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Abstract

Magnetic Resonance (MR) is one of the most commonly used imaging modalities
in clinical medicine, with its main advantages being high soft-tissue contrast and
no radiation exposure. However, it suffers from long-acquisition times leading to
high susceptibility to motion artifacts, increased overall costs and reduced patient
comfort. Trying to mitigate such problems by shortening acquisition time has
long been a goal for researchers in the field. In this work, we propose utilizing
deep learning to find an optimal k-space sub-sampling routine that will allow us to
achieve high-fidelity reconstructions from under-sampled inputs. More specifically,
we jointly trained a k-space sub-sampling layer and a deep convolutional neural
network (CNN) to both search for an optimal sub-sampling scheme and reconstruct
high-fidelity brain MR images. To force our sub-sampling layer to yield a binary
output and choose only a limited number of k-space columns, we used an annealing
factor. Our proposed method outperforms a naive equispaced k-space sub-sampling
configuration. Additionally, it approaches performance observed with an informed
k-space sub-sampling configuration. This gap in performance when compared
to an informed sub-sampling control is likely due to inefficient annealing and
overall random initialization of our sub-sampling layer. These results demonstrate
that jointly optimizing k-space sub-sampling trajectory and reconstruction in a
CNN framework might be a viable option to reducing acquisition time and, with
that, making clinical MR cheaper and more readily accessible to a wider range of
patients.

1 Introduction

Since the invention of the first MR scanner circa 1977, proton MR has become of one of the most
utilized imaging modalities in clinical medicine due to its superior soft-tissue contrast in comparison
to its counterparts CT, X-Ray and ultrasound (US). This explains its many applications, for example,
in cardiology to assess myocardial perfusion and the risk of acute coronary syndrome and in neurology
to discern dead tissue from recoverable penumbra regions in stroke patients and study brain activity
with high spatial and temporal resolution. Additionally, since it does not utilize ionizing radiation,
MR is also amongst the few safe imaging modalities available to children, pregnant women and other
at-risk patient populations.

Despite all of these benefits, a considerable drawback of MR imaging lies on its often very long
acquisition times, which contribute to increased procedure costs, reduced patient comfort and
compliance and increased overall susceptibility to motion artifacts. Acquisition time is dependent on
to the number of phase encoding k-space trajectories sampled. However, drastically under-sampling
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k-space (i.e., below Nyquist frequency) leads to well-known aliasing artifacts, which are not easily
eliminated with simple reconstruction techniques.

Overcoming this problem and obtaining high fidelity reconstructions from drastically under-sampled
k-space data has long been a topic of research in the field of MR imaging. One of the most popular
approaches to tackle this problem is compressed-sensing MR (CS-MR). In a nutshell, CS-MR aims
to acquire only the most important coefficients in a sparse transform domain so as reconstruct an
image of interest with high fidelity and acceptable SNR. Importantly, this approach is limited in that
it requires a priori knowledge about transform sparsity, as well as pseudo-random under-sampling
and non-linear reconstruction [1].

2 Related Work

Deep learning models have proven very successful in several computer vision tasks such as image
recognition [2] and classification [3]. This success has led to increased interest in applying such mod-
els to automate and improve performance of several tasks involving large-scale biomedical imaging
data. In the field of MR imaging, for example, CNNs have been used to perform reconstruction and
cortical parcellation of structural human brain scans in large scale and with reduced compute time [4].

In fact, CNNs have already been successfully used to reconstruct high-fidelity MR data from sub-
Nyquist sampled inputs. For example, in [5] this was done using a fixed uniform sub-sampling
scheme with an added small number of center frequencies. Although this approach is interesting,
it is limited in that sub-sampling routine is not optimizable and relies on a priori knowledge about
the importance of center frequencies in achieving high-fidelity reconstructions. Authors in [6] used
instead a compressed-sensing like approach implemented using a variational model which was trained
offline but could be applied online to unseen data. Yet another group [7] utilized an adversarial
training scheme between a k-space reconstruction network and an evaluator to choose, at inference
time, which phase-enconding trajectory should be acquired next by the scanner.

Interestingly, physical ’hardware’ parameters of imaging systems (e.g., illumination scheme, lens
aperture) can be optimized using deep learning models by incorporating such parameters in the
network’s computational graph. For example in [8], the authors trained a network capable of
selecting an ideal illumination scheme to identify malaria-infected cells. That is, knowledge gained
by a CNN can be used to optimize and inform imaging system design and operation itself. This has
enormous potential applications to almost all commonly used medical imaging modalities, including
proton MR.

Here, we propose utilizing a Unet-type architecture along with an optimizable k-space sub-sampling
layer to perform high-fidelity reconstruction of multicoil brain MR data from drastically under-
sampled sets. This approach exploits proven strengths of deep learning models in MR reconstruction
tasks while allowing for the sub-sampling scheme to be jointly optimized, potentially increasing
prior observed performance on this task. Finally, trajectory used to sample phase-encoding lines can
be viewed as a real ’physical’ operation performed by the scanner at acquisition time. Therefore,
knowledge from such a model can be used to design optimal k-space sub-sampling trajectories, which
would lead to a drastic reduction in MR acquisition time.

3 Methods

3.1 Data

Data consisted of 2,286 fully-sampled T1 multicoil brain scans acquired in 1.5T and 3T clinical
grade MR scanners. These were collected at multiple sites and are a part of the larger publicly
available FastMRI database, created as a collaboration between NYU Radiology and Facebook AI
Research [9]. The primary goal of this collaboration is to test whether machine learning can aid in
the reconstruction of medical images and, more specifically, if it can be used to reconstruct clinical
MR images with high fidelity from under-sampled data.

More specifically, this database contains both singlecoil fully-sampled knee MR images and multicoil
brain MR data, containing both the above-mentioned T1 scans as well as scans acquired with T2 and
FLAIR sequences. Results reported herein were achieved using sets containing only 20% randomly
chosen scans out of the 2,286 available per simulation.
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Figure 1: Target vs. Trained and Untrained reconstructions for control simulations. None of these
utilized the physical_layer. Column 2 represents naive sub-sampling and Columns 3 & 4 represent
informed sub-sampling controls.

3.2 Pre-processing and Network

Fully-sampled multicoil k-space data was first center-cropped to achieve a 260x260 shape per slice.
It was then instance normalized and inverse Fourier transformed to image space, where information
from different coils was combined using a root sum of squares (RSS) approach. Combined coil data
was then Fourier transformed back into k-space and fed into an optimizable sub-sampling layer.

The optimizable layer assigns a trainable weight to each column of the input k-space data. It then
utilizes simulated annealing [10] to force convergence of final mask weights to either 0 or 1, which is
a natural constraint given the all-or-none choice of sampling or not a given phase-encoding trajectory.
More specifically, annealing is achieved by first multiplying the column weights by a temperature
factor (which is linearly increased with each epoch) and then passing the result to a Softmax function,
yielding a mask that can then be applied to our fully-sampled input k-space data. Corresponding
masked image is then obtained by applying an inverse Fourier transform to the masked k-space data
and taking its absolute value. The resulting masked slice is fed to the CNN described later in this
section.

For the control simulations, masking was instead applied as a pre-processing step using a fixed
equispaced mask with (informed sub-sampling) our without (naive sub-sampling) the addition of 8%
center frequencies. For these controls, all pre-processing steps highlighted above were the same, but
final masked k-space data was instead converted to its corresponding masked image and directly fed
to the CNN described below (i.e., the physical layer is bypassed in the control simulations).

Briefly, CNN implementation was based on the popular Unet architecture first proposed by Olaf
Ronneberger, Phillip Fischer and Thomas Brox [11]. It has 4 down and up-sampling blocks. Each
block consists of 2 convolutional layers (kernel-size 3, stride 1, 32 filters), each followed by an
instance normalization layer, a leaky ReLU and a dropout layer. Skip connections were added
between matching up and down sampling blocks. An average pooling layer with kernel-size 2 and
stride of 2 was also added after each down-sampling block.

Loss utilized is a simple L1 norm between predicted reconstruction and target image with an added
regularization term. This regularization consists of a constant penalty multiplied by the mean square
error between the sum of the weights in the optimizable mask (after Softmax step) and the desired
number of sampled columns. Finally, desired number of sampled columns was computed by dividing
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total number of k-space columns (in the fully-sampled data) by the acceleration factor (e.g., 4) and
rounding the result to the nearest integer.

Figure 2: Target vs. Trained and Untrained reconstructions for experimental simulations. All of these
utilized physical_layer+Unet and acceleration 4. ’Good’ and ’Bad’ labels refer to good and poor
reconstruction examples. Last 2 columns refer to simulation with 50 epochs of annealing + 10 epochs
of stable temperature at the end of training. Maximum temperature reached was the same in both
simulations with annealing.

3.3 Training

The model described above was implemented using PyTorch and trained on an NVIDIA GeForce
GTX 1650 GPU. We ran a total of 4 control simulations: no-masking with Unet only, equispaced
masking with acceleration 4 and without any added center frequencies (naive sub-sampling) and
equispaced masking with accelerations 4 and 8 and 8% added center frequencies (informed sub-
sampling). All of these models were trained for 50 epochs, with learning rate 0.001, learning-rate
step-size 40, batch size 16 and drop-out probability 0.5.

The experimental simulations were as follows: 1) model with physical layer but without annealing, 2)
model with physical layer and annealing (to a maximum temperature of 6) and acceleration 4, 3) model
with physical layer and annealing (maximum temperature of 6), acceleration 4 and 10 extra epochs of
stable temperature at the end of training. First and second experimental simulations were trained for
50 epochs while the third was trained for 60, to account for the added 10 stable temperature epochs.
The same learning rate, learning-rate step-size, batch-size and drop-out probabilities highlighted
above were used for all of these. The regularization penalty was set to 0.5 and physical_layer
weights were initialized using values drawn from an uniform distribution with zero mean and standard
deviation of 1. Temperature parameter was initialized as 1 and (for the simulations with annealing)
linearly increased to the maximum temperature given above. All hyper-parameters were tuned using
a separate validation set. Unfortunately, I did not have enough computational resources to repeat
simulations and gain additional insight into performance variation and stability.

3.4 Metrics

We used three primary metrics to evaluate model performance, namely normalized mean square error
(NMSE), peak-signal to noise ratio (PSNR) and structural similarity (SSIM), all computed between
predicted reconstruction and target images.
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We utilized the standard definitions of PSNR and SSIM, as follows:

PSNR(x, y) =
10 log10(max(max(x),max(y))2

|x− y|2
(1)

SSIM (x, y) =
(2µxµy + C1) + (2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(2)

where µx and µy are the averages and σ2
x and σ2

y are the variances of x and y, and σxy is the covariance
between x and y. C1 and C2 represent factors used to stabilize division by a weak denominator.

Figure 3: Initial and Trained Masks for Annealing Simulations. Both simulations were performed
using the same seed so as to make performance comparison more straightforward.

4 Results

Non-surprisingly, control without masking and using Unet only performed very well (SSIM = 0.99,
PSNR = 61.7, NMSE = 2.84e−5) whereas naive sub-sampling control performed poorly (SSIM
= 0.69, PSNR = 22.1, NMSE = 0.03). Adding 8% center frequencies increased performance for
controls using equispaced masking and accelerations equalling 4 and 8 (Table 1). From a qualitative
standpoint, with naive sub-sampling scheme and Unet only, original masked images had severe
aliasing and final trained versions looked much improved, albeit still with notable aliasing artifacts
(Figure 1, column 2). Using an informed sub-sampling scheme allowed Unet model to reconstruct
images without the original aliasing artifacts, but still with worse off fine details (e.g.,less defined
tumor border) - Figure 1, columns 3 & 4.

Model with physical_layer + Unet, 4 acceleration, and annealing (but no added stable temperature
epochs) outperformed the naive sub-sampling control by a big margin. In fact, its performance
(SSIM = 0.84, PSNR = 29.6, NSME = 0.005) came somewhat close to the one observed for informed
sub-sampling control with matching acceleration factor (SSIM = 0.91, PSNR = 35.1, NMSE =
0.007). Finally, adding the 10 extra epochs with stable temperature at the end of training did improve
overall performance (SSIM = 0.86, PSNR = 30.3, NMSE = 0.005), without compromising desired
binary nature of k-space masking (Figure 3). As expected, model with physical_layer + Unet but
no annealing constraint had superior performance in comparison to the simulations using annealing
(SSIM = 0.90, PSNR = 31.9, NMSE = 0.003). Qualitatively, sharper looking reconstructions were
achieved with physical_layer + Unet but no annealing (Figure 2, column 1). Simulations with
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annealing yielded overall good reconstructions (Figure 2, columns 2 & 4) with minimal to no residual
aliasing. However, in both cases, some reconstructions were of poorer quality (Figure 2, columns 3 &
5).

Table 1: Validation Metrics for Control and Experimental Simulations at the End of Training

Simulation Accel Anneal +Epochs SSIM PSNR NMSE

No-Mask 0 No 0 0.99 61.7 2.84e−5

Naive-subsampling 4 No 0 0.69 22.1 0.030
Informed-subsampling 4 No 0 0.91 35.1 0.010
Informed-sub-sampling 8 No 0 0.87 31.7 0.015
Physical_layer+Unet 4 No 0 0.90 31.9 0.003
Physical_layer+Unet 4 Yes 0 0.84 29.6 0.005
Physical_layer+Unet 4 Yes 10 0.86 30.3 0.005

5 Discussion

In this work we designed and implemented a deep learning model capable of both finding an optimal
k-space sub-sampling mask and reconstructing high-quality images from significantly under-sampled
inputs. Specifically, we masked fully-sampled k-space data using a weighted mask and then utilized
annealing and an added regularization term to force network convergence to a binary mask, with only
a limited number of selected k-space columns.

As highlighted above, model with added physical layer and annealing easily outperformed our naive
sub-sampling control. Although not very surprising, this result is still interesting because, similarly
to naive control, our model was not given any a priori knowledge about the importance of center
frequencies. In fact, as shown in Figure 3, after only 50 epochs of training, our model was able to learn
the importance of center-frequencies in achieving high-fidelity reconstructions and correctly assigned
higher weights to center columns. This is in agreement with our knowledge of center-frequencies
carrying more information.

Simulations with annealing came close to, but ultimately did not match, performance observed for
informed sub-sampling control with equivalent acceleration factor. We suspect this gap in performance
was due to both inherent instability of annealing method utilized and random initialization of mask
weights used. If temperature is increased too fast or too high, mask binarization occurs before model
has had enough time to correct for possible poor initialization choices (i.e., assigning initial low
weights to center columns) and overall result converges only to a sub-optimal local minima. On the
other hand, if temperature is not increased fast enough or high enough, model ends up failing to yield
a binary mask.

In this context, simulation with 50 epochs of annealing followed by 10 epochs with stable temperature
is informative. It shows that allowing model to have some more epochs of training to compensate
for poorly initialized weights improves performance without compromising final binary nature of
mask. Ultimately, it might be possible to match performance seen with informed controls by running
simulations for longer (i.e., reducing temperature increase rate) and adding a small number of stable
temperature epochs either at the very end of training or after a certain number of epochs with
annealing. If possible, this would be a very interesting result since model would have arrived at
an optimal sub-sampling scheme despite disadvantage of starting off without a priori knowledge
given to controls. Another possibility to address this issue is instead embedding knowledge about
the importance of center-frequencies into our model by biasing mask so as to have higher weights
assigned to center columns at initialization. Although current work does not allow us to confirm this,
we speculate this model would easily match and potentially even outperform our informed controls.
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