deep imaging

Lecture 18: Coherent physical layers
and general guidelines

Machine Learning and Imaging

BME 548L
Roarke Horstmeyer

Summary of two models for image formation

E—

0
o
—_

deep imaging

 Model: Rays

* Interpretation #1: Radiation (Incoherent)

Real, non-negative
Models absorption
and brightness

liot =11 + I

L= HBS,

* Model: Waves

double slit

» Interpretation #2: Electromagnetic wave (Coherent)

screen

Complex field
Models Interference

Eiot = E1 + E>

[IE=

Model of image formation for wave optics (coherent light): deep imaging

Discrete sample
function s(x,y)
(complex)

<

N

lllumination 1. Transmitted field
field C(x,y) S¢(X,y) = C(x,y) s(x,y)

3=

Model of image formation for wave optics (coherent light): deep imaging
Discrete sample 2. Compute its 2D
function s(x,y) Fourier transform
(complex) S(fy, fy)

<

N

" 1. Transmitted field
Sc(X,y) = C(x,y) s(x,y)

\ “Fourier plane”

General rules for applying the Fourier transform in optics deep imaging

Situation 1: From an object to a plane “really far away”

U,(x1)

|
| Us(x;) ~ F[U1(x1/My)]

Situation 2: From an object to the back focal plane of Uy(x,) g
the microscope objective lens |

U,(x2) ~ F[U1(x2/M3)]

12.2 mm

Situation 3: From an object to a plane 1 focal length away from a lens (1f-1f system)

Uy(x1)

r<:' Uy (%) ~ F[Us(x1/Ms)]
S i

Model of image formation for wave optics (coherent light):

Discrete sample 2. Compute its 2D 3- Multiply by
function s(x,y) Fourier transform aperture
(complex) 5(f,, f,) function A(fy, fy)

k1. Transmitted field
SC(X’y) = C(Xay) S(X1)

“Fourier plane”

[IE=

deep imaging

<

N

[IE=

Model of image formation for wave optics (coherent light): deep imaging
Discrete sample 2. Compute its 2D 3 Multipl},/ by 4. Compute
function s(x,y) Fourier transform aperture inverse Fourier
(complex) 8(fy, ,) function A(fx, f,) transform s’(x’,y’)

(complex)

_

N

k1. Transmitted field
SC(X’y) = C(X,y) S(X’)

“Blurred
image”

“Fourier plane”

Model of image formation for wave optics (coherent light):

Discrete sample 2. Compute its 2D 3- Multiply by
function s(x,y) Fourier transform aperture
(complex) 5(f,, f,) function A(fy, fy)

k1. Transmitted field
SC(X’y) = C(Xay) S(X1)

“Fourier plane”

4. Compute
inverse Fourier

transform s’(x’,y’)
(complex)

“Blurred
image”

gt

[IE=

deep imaging

5. Detector
measures

8’(X’,y")|2

-

Model of image formation for wave optics (coherent light):

Discrete sample
function s(x,y)

(complex)

SC(X’y) =

k1. Transmitted field

C(x,y) s(x,y)

2. Compute its 2D
Fourier transform

S(fx fy)

3. Multiply by
“aperture”
function A(fy, f,)

“Fourier plane”

Model #1:

= |F-'AFCs}?

4. Compute
inverse Fourier
transform s’(x’,y’)
(complex)

“Blurred
image”

p

[IE=

deep imaging

5. Detector
measures
s’(x",y’)?

-

Model of image formation for wave optics (coherent light): deep imaging

Discrete sample 2. "aperture”
function s(x,y) function A(fy, fy)
(complex)

‘1. Transmitted field
SC(Xiy) = C(X’y) S(X’y)

3. Compute complex
blur function
h(x,y) = F[A(fx, fy)]

Model of image formation for wave optics (coherent light): deep imaging

Discrete sample 2. "aperture”
function s{x.y) function Aff 1) 4. Blur image:
(complex) s'=s.(x",y") * h(X',y")

‘1. Transmitted field
SC(Xiy) = C(X’y) S(X’y)

3. Compute complex
blur function
h(x,y) = F[A(fx, fy)]

Model of image formation for wave optics (coherent light): deep imaging

Discrete sample 2. "aperture” 5. Detector

function s(x,y) function A(fy, f,) 4. Blur image: measures
(complex)

S'=so(¢.y) *hixy) STV

‘1. Transmitted field
SC(Xiy) = C(X’y) S(X’y)

3. Compute complex
blur function

Model #2: 1.(x,y) = |h + Cs|? h(x,y) = F[A(fy, f,)]

You typically go between 4 functions to describe one imaging system:

Coherent Light

Coherent point-
spread function

he(x)

FL.]

Coherent
transfer function

Hc(f)

|12

H*H

Incoherent Light

Incoherent point-
spread function

hi(x)

FL.]

Incoherent
transfer function

Hi(fx)

deep imaging

Incoherent PSF = Coherent PSF squared:

hi(x) = [hc(x)|?

E—

0
o
—

Summary of two models for image formation

deep imaging
* Interpretation #1: Radiation (Incoherent) . Real. non-negative
« Model: Rays) ’ J
1=] .= h,*BS,
Hi:isxi L + Sample absorption S
- * lllumination brightness B
_ - e BlurinH

Interpretation #2: Electromagnetic wave (Coherent)
Model: Waves

Complex-valued

IC= |hC*CSC|2

double slit screen

Sample abs./phase S
lllumination wave B
Blur in H

.)
N

N

[] []

Coherent image formation equation as CNN operations

lc= D|h,*C S¢|?

Step 1: Multiply with weights
Step 2: Convolution
Step 3: Absolute value square (non-linearity)

Step 4: Down-sampling by detector

CNN layer

(Step 1: Normalization)
Step 2: Convolution
Step 3: Non-linearity

Step 4: Down-sampling by max pooling

deep imaging

Example #1: Optimizing coherent illumination pattern for improved classification

deep imaging

Example future situation: Hacking has brought online banking to a halt. We now rely on a special
form of physical check that is made of visibly transparent plastic. To write the amount in, you press
down with a pen-like instrument, and then the check is read out by shining a particular pattern of
laser light onto it, and then imaging it with a lens.

Question: What type of illumination should you use to maximize the classification accuracy of the
numbers on the check?

Step 1: Transform MNIST image data set into transparent plastic sheets with varying thickness

Values [0, 255] at(x,y)

to thickness map

= [7 1 ety

1(x,y)

Values [0, 255] t(x,y)

deep imaging

1(X,y) to thickness map

»
»

1. Normalize intensity map to 1

2. Define thickness map at some reasonable amount (100 pm max change)

Values [0, 255] t(x,y) od(X,y)

deep imaging

to sample
to thickness map phase delay

»
»

(x,y)

»
»

1. Normalize intensity map to 1

2. Define thickness map at some reasonable amount (100 pm max change)

3. Convert thickness map into optical phase delay:

(j\/\/l I op(x,y) = exp[jnt(x,y) / A\]

) 4t /

nt = Optical path length

E—

Values [0, 255] t(x,y) 3b(X,Y) L] 05 eE

deep imaging

to sample
to thickness map phase delay

» »
» »

(x,y)

1. Normalize intensity map to 1

2. Define thickness map at some reasonable amount (100 pm max change)

3. Convert thickness map into optical phase delay:

n 1

wavelength = 0.5e-3

mnist_raw_images = tf.placeholder(tf.float32, [image_size, None])
thickness_map mnist_raw_images/np.amax(mnist_raw_images)

mnist_phase_delay_real = cos(thickness_map * n/wavelength)
mnist_phase_delay_imag = sin(thickness_map * n/wavelength)
mnist_phase_delay = tf.complex(mnist_phase_delay_real,mnist_phase_delay_imag)

Example #1: Optimizing coherent illumination pattern for improved classification

%

Coherent image Model: I (x,y) =

lh « Cs|?

S(X,y) = dd(X,y)

<

/

\

N

[IE=

deep imaging

deep imaging

Example #1: Optimizing coherent illumination pattern for improved classification

Coherent image Model: I(x,y) = |h = Cs|?

S(X,y) = dd(X,y)

Unknown

\

lllumination c(x,y)
(complex —
weight variable)

Camera blur h

N

deep imaging

Example #1: Optimizing coherent illumination pattern for improved classification

Coherent image Model: I(x,y) = |h = Cs|?

S(X,y) = dd(X,y)

Unknown

lllumination c(x,y)

(complex < / B CNN
weight variable) /

Camera blur h

—A =
S
—=>

Example #1: Optimizing coherent illumination pattern for improved classification

deep imaging

Coherent image Model: I(x,y) = |h = Cs|?

S(X,y) = dd(X,y)

Unknown /////
/////

lllumination c(x,y)
(complex —
weight variable)

mnist_phase_delay = tf.reshape(mnist_phase_delay, [-1, image_size, image_size])
Co_real = tf.Variable([image_size, image_sizel)

Co_imag - tf.Variable([image_size, image_size])

CO_complex = tf.complex(CO_real, CO_imag)

— | CNN

X_C_complex = tf.mul(mnist_phase_delay, C@_complex)
image_comp lex conv2d(x_C_complex, camera_blur)
detected_image = tf.complex_abs(image_complex)

detected_image then enters standard CNN classification pipeline

Example #2: Optimizing aperture shape for improved digit classification

Example future situation: Hacking has brought online banking to a halt. We now rely on a special
form of physical check that is made of visibly transparent plastic. To write the amount in, you press
down with a pen-like instrument, and then the check is read out by shining a particular pattern of
laser light onto it, and then imaging it with a lens.

Question #2: What type of aperture shape should you use to maximize classification accuracy?

deep imaging

Example #2: Optimizing aperture shape for improved digit classification

deep imaging

Example future situation: Hacking has brought online banking to a halt. We now rely on a special
form of physical check that is made of visibly transparent plastic. To write the amount in, you press
down with a pen-like instrument, and then the check is read out by shining a particular pattern of
laser light onto it, and then imaging it with a lens.

Question #2: What type of aperture shape should you use to maximize classification accuracy?

Alfyfy)

S(X,y) = dd(x,y)

Fixed plane-wave

lllumination c(x,y) % <

]
~——[CNN
e

|

Let’s make A(f,,f,) any shape -
it becomes a weight variable

Example #2: Optimizing aperture shape for improved digit classification

Fixed plane-wave

lllumination c(x,y) %

S(X,y) = ad(X,y)

<

2D FT

A(fX ’ fy)

2D IFT

]
7

CNN

deep imaging

Example #2: Optimizing aperture shape for improved digit classification ;;%agmg
A(fX,fy)

S(X,y) = ad(X,y)

Fixed plane-wave
lllumination c(x,y)

<<:::::::

e
——[cNN
7

2D FT 2D IFT

mnist_phase_delay = tf.reshape(mnist_phase_delay, [-1, image_size, image_size])
CO0 - np.ones(image_size, image_size)

Co - tf.constant(CO)

x_C_complex = tf.mul(mnist_phase_delay, C0O)

fx_C_complex = tf.fft2d(x_C_complex)

ap_filter = tf.Variable([image_size, image_sizel])
filtered_x_C tf.mul(fx_C_complex, ap_filter)
image_complex = tf.ifft2d(filtered_x_C)
detected_image = tf.complex_abs(image_complex)

deep imaging

Remaining questions to address about physical layers:

« Where and how should | implement my physical layer?
« Simulation data
« Experimental data
 How can | add some constraints to the physical weights that I’'m optimizing?

« What are some common issues and pitfalls?

Physical Layers Digital Layers
Task
| ' Digitized , = i
Inputimage - | f[] | -1, - J EE
data |, ; = .
g ; Pl G Gose
E Is — f[IO] E iONVOLUTIONﬁkELU POOLING c$/owno~+knu POOLING P FLATTEN RULY. SOFTMAX

Some Examples:

* Optimized illumination

» Optimized sensor specifications
 Number of measurements and locations
« Radiation dosage, biomarkers

[IE=

deep imaging

— P
deep imaging

Physical Layers Digital Layers

_ Digitized 1
Input image - f[] el , EE

Task

N

! 1
! 1
| , -
0 1
1 . >
] 1 K 5 r . .
: : U O [] —sicycLe
1
! 1
— FULLY
: I — f[l] : {ONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATIEN o NEerep SOFTMAX
! s 0 1
: 1 . i
1 . FEATURE LEARNING CLASSIFICATION
! 1

Q: Where and how should | implement my physical layer?

[IE=

deep imaging

Physical Layers Digital Layers

; Digitized
Input image | - f[] Sl |
data |, |

FEATURE LEARNING CLASSIFICATION

Q: Where and how should | implement my physical layer?

A: It depends on your data and implementation

« Situation #1: Fully simulated physical layers

« Situation #2: Experimentally-driven physical layers

deep imaging

Situation #1: Fully simulated physical layers

Option (a): Simulate the input images and the labels from scratch

=

Full simulation of | Digitized
different samples | |
and their labels |

Physical Layers

Digital Layers

- 1
= | 1
o))

*'—>

v
=t
—
H

ls

Simulated labels

[IE=

Situation #1: Fully simulated physical layers deep imaging

Option (a): Simulate the input images and the labels from scratch

-

Physical Layers

______________________ Digital Layers

Full simulation of g Digitized

different samples [

and their labels
Examples:])
» [Ultrasound scatterers, Is = f[IO] | 1

segmentation boundary] :

» [Simulated cell body
types, location]

Simulated labels
* [CT phantom, 3D
mesh surfaces]

Situation #1: Fully simulated physical layers

Option (b): Augment an existing dataset that you download

[IE=

deep imaging

Existing labels

-

Existing annotated
dataset |,

Physical Layers

Digital Layers

Situation #1: Fully simulated physical layers

Option (b): Augment an existing dataset that you download

[IE=

deep imaging

Existing labels

=
O S T

Existing annotated | | Pre-
dataset |, processing

Physical Layers

Digital Layers

[IE=

Situation #1: Fully simulated physical layers deep imaging

Option (b): Augment an existing dataset that you download

Existing labels

Physical Layers Digital Layers
= L@
O S ¥
Existing annotated | | Pre-
dataset |, processing
Examples:

« MNIST Image set * Thickness map

« Segmented cells * Multispectral
from Celltracker image stack

« Segmented CT « Stitch together in
dataset from lab a 3D composite

E—

0
o
—_

deep imaging

Situation #1: Fully simulated physical layers

Option (a) or Option (b): Choice on where and how to simulate/pre-process

Simulation and/or o
pre-processing ML Optimization

Python/Matlab/other

p Bi
4\, - dagtaset o TenSOI'Flow

L L

v

TensorFlow TensorFlow

Situation #1: Fully simulated physical layers Geep imaging

Option (a) or Option (b): Choice on where and how to simulate/pre-process

Simulation and/or

pre_processing ML Optimization
Pros: Utilize old code, easier

Python/Matlab/other to archive, troubleshoot

P Big
dataset TensorFlow Cons: Large datasets are slow
to load, hard to fit in GPU
memory, code in 2 places
Pros: batch processing, all in
one place, easily incorporate
TensorFlow TensorFlow additional physical layers

Cons: Harder to bug-check
/compare to prior work if
closely integrated

Situation #2: Experimentally-driven physical layers

Experimental
measurements

Generated Labels

[IE=

deep imaging

“Expert”
annotation

Physical Layers

Digital Layers

[IE=

Situation #2: Experimentally-driven physical layers deep imaging

. Bright-field FPM Learned
CNN ——— Classifier: (1 image) (29 images) (1-2 images)
(0) Not

infected

off F i ¥
(1) Infected | 1

with malaria

Example: CNN-Optimized
illumination for
classification of malaria: a2

ubisep uoneulwnj||

LED
Pattern:

Center LED Scanned Learned

R. Horstmeyer et al., "Convolutional neural networks

ificati : ° 98.5% °
that teach microscopes how to image," arXiv (2017) Classification Accuracy 75% ° 97%

— P
deep imaging

Situation #2: Experimentally-driven physical layers

Data set for physical layer optimization:
Example: CNN-Optimized

illumination for
classification of malaria: = Turn on LED 1, capture image 1: @
o

— P
deep imaging

Situation #2: Experimentally-driven physical layers

Data set for physical layer optimization:
Example: CNN-Optimized -
illumination for
classification of malaria: = Turn on LED 1, capture image 1: @
.'\

Turn on LED 1, capture image 2: c

[IE=

Situation #2: Experimentally-driven physical layers

deep imaging
Data set for physical layer optimization:
Example: CNN-Optimized
illumination for
classification of malaria: = Turn on LED 1, capture image 1: @
i

Turn on LED 1, capture image 2: C

Turn on LED 32, capture image 32: f

Save all 32 images (96 with 3 colors)

Situation #2: Experimentally-driven physical layers

Example: CNN-Optimized
illumination for
classification of malaria:

Physical layer: E g Y
— [’ 1x1xm

images weights image

LED illumination model

Conv (5x5)
LED-illuminated LED Detected | RelLU +

[IE=

deep imaging

%% — Classification
CNN post-
processing

1024

N a8

Conv (5x5) FCL+ Readout
+ RelLU + RelLU

MaxPooling MaxPooling (1024)

Situation #2: Experimentally-driven physical layers %

(a) Center (b) All (c) Off-axis (d) Random (e) DPC (f) Optimized (g) FP (29 im.) 9eepimaging

r)
=

Example: CNN-Optimized
illumination for
classification of malaria:

Infected
OK

|

®

@

~l
7
©
O
>

Uninfected

o
-
o
—

Situation #2: Experimentally-driven physical layers

deep imaging

Optimized color LED patterns to classify malaria

Pattern 1, red Pattern 1, green Pattern 1, blue Pattern 1, RGB
n
<
%
=
w
(00}
. -
0 033 O 0.38 0 0.31
Pattern 2, red Pattern 2, green Pattern 2, blue Pattern 2, RGB
o <
%
o o o
S
. o
. -

0 0.70 O 0.56 0 0.51

Situation #2

: Experimentally-driven physical layers

Generated Labels

[IE=

deep imaging

Experimental
measurements

“Expert”
annotation

Physical Layers

Digital Layers

Pro’s of experimental measurements: Don’t need to worry about making your simulations match

the setup! (HUGE WIN)

Con’s of experimental measurements: You’ll need to label them, limited access to desired sample

information, often need to exploit some fundamental physical property

How can | add some constraints to my physical weights? deep imaging

Without any constraints, weights can be any real (or complex) number What if you
physically can’t realize any real or physical number?

Example: Constrain weights to be non-negative values less than one

How can | add some constraints to my physical weights? deep imaging

Without any constraints, weights can be any real (or complex) number What if you
physically can’t realize any real or physical number?

Example: Constrain weights to be non-negative values less than one

Solution: add constraint as an extra “differentiable” layer (operation)

(rest of the
neural

network)

How can | add some constraints to my physical weights? deep imaging

Without any constraints, weights can be any real (or complex) number What if you
physically can’t realize any real or physical number?

Example: Constrain weights to be non-negative values less than one

Solution: add constraint as an extra “differentiable” layer (operation)

Pros:
(rest of the « Easy to implement
neurql (Constraints are obvious
network)

Cons:

* Not always a well-behaved derivative

How can | add some constraints to my physical weights? deep imaging

Without any constraints, weights can be any real (or complex) number What if you
physically can’t realize any real or physical number?

Example: Constrain weights to be either O or 1

Solution: Perform annealing with a temperature parameter

How can | add some constraints to my physical weights? deep imaging

Without any constraints, weights can be any real (or complex) number What if you
physically can’t realize any real or physical number?

Example: Constrain weights to be either O or 1

Solution: Perform annealing with a temperature parameter

(rest of the
neural
network)

Weights W I(n) = Soft-max [a,w(n)]

Soft-max(x) = exp(-x)/ Z exp(-x)
Increase a with iteration number

How can | add some constraints to my physical weights? deep imaging

Without any constraints, weights can be any real (or complex) number What if you
physically can’t realize any real or physical number?

Example: Constrain weights to be either O or 1

Solution: Perform annealing with a temperature parameter

Drive w to be large, so softmax(w) ->0or 1

(rest of the
neural
network)

A

v

A

v

Weight w
Weights W I(n) = Soft-max [a,w(n)]

Soft-max(x) = exp(-x)/ Z exp(-x)
Increase a with iteration number

How can | add some constraints to my physical weights? deep imaging

Without any constraints, weights can be any real (or complex) number What if you
physically can’t realize any real or physical number?

Example: Constrain weights to be either O or 1

Solution: Perform annealing with a temperature parameter

Pros:
(rest of the « Works pretty well
neural * Flexibly address convergence issues
network)

Cons:

* A bit sensitive

Weights W I(n) = Soft-max [a,w(n)]
Soft-max(x) = exp(-x)/ Z exp(-x)
Increase a with iteration number

deep imaging

What are some common issues and pitfalls with physical layers?

* Most common issue — you have a bug in your CNN!

« Solution: “Disable “ physical layer (set to constant), and get network to work!
» Good practice: always compare performance with and without physical layer

* Another common challenge - vanishing gradients

— P
deep imaging

What are some common issues and pitfalls with physical layers?

* Most common issue — you have a bug in your CNN!

Solution: “Disable “ physical layer (set to constant), and get network to work!

* Another common challenge - vanishing gradients

64 64
128 64 64 2
input
i output
image |w|# _
t?le bl bl bt segmentation
gl g & & map
N| Off © x| j < x|
22
| Off ©
R s
'128 128
Physical Layers I i
o sl
3 ?“IE’ g EI %I
SIS S
' 256 256 so ose t
%% i) WEE =»conv 3x3, ReLU
S Sl & 3 Ll o |
-0 = 3 copy and cro
¥ 52 s 1024 512 Py p
-+~ B L e # max pool 2x2
< o
e ¥ i0m ! S 4 up-conv 2x2
< I > I >
@ 3 & =» conv 1x1
el N

— P
deep imaging

What are some common issues and pitfalls with physical layers?

Most common issue — you have a bug in your CNN!

Solution: “Disable “ physical layer (set to constant), and get network to work!

Another common challenge - vanishing gradients
input

image
tile

A4
\4

output
segmentation
map

392 x 302

390390 ¥
3ggxass ¥
388x388 ¥

570 x 570
568 x 568

572 x 572

' 128 128

Physical Layers

25

=}
S
«

Backprop L all the
way back here

conv 3x3, ReLU
copy and crop
¥ max pool 2x2
4 up-conv 2x2
=» conv 1x1

[IE=

deep imaging
What are some common issues and pitfalls with physical layers?
* Most common issue — you have a bug in your CNN!
« Solution: “Disable “ physical layer (set to constant), and get network to work!
* Another common challenge - vanishing gradients
11 . What if this is 0?
- Back-prop gradients disappear!
ima?i;l: i b N ': : ': ggé]?ﬁzamation /
% % % ; é % é * “local gradient”
5518 = Sy 0z
'128128 0”> 0e 83,‘
Physical Layers i % f .
g 9z L
Backprop L all the By e
Way baCk here conv 3x3, ReLU BL B/Z

copy and crop = @ 0y gradlents
¥ max pool 2x2
4 up-conv 2x2

=» conv 1x1

From Stanford CS231n

— P
deep imaging

What are some common issues and pitfalls with physical layers?

Most common issue — you have a bug in your CNN!

Solution: “Disable “ physical layer (set to constant), and get network to work!

Another common challenge - vanishing gradients
input

image
tile

v
\4

output
segmentation
map

<
<

392 x 392

390390 ¥
3ggxass ¥
388x388 ¥

Solution: Introduce skipped connections

568 X 568

572 x 572
570 x 570

. t.... Backprop here too
Physical Layers

o
=]
«

Backprop L all the
way back here

conv 3x3, ReLU
copy and crop
¥ max pool 2x2
4 up-conv 2x2
=» conv 1x1

deep imaging

What are some common issues and pitfalls with physical layers?

* Most common issue — you have a bug in your CNN!
« Solution: “Disable “ physical layer (set to constant), and get network to work!
* Another common challenge - vanishing gradients

« Third issue - physical layer results are not very repeatable...

Solution 1

Solution 3

Solution 2

deep imaging

What are some common issues and pitfalls with physical layers?

* Most common issue — you have a bug in your CNN!
« Solution: “Disable “ physical layer (set to constant), and get network to work!
* Another common challenge - vanishing gradients

« Third issue - physical layer results are not very repeatable...

Effective Solution: Add a small
amount of noise to the physical layer
output:

IS =Z lej + N

Solution 1 . . .
Solution 3 (tf.keras.layers.GaussianNoise)

Solution 2

https://www.tensorflow.org/api_docs/python/tf/keras/layers/GaussianNoise

