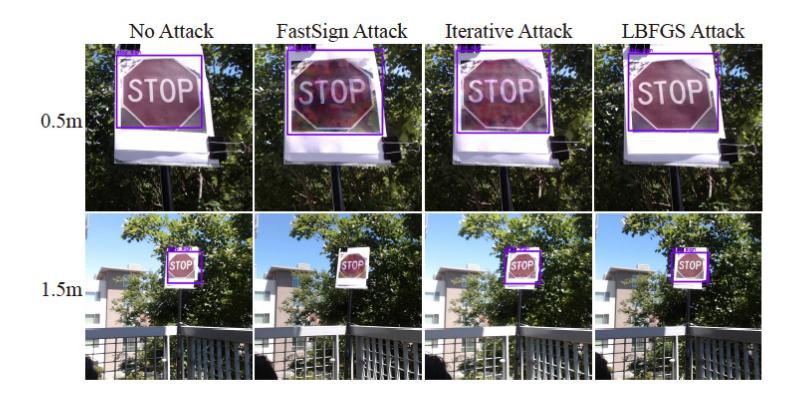


Figure 3: This figure shows experiment setup, and we use the printed stop signs to simulate real stop signs with natural background. These are examples for successful 0.5 meters and 1.5 meters detection: both original images and adversarial examples are detected in both distances. It demonstrates that adversarial examples in a physical setting do not reliably fool stop sign detectors.

Within 5 days (!), a blog post from OpenAI:

https://blog.openai.com/robust-adversarial-inputs/

Machine Learning and Imaging – Roarke Horstmeyer (2024)