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Notes

 Homework 3 due Monday 3/25 at 11pm
* Homework 4 posted most likely next Monday, due 2 weeks later

* I’ll review final project proposals this week
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Project proposal review meetings

| would like to have a short (15 min.) 1-on-1 meeting with all final project teams this week to
provide feedback on your project proposals. It is also an opportunity for you all to ask me
questions, and to refine your strategy for your final project as needed early on, to maximize
chances for success

Please sign up for a 15 minute time to chat here:
https://calendly.com/rwh4/15min

We can use the course zoom link for the meetings:
https://duke.zoom.us/|/93342721843



https://calendly.com/rwh4/15min
https://duke.zoom.us/j/93342721843
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Other Computer Vision Tasks

Semantic Classification Object Instance Super-
Segmentation + Localization Detection Segmentation resolution

4x SRGAN (proposed) original
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Stanford CS231n - http://cs231n.stanford.edu



http://cs231n.stanford.edu/

Bringing together physical and digital image representations

Image I
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Simple model of image formation deep imaging

n X m pixel array

3

Continuous ly(Xg,Yo)

Discrete signal l

< Digitazation < Photons to
Is(x x,y) € 2™
s( 7?/)7 ( 7y) electrons
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What does the Sampling Theorem mean for us? deep imaging

Discretize vectors
Continuous functions (and matrices)
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Simple model of image formation deep imaging

n X m pixel array

3

Discrete 1,(Xy,Yo)

Discrete signal l

< Digitazation < Photons to
Is(x x,y) € 2™
s( 7?/)7 ( 7y) electrons




Bringing together physical and digital image representations %

deep imaging
Physical Layers Digital Layers

Physical world :Dz)gzlt?l Image Task
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FEATURE LEARNING CLASSIFICATION
Digital layers Physical layers

/ /
Task = W,, ...ReLU[W, ReLU[W, f[l.]]...]



Bringing together physical and digital image representations %

deep imaging
Physical Layers Digital Layers

1 Task
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Physical fl] | D'Qlltlzed NV R

Function I, S g% & E
s = fllg] e VAT R
S O CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING J (LATTEN CONNECTED SOFTMAX J
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/ /
Task = W,, ...ReLU[W, ReLU[W, f[l.]]...]



Required properties of physical mapping f[ ] for DNN optimization?

deep imaging

* Finite

 Non-zero gradients

« Differentiable*

« Known structure (for now...)

* Anything else?
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What physical parameters effect image formation? deep imaging

n x m pixel array

3

Input: physical object

|

Output: Detected image |« Digitazation < Photons to
electrons




What physical parameters effect image formation?

lllumination

« Spatial pattern

* Angle of incidence

» Color, polarization
Lens and optics

» Position/orientation

« Shape

 Focus

« Transparency
Detector

* Pixel size

» Pixel shape & fill factor

» Color filters

» Other filters

« Eto P curves

» Digitization schemes/thresholds

« Data transmission, multiplexing
Physical object

Input: physical object

[llumination

Output:
Detected image

Lens and optics
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deep imaging

n x m pixel array

3

!

< Digitazation®  Phkotons to
eléctrons

Detector
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Simple mathematical model of image formation deep imaging

Physical world ﬁ n x m image |




First - what is light and how can we model it? deep imaging

» Interpretation #1: Radiation (/ncoherent)

* Model: Rays )
/ W * Real, non-negative
e - « Models absorption
%}i - T and brightness
S - it =11 + 1>




First - what is light and how can we model it?

Interpretation #1: Radiation (Incoherent)
Model: Rays

Interpretation #2: Electromagnetic wave (Coherent)

Model: Waves

Interpretation #3: Particle
Model: Photons

double slit

q]

screen

deep imaging

Real, non-negative
Models absorption
and brightness

liot = 11 + 1>

Complex field
Models Interference

Ewot = E1 + E5



Simple mathematical model of incoherent image formation

Physical world % n X mimage lg

» Assume incoherent illumination
« Assume thin 2D object
* Obiject is real, non-negative map of absorption/reflectivity
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deep imaging
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Simple mathematical model of incoherent image formation deep imaging

Physical world ﬁ n x mimage |

» Assume incoherent illumination
« Assume thin 2D object
* Obiject is real, non-negative map of absorption/reflectivity
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Simple mathematical model of incoherent image formation deep imaging

Physical world ﬁ n x mimage |

» Assume incoherent illumination
« Assume thin 2D object
* Obiject is real, non-negative map of absorption/reflectivity




[IE=

Simple mathematical model of incoherent image formation deep imaging

Physical world % n X mimage lg

» Assume incoherent illumination
« Assume thin 2D object
* Obiject is real, non-negative map of absorption/reflectivity

Object transmission: ly(x,y)
lllumination pattern: s(x,y)
Light exiting object surface: ls(X,y) = lp(X,y)o s(X,y)



Simple mathematical model of incoherent image formation

Physical world % n X mimage lg

» Assume incoherent illumination
« Assume thin 2D object
* Obiject is real, non-negative map of absorption/reflectivity

Obiject reflectivity: lo(X,y)
lllumination pattern: s(x,y)
Light exiting object surface: ls(X,y) = lp(X,y)o s(X,y)

s
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deep imaging



Simple mathematical model of incoherent image formation

Physical world % n X mimage lg

» Assume incoherent illumination
« Assume thin 2D object
* Obiject is real, non-negative map of absorption/reflectivity

MOdeling Ie(X,y) = Io(X,y) © S(ny)
incoherent diag(S) = s
illumination I.=SI, _
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deep imaging
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Example #1: Optimized illumination pattern (one color) deep imaging

First, assume perfect camera:
intensity at image planel, =1 =S |
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Example #1: Optimized illumination pattern (one color) deep imaging

Training data:

[lo(X, y), vl
,;100 x 100

Label y: 1x2



Example #1: Optimized illumination pattern (one color)

[Ie(X, y)’ y]
Training data:
lh(X, V),
|(Eq|(00y))( d?/él)o - le(x,y)= S ly(x,y) —

Label yv: 1x2 Physical Layer

[IE=

deep imaging
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Example #1: Optimized illumination pattern (one color) deep imaging

[le(X, y), V]
Training data:
|[|-01()C()b y))(, 1y(])0 Y= S 1o0cy) Task = W), ...ReLU[W; ReLUWq |] ...]
O.

Label yv: 1x2 Physical Layer
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Example #1: Optimized illumination pattern (one color)

[le(X, y), V]
Training data:
I[I-O1()c()by>)<, 13’(1)0 L0y)= S 1Y) Task = W, ...ReLUW, ReLUW, I] ...]
O.
Label yv: 1x2 Physical Layer

Tensorflow training_images = tf.placeholder(tf.float32, [image_size, None])
training_labels = tf.placeholder(tf.float32, [None, 31)

1.0 code illumination_pattern = tf.truncated_normal([image_size, 1], stddev = 0.1)
illumination_matrix = tf.linalg.diag(illumination_pattern)

illumianted_images = tf.matmul(illumination_matrix, training_images)

(Will show ColLab Notebook for implementation in Tensorflow 2.0)
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Option 1: tf.linalg.matmul %%

deep imaging

training_images - tf.placeholder(tf.float32, [image_size, Nonel)
training_labels = tf.placeholder(tf.float32, [None, 3])
illumination_pattern = tf.truncated_normal([image_size, 1], stddev = 0.1)
illumination_matrix = tf.linalg.diag(illumination_pattern)

illumianted_images = tf.matmul(illumination_matrix, training_images)

1.0 code

llluminated images lllumination Matrix Training images

[llumination
attern

llluminated Image 1 Image 1

Option 2: tf.linalg.multiply (will show in CoLab Notebook)
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Simple mathematical model of image formation deep imaging

S % Real case: intensity at image plane I, = blurred
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Simple mathematical model of image formation

Lenses blur and rescale images:
(We’ll learn how exactly next few weeks)

Convolution filter h

Input Output intensity

intensity

=
X

=
]

IL=l,* h=HlI,

Assuming we’ve resized by M,
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Simple mathematical model of image formation deep imaging

S . .
! ) % Intensity at image plane I, = ?
0




Simple mathematical model of image formation deep imaging

S
lo ﬁ Discretization by detector ?

A

Use downsampling matrix D 0.50.5000...
(sum-pooling) - 0.50.5 000 ...

0.50.5 000 ...
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Simple mathematical model of image formation deep imaging

S
b ﬁ o Discretization by detector ?

A
A

I;=DIl, =DHS I,

Use downsampling matrix D 0.50.5000...
(sum-pooling) - 0.50.5 000 ...

0.50.5 000 ...




Simple mathematical model of image formation

wlw2000....
w3w4d 000....
w5 eb 0_0 0...
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Discretization by detector ?

P
A

A
//
A

I;=DIl, =DHS I,

*Can make these learnable weights
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Simple mathematical model of image formation

)
Iy % lp Noise caused by detector ?

Can also add in detector-dependent noise N = k * np.random.randn(dx, dy)

(zero-mean Gaussian noise, for example)



deep imaging

Pause to take a look at:

physical_layers_example.ipynb



Physical Layers

Physical world
1o(Xo0sYo)

Digital Layers H%

deep imaging
Digital Image Task
\ Il H
] ] | — vaN
% - B
'\ : ] — BICYCLE
CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING P (LATTEN coLUNLgTED SOFTMAX y
N & i
FEATURE LEARNING CLASSIFICATION
Digital layers Physical layers

/ /

Task = W,, ...ReLUW, ReLU[W, f[l.]]...]

ask = W. ...ReLU[W, ReLUW, D H S 1]...]
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Example #2: Optimized color filter for a grayscale camera deep imaging

“Ground truth” object:

IO(X’ Y }\)
100 x 100 pix. x 30 spectral channels
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Example #2: Optimized color filter for a grayscale camera deep imaging

Monochromatic
camera sensor

“Ground truth” object:

IO(X’ Y }\)
100 x 100 pix. x 30 spectral channels
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Example #2: Optimized color filter for a grayscale camera deep imaging

Monochromatic
camera sensor

“Ground truth” object:

(X, ) = 2 15(X, v, A
|0(X, Y, )\) s( Y) " O( y )
100 x 100 pix. x 30 spectral channels
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Example #2: Optimized color filter for a grayscale camera deep imaging

“Ground truth” object:

IO(X’ Y }\)
100 x 100 pix. x 30 spectral channels

A

1 Color transmission vs. A

Let’s put a T(N)
color filter to
put here! 0 >

\ 400 nm A 700 nm

Monochromatic
camera sensor




[IE=

Example #2: Optimized color filter for a grayscale camera deep imaging

“Ground truth” object:

IO(X’ Y }\)
100 x 100 pix. x 30 spectral channels

A

1 Color transmission vs. A

Let’s put a T(N)
color filter to
put here! 0 >

\ 400 nm A 700 nm

Monochromatic
camera sensor

IS(X’ Y) = % T()\) IO(X7 Y; }\)
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Example #2: Optimized color filter for a grayscale camera deep imaging
14 Color transmission vs. A
Design optimal  W,(A)
color filter for 207
classification: 0 >
400 nm A 700 nm

Monochromatic
camera sensor

Training data: B
[lo(X, v, N), V] 5(X, y) = % Wo(A) lo(X, y, N)

1o:100 x 100 pix. x 30
Label y: 1x3 - pepper, broccoli, green beans Physical Layer
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Example #2: Optimized color filter for a grayscale camera deep imaging

Training data:
[IO(X’ y’ }\)! y]
15::100 x 100 x 30
Label y: 1x3
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Example #2: Optimized color filter for a grayscale camera deep imaging

Training data:
[lo(X, v, A), V] 156 ¥) =2 WoM) lofx, v, A
;100 x100x 30 ~— ~
Label y: 1x3 Physical Layer




[IE=

Example #2: Optimized color filter for a grayscale camera deep imaging

[Is(x, ¥), V]
Training data:
I[I-O1()C()b y)’(};)(’)é’]x 0 b ¥} = 2 Wol) ol . A Task = W,, ...ReLU[W, ReLU[W, |] ...]
O-

Label y: 1x3 Physical Layer



Example #2: Optimized color filter for a g
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rayscale camera deep imaging

[ls(x, y), V]

—

Task = W,, ...ReLU[W; ReLU[W, ] ...]

Training data:

[lo(X, v, A), V] 156 ¥) =2 WoM) lofx, v, A
;100 x100x 30 ~— ~

Label y: 1x3 Physical Layer

multispectral_data = tf.placeholder(tf.float32, [None, num_colors, image_size])

veg_labels = tf.placeholder(tf.float32, [None, 3])

filter_weights = tf.truncated_normal([num_colors, 1], stddev = 0.1)
filtered_images = tf.einsum('aij,jk->aik', multispectral_data, filter_weights)

Example implementation with Tensorflow 1.0 code
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Tensorflow: operations to sum along 3™ (or higher) dimension deep imaging

Option 1: Einsum (shown as Tensorflow 1.0 code, and also applicable in Tensorflow 2.0)

filtered_images = tf.einsum('aij,jk—>aik', multispectral_data, filter_weights)

Option 2: tf.reduce_sum

filtered images = tf.reduce sum(multispectral data * filter weights, axis=2)

Option 3: Locally connected conv2D with a 1x1 filter size

https://github.com/keras-team/keras/blob/master/keras/layers/local.py#L183



https://github.com/keras-team/keras/blob/master/keras/layers/local.py

deep imaging

Pause to take a look at:

weighted_image_sum_example.ipynb



Example 3: learned illumination pattern for improved segmentation

Input &%
image |
':’“. "%“f

U-Net: Convolutional Networks for Biomedical
Image Segmentation

Olaf Ronneberger, Philipp Fischer, and Thomas Brox

Computer Science Department and BIOSS Centre for Biological Signalling Studies,
University of Freiburg, Germany
ronneber@informatik.uni-freiburg.de,

WWW home page: http://1lmb. informatik.uni-freiburg.de/

572 x 572
570x570

',,
A4

1 64 64

568 x 568

2842
282

Compress

deep imaging

U-Net Architecture

Decompress

390x390 ¥
aggx3ss V¥
388 x388 V¥

392 x 392

I Output:
segmentation

map (need
JIN labels for

training)
512 256 t

(i
S N e
- ' S 3

=» conv 3x3, ReLU

copy and crop
512 1024 512

> 5 [el-im # max pool 2x2
S ¥ 102 S 4 up-conv 2x2
gl—l-g\ lgl | =» conv 1x1

o™ N



Example 3: learned illumination pattern for improved segmentation

deep imaging

Variably illuminated images from different LEDs U-Net CNN Segmentation Map

*If we allow w’s here to be trainable weights, then we can find ideal brightnesses for different LEDs
to illuminate a sample of interest!
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Example 3: learned illumination pattern for improved segmentation

deep imaging
Variably illuminated images U-Net CNN Segmentation Map
gf.‘: N = W Z LN . \
..9;? AR I 1
A e R
2 R O :
:“f"b‘ A 's' 2 , .
W1|1 + W2|2 + W3|3 + .H

Optimized illumination for nuclei segmentation

Mean Red channel Mean Green channel Mean Blue channel
| ] | ] [ ]

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
L e— T T

+5-10% accuracy
See C. Cooke et al., “Physics-enhanced machine learning for virtual fluorescence microscopy,” ICCV (2021)
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Image segmentation —current workflow deep imaging

Capture: BF images Capture: Fluorescence Segmentation Mask

(e.g., DAPI-stained nuclei)
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Image segmentation —current workflow deep imaging

Capture: BF images Capture: Fluorescence Segmentation Mask

Learned @ 'y
illumination \i" _ ;& Inference via a trained U-Net
*\ o e
G Z 8y
535552555868, | "iﬁ?- q“l

Optimally illuminated



in silico labeling: fluorescence image inference from bright-field data

deep imaging

In Silico Labeling: Predicting
Fluorescent Labels in Unlabeled Images

Eric M. Christiansen,-11-* Samuel J. Yang,! D. Michael Ando,"-° Ashkan Javaherian,?° Gaia Skibinski,?°
Scott Lipnick,>%8° Elliot Mount,2'° Alison O’Neil,®'° Kevan Shah,?° Alicia K. Lee,?'° Piyush Goyal,?1°
William Fedus,'-¢.1° Ryan Poplin,’'° Andre Esteva,’-” Marc Berndl,” Lee L. Rubin,? Philip Nelson,’*

and Steven Finkbeiner®5*

1Google, Inc., Mountain View, CA 94043, USA

2Taube/Koret Center for Neurodegenerative Disease Research and DaedalusBio, Gladstone Institutes, San Francisco, CA 94158, USA
3Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA

4Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA

5Departments of Neurology and Physiology, University of California, San Francisco, 94158, USA

SMontreal Institute of Learning Algorithms, University of Montreal, Montreal, QC, Canada

7Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA

8Center for Assessment Technology and Continuous Health, Massachusetts General Hospital, Boston, MA 02114, USA

NEUROFILAMENT

BF Focal stack

(26+ images) Task: bright-field to fluorescence image Inference
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“Virtual Staining” — can be used to covert one image type to many others -

deep imaging

B1 Autofluorescence to H&E B2 Phase contrast to multiple FAS (displayed as overlay)

Ounkomol, et al. 2018

BS H&E t

o IHC : cytokeratin stain

o AN

Hong, et al. 2021 Ghahremani, et al. 2022

L. Kreiss et al., “Digital staining in optical microscopy using deep learning--a review,” Photonix (2024)
B. Bai et al., “Deep learning-enabled virtual histological staining of biological samples,” Nature Light Sci (2023)
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Image segmentation versus in silico labeling (fluorescence inference) deep imaging

Capture: Bright field Capture: Fluorescence

Learned

illumination for a "
fluorescent image &‘w J&‘
inference? | a d\'pﬁdg
p WS 7 2ad

e B

Ll

&N .




1x Pattern
Optimization

2x Pattern
Optimization

4x Pattern
Optimization

8x Pattern
Optimization

Multiple Patterns for Fluorescence image inference

— P
deep imaging

Ground Truth 1 Pattern 4 Patterns

HelLa Task Performance

1072

6x1073

Mean Squared Error

,:II 2K &
o4 essies it iy

4 O 1 20 B B4
4 crsessersd
v 4 2

[ 1

Pattern 5 Patt

ern 6 Pattern 7

g:allléﬂ-' 20 21 22 23 24 25 26
Pattern 8 lllumination Patterns

See C. Cooke et al., “Physics-enhanced machine learning for virtual fluorescence microscopy,” ICCV (2021)



Summary: simple physical layers for incoherent imaging

Deal with sample/image intensities |, real and non-negative

Effect of illumination is element-wise multiplication

A

l(X,y)= S lp(x,y)

Imaging systems blur the object via point-spread function matrix H

Discrete pixels down-sample the object via

Add noise into measurement

Different colors add linearly

Ib(x’y)=

H IO(X,y)

Id(X,Y)=

D IO(X,y)

IN(X!y)=

D l,(x,y) + N

(X,

y) =

z IO(X’ Y; )\)

deep imaging
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What is light and how can we model it? deep imaging

Interpretation #1: Radiation (Incoherent)
Model: Rays

* Real, non-negative
« Models absorption

E}Kji@x& AR and brightness

- liot = 14 + I

Interpretation #2: Electromagnetic wave (Coherent)
* Model: Waves

double slit screen

i

Complex field
Models Interference

- jo!
N
\_/
[ )

Ewot = E1 + E5

Alternative framework: Modeling coherent radiation as a wave




