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• Homework 3 due Monday 3/25 at 11pm
• Homework 4 posted most likely next Monday, due 2 weeks later 

• I’ll review final project proposals this week
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I would like to have a short (15 min.) 1-on-1 meeting with all final project teams this week to 
provide feedback on your project proposals. It is also an opportunity for you all to ask me 
questions, and to refine your strategy for your final project as needed early on, to maximize 
chances for success
Please sign up for a 15 minute time to chat here: 
https://calendly.com/rwh4/15min

We can use the course zoom link for the meetings: 
https://duke.zoom.us/j/93342721843

https://calendly.com/rwh4/15min
https://duke.zoom.us/j/93342721843
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Super-
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Balanced 
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Over-
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Over-
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Over-
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Under-
determined

Stanford CS231n - http://cs231n.stanford.edu 

http://cs231n.stanford.edu/
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Task = Wn …ReLU[W1 ReLU[W0 Is]…]

TaskImage Is
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Discrete signal
Photons to 
electrons

Digitazation

n x m pixel array

8 8
Continuous I0(x0,y0)
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Continuous functions
Discretize vectors 

(and matrices)
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Discrete signal
Photons to 
electrons

Digitazation

n x m pixel array

8 8
Discrete I0(x0,y0)
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Bringing together physical and digital image representations

TaskPhysical world
I0(x0,y0)

Digital Image 
Is(x,y)

8 8
Is = f[I0]

Task = Wn …ReLU[W1 ReLU[W0 f[I0]]…]

Physical Layers Digital Layers

Physical layersDigital layers
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Bringing together physical and digital image representations

Task

Physical
Function I0

Digitized 
Is

Is = f[I0]

Task = Wn …ReLU[W1 ReLU[W0 f[I0]]…]

Physical Layers Digital Layers

Physical layersDigital layers

f[ ]
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• Finite

• Non-zero gradients

• Differentiable*

• Known structure (for now…)

• Anything else?
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Output: Detected image Photons to 
electrons

Digitazation

n x m pixel array

8 8
Input: physical object
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Output: 
Detected image

Photons to 
electrons

Digitazation

n x m pixel array

8 8
Input: physical object

What physical parameters effect image formation?

• Illumination
• Spatial pattern
• Angle of incidence
• Color, polarization

• Lens and optics
• Position/orientation
• Shape
• Focus
• Transparency

• Detector
• Pixel size
• Pixel shape & fill factor
• Color filters
• Other filters

• Digitization
• E to P curves
• Digitization schemes/thresholds
• Data transmission, multiplexing

• Physical object

Illumination

Lens and optics Detector

Digitization
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n x m image IsPhysical world
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• Interpretation #1: Radiation  (Incoherent)
• Model: Rays

• Real, non-negative
• Models absorption 

and brightness
Itot = I1 + I2
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deep imagingFirst - what is light and how can we model it?

• Interpretation #1: Radiation  (Incoherent)
• Model: Rays

• Interpretation #2: Electromagnetic wave (Coherent)
• Model: Waves

• Interpretation #3: Particle
• Model: Photons

• Complex field
• Models Interference

• Real, non-negative
• Models absorption 

and brightness
Itot = I1 + I2

Etot = E1 + E2
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n x m image IsPhysical world

Simple mathematical model of incoherent image formation

• Assume incoherent illumination
• Assume thin 2D object
• Object is real, non-negative map of absorption/reflectivity
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n x m image IsPhysical world

• Assume incoherent illumination
• Assume thin 2D object
• Object is real, non-negative map of absorption/reflectivity

Simple mathematical model of incoherent image formation
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n x m image IsPhysical world

• Assume incoherent illumination
• Assume thin 2D object
• Object is real, non-negative map of absorption/reflectivity

Simple mathematical model of incoherent image formation
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n x m image IsPhysical world

Object transmission: I0(x,y)
Illumination pattern: s(x,y)
Light exiting object surface: Ie(x,y) = I0(x,y)     s(x,y)

• Assume incoherent illumination
• Assume thin 2D object
• Object is real, non-negative map of absorption/reflectivity

Simple mathematical model of incoherent image formation



Machine Learning and Imaging – Roarke Horstmeyer (2024)

deep imaging

n x m image IsPhysical world

Object reflectivity: I0(x,y)
Illumination pattern: s(x,y)
Light exiting object surface: Ie(x,y) = I0(x,y)     s(x,y)

• Assume incoherent illumination
• Assume thin 2D object
• Object is real, non-negative map of absorption/reflectivity

Simple mathematical model of incoherent image formation
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n x m image IsPhysical world

Ie = S I0

Modeling 
incoherent 
illumination diag(S) = s s

S

• Assume incoherent illumination
• Assume thin 2D object
• Object is real, non-negative map of absorption/reflectivity

Ie(x,y) = I0(x,y)     s(x,y)

Simple mathematical model of incoherent image formation
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First, assume perfect camera:
intensity at image plane Ip = Ie = S I0

S
I0

Ie = S I0

Example #1: Optimized illumination pattern (one color)
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Training data:
 [I0(x, y), y]
I0:100 x 100
Label y: 1x2

Example #1: Optimized illumination pattern (one color)
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Training data:
 [I0(x, y), y]
I0:100 x 100
Label y: 1x2

Ie(x,y)= S I0(x,y)

Physical Layer

[Ie(x, y), y] SI0

Example #1: Optimized illumination pattern (one color)
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Training data:
 [I0(x, y), y]
I0:100 x 100
Label y: 1x2

Ie(x,y)= S I0(x,y)

Physical Layer

[Ie(x, y), y] 

Task = Wn …ReLU[W1 ReLU[W0 Ie] …]

SI0

Example #1: Optimized illumination pattern (one color)
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Training data:
 [I0(x, y), y]
I0:100 x 100
Label y: 1x2

Ie(x,y)= S I0(x,y)

Physical Layer

[Ie(x, y), y] 

Task = Wn …ReLU[W1 ReLU[W0 Ie] …]

SI0

Tensorflow 
1.0 code

(Will show CoLab Notebook for implementation in Tensorflow 2.0)

Example #1: Optimized illumination pattern (one color)
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Training imagesIllumination MatrixIlluminated images

Image 1

Illumination 
pattern

Illuminated Image 1

=

Option 1: tf.linalg.matmul

Option 2: tf.linalg.multiply

1.0 code

(will show in CoLab Notebook)



Machine Learning and Imaging – Roarke Horstmeyer (2024)

deep imaging

Real case: intensity at image plane Ip = blurred

Simple mathematical model of image formation

S
I0

Ie = S I0
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=
Input 
intensity

Output intensity
Convolution filter h

Lenses blur and rescale images:
(We’ll learn how exactly next few weeks)

Ie(x/M,y/M) h(x,y) Ip(x,y)=

Assuming we’ve resized by M, Ip = Ie     h = H Ie 
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Intensity at image plane Ip = ?

Simple mathematical model of image formation

S
I0

Ie = S I0

Ip = H Ie = H S I0
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Discretization by detector ?

Simple mathematical model of image formation

S
I0

Ie = S I0

Ip = H Ie = H S I0

D = 
0.5 0.5 0 0 0 ….

0.5 0.5  0 0 0 ….
0.5 0.5  0 0 0 ….

Use downsampling matrix 
(sum-pooling)

…
.

…
.
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Discretization by detector ?

Simple mathematical model of image formation

S
I0

Ie = S I0

Is = D Ip = D H S I0

D = 
0.5 0.5 0 0 0 ….

0.5 0.5  0 0 0 ….
0.5 0.5  0 0 0 ….

Use downsampling matrix 
(sum-pooling)

…
.

…
.

Ip
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Discretization by detector ?

Simple mathematical model of image formation

S
I0

Ie = S I0

Is = D Ip = D H S I0

D = 
w1 w2 0 0 0 ….

w3 w4  0 0 0 ….
w5 e6  0 0 0 ….…

.

…
.

Ip

*Can make these learnable weights
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Noise caused by detector ?

Simple mathematical model of image formation

S
I0

Ie = S I0

Is = D Ip + N

Ip

Can also add in detector-dependent noise N = k * np.random.randn(dx, dy) 

(zero-mean Gaussian noise, for example)
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Pause to take a look at:

physical_layers_example.ipynb
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TaskPhysical world
I0(x0,y0)

Digital Image 
Is(x,y)

8 8

Task = Wn …ReLU[W1 ReLU[W0 f[I0]]…]

Physical Layers Digital Layers

Physical layersDigital layers

Task = Wn …ReLU[W1 ReLU[W0 D H S I0]…]
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“Ground truth” object:
 I0(x, y, λ)
100 x 100 pix. x 30 spectral channels
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“Ground truth” object:
 I0(x, y, λ)
100 x 100 pix. x 30 spectral channels

Monochromatic 
camera sensor

Example #2: Optimized color filter for a grayscale camera
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“Ground truth” object:
 I0(x, y, λ)
100 x 100 pix. x 30 spectral channels

Monochromatic 
camera sensor

Is(x, y) = Σ I0(x, y, λ)
λ

Example #2: Optimized color filter for a grayscale camera
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“Ground truth” object:
 I0(x, y, λ)
100 x 100 pix. x 30 spectral channels

Let’s put a 
color filter to 
put here!

Monochromatic 
camera sensor

T(λ)

λ

Color transmission vs. λ

400 nm 700 nm

1

0

Example #2: Optimized color filter for a grayscale camera
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“Ground truth” object:
 I0(x, y, λ)
100 x 100 pix. x 30 spectral channels

Let’s put a 
color filter to 
put here!

Is(x, y) = Σ T(λ) I0(x, y, λ)
λ

Monochromatic 
camera sensor

T(λ)

λ

Color transmission vs. λ

400 nm 700 nm

1

0

Example #2: Optimized color filter for a grayscale camera
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Training data:
 [I0(x, y, λ), y]
I0:100 x 100 pix. x 30 
Label y: 1x3 - pepper, broccoli, green beans

Design optimal 
color filter for 
classification:

Is(x, y) = Σ W0(λ) I0(x, y, λ)
λ

Monochromatic 
camera sensor

W0(λ)

λ

Color transmission vs. λ

400 nm 700 nm

1

0
???

Physical Layer

Example #2: Optimized color filter for a grayscale camera
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Training data:
 [I0(x, y, λ), y]
I0:100 x 100 x 30 
Label y: 1x3

Example #2: Optimized color filter for a grayscale camera
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Training data:
 [I0(x, y, λ), y]
I0:100 x 100 x 30 
Label y: 1x3

Is(x, y) = Σ W0(λ) I0(x, y, λ)
λ

Physical Layer

Example #2: Optimized color filter for a grayscale camera
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Training data:
 [I0(x, y, λ), y]
I0:100 x 100 x 30 
Label y: 1x3

Is(x, y) = Σ W0(λ) I0(x, y, λ)
λ

Physical Layer

[Is(x, y), y] 

Task = Wn …ReLU[W1 ReLU[W0 Is] …]

Example #2: Optimized color filter for a grayscale camera
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Training data:
 [I0(x, y, λ), y]
I0:100 x 100 x 30 
Label y: 1x3

Is(x, y) = Σ W0(λ) I0(x, y, λ)
λ

Physical Layer

[Is(x, y), y] 

Task = Wn …ReLU[W1 ReLU[W0 Is] …]

Example #2: Optimized color filter for a grayscale camera

Example implementation with Tensorflow 1.0 code
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Option 1: Einsum (shown as Tensorflow 1.0 code, and also applicable in Tensorflow 2.0)

Option 2: tf.reduce_sum

Option 3: Locally connected conv2D with a 1x1 filter size

https://github.com/keras-team/keras/blob/master/keras/layers/local.py#L183

https://github.com/keras-team/keras/blob/master/keras/layers/local.py
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Pause to take a look at:

weighted_image_sum_example.ipynb
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Compress Decompress

U-Net Architecture 

Input 
image

Output: 
segmentation 

map (need 
labels for 
training)
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U-Net CNN Segmentation MapVariably illuminated images from different LEDs

…

w1I1 w2I2 w3I3+ + + …

*If we allow w’s here to be trainable weights, then we can find ideal brightnesses for different LEDs 
to illuminate a sample of interest! 

Example 3: learned illumination pattern for improved segmentation
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U-Net CNN Segmentation MapVariably illuminated images

…

(a) (c)

All Center DPC

Random Optimized Off-axis

Mask

(b)

Optimized illumination for nuclei segmentation

+5-10% accuracy

w1I1 w2I2 w3I3+ + + …

Standard illumination Learned illumination

Example 3: learned illumination pattern for improved segmentation

See C. Cooke et al., “Physics-enhanced machine learning for virtual fluorescence microscopy,” ICCV (2021)
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Capture: BF images Capture: Fluorescence Segmentation Mask

(e.g., DAPI-stained nuclei)

Threshold
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Segmentation Mask

(e.g., DAPI-stained nuclei)

Threshold

Inference via a trained U-Net 

Learned 
illumination

Capture: Fluorescence

Optimally illuminated

Image segmentation –current workflow

Capture: BF images
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Inference

Task: bright-field to fluorescence image Inference

BF Focal stack 
(26+ images)
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“Virtual Staining” – can be used to covert one image type to many others

L. Kreiss et al., “Digital staining in optical microscopy using deep learning--a review,” Photonix (2024)
B. Bai et al., “Deep learning-enabled virtual histological staining of biological samples,” Nature Light Sci (2023)
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Segmentation Mask

Threshold

Directly infer the fluorescence image

Learned 
illumination for 
fluorescent image 
inference?

Capture: Bright field Capture: Fluorescence

?
Optimally illuminated
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Multiple Patterns for Fluorescence image inference

Pattern 4Pattern 3

Pattern 5 Pattern 6 Pattern 7 Pattern 8

Pattern 2Pattern 1

1x Pattern 
Optimization

2x Pattern 
Optimization

4x Pattern 
Optimization

8x Pattern 
Optimization

1 Pattern 4 PatternsGround Truth

See C. Cooke et al., “Physics-enhanced machine learning for virtual fluorescence microscopy,” ICCV (2021)
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λ
• Effect of illumination is element-wise multiplication

• Deal with sample/image intensities I, real and non-negative

• Imaging systems blur the object via point-spread function matrix H 

Ie(x,y)= S I0(x,y)

Ib(x,y)= H I0(x,y)

• Discrete pixels down-sample the object via Id(x,y)= D I0(x,y)

• Different colors add linearly Is(x, y) = Σ I0(x, y, λ)

• Add noise into measurement IN(x,y)= D I0(x,y) + N
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• Interpretation #1: Radiation  (Incoherent)
• Model: Rays

• Interpretation #2: Electromagnetic wave (Coherent)
• Model: Waves

• Complex field
• Models Interference

• Real, non-negative
• Models absorption 

and brightness
Itot = I1 + I2

Etot = E1 + E2

Alternative framework: Modeling coherent radiation as a wave


