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Class project details

What you’ll need to submit:
1) The project’s source code

2) A short research-style paper (3 pages minimum, 5 pages maximum) that includes an 
introduction, results, a discussion section, references and at least 2 figures

3) A completed web template containing the main results from the research paper

4) A 7-10 minute presentation that each student will deliver to the class

• Due this Friday at 11pm

• Full details are here: https://deepimaging.github.io/proj-info/

• Can work alone or in a group (up to 4 people), required effort will scale with # of people

• Select a “base” dataset (online, or from a list I’ll make)
• Simulate parameters of a physical (imaging) system with base dataset

• Train deep neural net with simulated dataset  

• Report results

https://deepimaging.github.io/proj-info/
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Real World
Measurement device

Continuous
complex fields

Black box transformations
• Convolution
• Fourier Transform

Digitization 

Sampling Theorem

Discrete math & 
Linear algebra

Machine Learning

Optimization

Linear classification

Logistic classifier

Neural networks

Convolutional NN’s

ML+Imaging pipeline + plan

γ -> e-

After break End of Class
This week
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How to examine and present your results: a few options at different stages

Options to examine your test data after processing:
• ROC curve, Precision-Recall

• Confusion matrix
• Sliding window visualization

• Layer visualizations

• Saliency maps etc.
• tSNE visualization
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y
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True positive

True negative

Predict event when 
there isn’t one

False negative

False positive

ROC curve and confusion matrix

Actual label 

Estimated label 

Missed an event

• Can set threshold for f(x,W) 
wherever

• Leads to sliding window between 
FN and FP rate

• Need to summarize both statistics 
as a function of sliding window
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Sensitivity = TP / (TP + FN) = TP / Actual positives

Specificity = TN / (TN + FP) = TN / Actual negatives
    = 1 – False Positive Rate

False Positive Rate = FP / (TN + FP) = FP/ Actual negatives

TP Rate = 
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    = 1 – False Positive Rate
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Area under the curve (AUC): Integral of ROC curve

False Positive rate
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False negative
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ROC curve and confusion matrix

Actual label 

Estimated label 
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• Sometimes, you don’t care about true negatives 
(just want to find events)

• In this case, use Precision and Recall

Precision = TP / (TP + FP) = TP / Estimated positives

Sensitivity = TP / (TP + FN) = TP / Actual positives
Recall = 
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Predict event when 
there isn’t one

False negative
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ROC curve and confusion matrix

Actual label 

Estimated label 

Missed an event

Precision = TP / (TP + FP) = TP / Estimated positives

Sensitivity = TP / (TP + FN) = TP / Actual positives
Recall = 

Precision-Recall curve

Precision

Recall0 1

Guessing

0

1

F1 Metric: (1/precision + 1/recall)-1
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f(x, W)

y
+1
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+1 -1

True positive

True negative

False negative

False positive

ROC curve and confusion matrix

Estimated label 

Just 2 categories

f(x, W)
Estimated label 

y

Confusion Matrix: 2+ categories
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Other performance metrics

• Overlap between segmented areas: Jaccard similarity coefficient 
• (also called Intersection over Union, IoU)

 J = |R1  ∩ R2| / |R1 U R2|

• Dice Coefficient (F1 score): 2 x (total area of overlap) / total number of pixels in both 
images
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Other performance metrics

• Overlap between segmented areas: Jaccard similarity coefficient 
• (also called Intersection over Union, IoU)

 J = |R1  ∩ R2| / |R1 U R2|

• Dice Coefficient (F1 score): 2 x (total area of overlap) / total number of pixels in both 
images

• MSE, PSNR

• Structural Similarity (SSIM)



Machine Learning and Imaging – Roarke Horstmeyer (2024)

deep imaging

Examples of CNN’s for biomedical image analysis
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P. Eulenberg et al., “Reconstructing cell cycle and disease progression using deep learning”
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Beyond statistics, how can we visualize performance for classification?

Training dataset

Trained CNN

Real data is big…what to do??
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Training dataset

Trained CNN

Real data is big…what to do??
Use sliding window!…

Beyond statistics, how can we visualize performance for classification?



Machine Learning and Imaging – Roarke Horstmeyer (2024)

deep imaging

Trained CNN

Use sliding window!

Beyond statistics, how can we visualize performance for classification?
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How can we visualize what’s in the network?

Stanford CS231n: http://cs231n.stanford.edu/

http://cs231n.stanford.edu/
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Stanford CS231n: http://cs231n.stanford.edu/

http://cs231n.stanford.edu/
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Stanford CS231n: http://cs231n.stanford.edu/

http://cs231n.stanford.edu/
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Stanford CS231n: http://cs231n.stanford.edu/

http://cs231n.stanford.edu/
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Nearest Neighbors

Stanford CS231n: http://cs231n.stanford.edu/

http://cs231n.stanford.edu/
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Stanford CS231n: http://cs231n.stanford.edu/

http://cs231n.stanford.edu/
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http://cs231n.stanford.edu/
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Stanford CS231n: http://cs231n.stanford.edu/

http://cs231n.stanford.edu/
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Stanford CS231n: http://cs231n.stanford.edu/

Simple algorithms:
- K-means clustering
- Principle Component 

Analysis (PCA)

- More Complex: t-SNE

http://cs231n.stanford.edu/
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Definition of Unsupervised Learning:
Learning useful structure without labeled classes, optimization criterion, 
feedback signal, or any other information beyond the raw data
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Unsupervised learning in a nutshull

Mathematical tools for finding patterns in data:
• Eigenvector decomposition
• Principal component analysis
• Singular value decomposition

Dataset 1 Dataset 2 Dataset 3 Dataset 4

https://stats.stackexchange.com/questions/183236/wh
at-is-the-relation-between-k-means-clustering-and-pca
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Unsupervised learning in a nutshull

Mathematical tools for finding patterns in data:
• Eigenvector decomposition
• Principal component analysis
• Singular value decomposition

Dataset 1 Dataset 2 Dataset 3 Dataset 4

https://stats.stackexchange.com/questions/183236/wh
at-is-the-relation-between-k-means-clustering-and-pca
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Randomly initialize seeds
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Determine cluster membership for each 
data point
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Compute and update new cluster center
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Result of first iteration
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• Reduce data dimensions to enable visualization in 2D or 3D
• nD -> 2D or 3D
• Preserve local structure of data to highlight groups
• Unsupervised – clusters unlabeled data
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deep imagingTSNE for data visualization

• Reduce data dimensions to enable visualization in 2D or 3D
• nD -> 2D or 3D
• Preserve local structure of data to highlight groups
• Unsupervised – clusters unlabeled data

Applied to MNIST digits

Stanford CS231n: http://cs231n.stanford.edu/

http://cs231n.stanford.edu/
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deep imagingTSNE for data visualization

• Reduce data dimensions to enable visualization in 2D or 3D
• nD -> 2D or 3D
• Preserve local structure of data to highlight groups
• Unsupervised – clusters unlabeled data

Applied to MNIST digits Applied to movies of zebrafish behavior
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Isn’t this good enough?

Stanford CS231n: http://cs231n.stanford.edu/

http://cs231n.stanford.edu/
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Next step: let’s consider other automated tasks 
besides image classification!



Machine Learning and Imaging – Roarke Horstmeyer (2024)

deep imaging

Model
Output

y* Ex. [x1,y1] Ex. [xK,yK]

…
Training 
Data

Training error

dL/dW

Lin(y, f(W,x)) = y* = f(W,x)
cross_entropy(y, f(W,x))

Dimensional analysis for classification:

Input x: ~R1000

Output y*: ~R2 – R10
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Model
Output

y* Ex. [x1,y1] Ex. [xK,yK]

…
Training 
Data

Training error

dL/dW

Lin(y, f(W,x)) = y* = f(W,x)
cross_entropy(y, f(W,x))

Dimensional analysis for classification:

Input x: ~R1000

Output y*: ~R2 – R10

This class – let’s make y* bigger!
- Object detection
- Segmentation
- Creating 3D volumes
- Better resolution

Make y 
bigger!
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Super-
resolution

Stanford CS231n - http://cs231n.stanford.edu 

http://cs231n.stanford.edu/

