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1 Introduction 

About 1,700 million people, or one third of the world’s population are , or have been, 
infected by Mycobacterium tuberculosis (TB) .1 The risk of TB infection has greatly 
diminished for developed country due to effect control.1 However, tuberculosis remains as 
one of the most common infectious diseases in developing countries due to lack of 
monitoring and treatment. 
 
Tuberculosis care, including effective detection and treatment of patients, is the core element 
of TB control.2 The current international TB guidelines recommend the microscopic 
examination of three sputum specimens for acid-fast bacilli in the evaluation of persons 
suspected of having pulmonary TB.2 The process of examining the microscopic images could 
be time consuming and labor-intensive. Therefore, we propose to classify whether the 
tuberculosis is presented in the sample automatically using deep neural network training.  
 
The goal of this project is to train the network to correctly classify the microscopic specimen 
as “with TB cell” or “without TB cell”. There are three main components in this project: 1) 
pre-process the image database by cropping them into suitable size for training and labeling 
them correctly, 2) perform image classification on the self-established dataset with different 
networks and identify a network with the best performance, and 3) Add a physical layer of 
weights on the three color channels to improve classification accuracy. Our result shows that 
VGG with “tanh” activation yields the highest accuracy of 95% for validation data. We 
concluded that neural network is a promising way to automatically classify microscopic 
image with and without TB bacilli. 
 
2 Related work 

Rulaningtyas et al. proposed a method to classify TB cells by first extracting the geometry of 
cell and then feed these mycobacterium shape features into a backprojection neural network 
for classification.3 This method focus on the elongated shape of the bacilli while we proposed 
to focus more on the color difference of the cell.  
 
For this project, we used VGG, Densely-connected Neural Network (DNN), and ResNet as 
our training networks. VGG  is a simple but powerful CNN proposed by Simonyan et al. in 
2015.4 It significantly improved prior-art configurations by increasing the depth of 
convolutional networks. Also in 2015, He et al. proposed a deep neural network with residual 
learning called ResNet,5 which are easier to optimize and achieved better accuracies than 
traditional deep neural networks. 
 
3 Methods 

Our project was carried out based on the Annotated tuberculosis image dataset, which was 
obtained from the Makerere Automated Lab Diagnostics Database.6 We first pre-processed 
the images from the image dataset to establish our own dataset with 2 classes, labeled as 
“TB” and “non-TB”. Then, we performed classification on the established dataset with 
different networks and compared their performances. Last, we added a physical layer to 
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check if an improvement could be achieved by optimizing the weights on red, green, and blue 
color channels. 
3.1 Image pre-processing 
The Annotated tuberculosis image dataset consists of 928 sputum color images with 
bounding boxes of 3734 bacilli. The TB bacilli locations are recorded in a ‘.xml’ file for each 
image. To get images with tuberculosis, we extracted the coordinates of  each labeled box to 
find the center pixel of each TB cell. Then a 100 x 100  image is cropped around that center 
pixel to ensure the TB area has been fully preserved in the TB image.  
 
To get the “non-TB” images,  the bounding box areas identified as TB cells in original 
images are replaced with pixel of value of zeros. 10 random crops were performed for each 
image to get 100 x 100 non-TB images. If the image contains zero value pixel, that is, 
contains TB cell, or it exceeds the image boundary limits, image will not be saved.  
 
We performed such operations on 500 original images and obtained 4584 “non-TB” images 
and 3492 “TB” images to feed into the networks. 
 

 

 
 

Figure 3.1 Original image from Makerere Lab (top left), Image without bacilli (top right),  
100 x 100 “TB” Image (bottom left), and 100 x 100 “non-TB” Image(bottom right) 

 
3.2 Classification on self-established dataset with different networks 
After importing our “TB” and “non-TB” image dataset into tensorflow, we performed 
classifications with VGG, DNN and ResNet. VGG and DNN were built through 
‘keras.sequence()’. ResNet was built based on the official model of ‘ResNet50’ released in 
keras.applications. We applied 15 layers of densely-connected layers with output space of (*, 
100) . 
 
3.3 Optimization of weights of color channels 
For the optimization of weights on color channels, we added a physical layer to the training 
network. Three trainable variables are created for each of the three color channels. Each 
weight is applied to a mask that is put on each color channel of the image. Images from 
training and validation dataset were then fed into a CNN to achieve the optimization of the 
three weights. 
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4 Results 

4.1 Classification results of original images with different networks  
In the classification of original images from the self-established dataset, we’ve used 3 types 
of neural networks, which are VGG, DNN and ResNet. The loss and accuracy during training 
and validation processes are plotted below. The x-axis is the number of epochs. The final loss 
and accuracy in both process as well as the sensitivity and specificity are shown in Table 5.1.  
 
From Table 5.1 displayed below, all 4 networks performed well in the training data 
classification with accuracy >90%. VGG with ‘tanh’ activation has done the best job with an 
accuracy of 96.2%, while DNN has done the worst with an accuracy of 91.47%. However, 
when it comes to the validation dataset, the gap between the accuracies seemed to have 
grown larger. Both VGG networks have maintained their great accuracies in the validation 
dataset, while DNN and Resnet experienced obvious drops of accuracies.  
 
In terms of the sensitivity and specificity, VGG networks gave great accuracy in both; DNN 
give high sensitivity and low specificity; and ResNet gave similar results for both. 
 
4.1.1 VGG  
In training of VGG networks, both ‘relu’ and ‘tanh’ activation method have been tested. 
Please see Appendix A for ‘relu’ method. 

 Figure 4.1 Classification result with VGG with ‘tanh’ activation of original images 
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4.1.2 DNN 
In training of  DNN networks, ‘relu’ activation have been tested. 

 
Figure 4.2 Classification result with DNN with ‘relu’ activation of original images 

 
 
4.1.3 ResNet 

Figure 4.3 Classification results with ResNet 
 
4.2 Classification results after trianning weights of 3 color channels 
We compared the training results of the weights of all 3 color channels with and without 
adding the physical layer. For the untrained color channels case, the weight for each channel 
has been set as 1. Please see in Appendix A for the loss and accuracy plot. 
 
For the trained color channels case, the weight for each channel before training is 1. After 
training, the weight of red channel becomes 0.99327266, green channel 1.0004733 and blue 
channel 1. Figure 4.4 shows the training loss and accuracy for every 1000 iterations. 
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Figure 4.4 Classification result with trained weights of colors 
 

5 Discussion 

5.1 Classification results of original images with different networks  
VGG performs the best compared to DNN and ResNet, while the most sophisticated ResNet 
performs poorly on the validation dataset. One possible reason accounting for this is that 
ResNet owns so many trained parameters that are over-defining the model. In the two 
activation methods we chose for VGG, ‘tanh’ activation works slightly better than ‘relu’ 
activation. In addition, VGG also yields the highest sensitivity and specificity. We are more 
interested in the sensitivity since it reflect the number of false negative in the results. It is 
crucial not to give false negative results when detecting TB cells since it acts as a screening 
method and should not miss any potential positives. As a result, we conclude that VGG with 
‘tanh’ activation is the best networks for the classification purpose. 
 

  Table 5.1 Comparison of classification results of different networks 

 VGG(‘relu’) VGG(‘tanh’) DNN ResNet 

 
Training 

accuracy 0.9473 0.9620  0.9147  0.9362  

loss 0.1653 0.1204  0.2521  0.1755  

 
 
 

Validation 

accuracy 0.9493 0.9505 0.8948  0.8651 

loss 0.1777 0.1518 0.2661 0.3746  

sensitivity 0.9365 0.9615 0.9572 0.8632 

specificity 0.9658 0.9352 0.8088 0.8676 

 
5.2 Results of classification with trained weights of color channels 
It can be noticed in Table 5.2 that, the classification performances are almost the same when 
training with or without weighted color channels. In fact, the optimized weights for each 
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color channel is very close to 1, which means that physical layer have little effect in the 
training process. Therefore, the training results with or without the layer are similar as 
expected. 
 
One reason might be that the original images are already in great quality regarding the setting 
of color channels, so there’s no need to optimize it. And according to what we see from the 
original dataset, we agree that the original data is already clean and easy to distinguish from 
“TB” and “non-TB”. 
 

Table 5.2 Comparison between classification with and without weighted color channels 

 without weights with weights 

 
Training 

accuracy 0.9390 0.9447 

loss 0.0716 0.0751 

 
 

 
Validation 

accuracy 0.9479 0.9421 

loss 0.0771 0.0439 

sensitivity 0.9407 0.9364 

specificity 0.9538 0.9468 

 
6 Conclusion and Future Work 

Regarding the results displayed above, VGG seems to be the best choice for this 
classification purpose. It yields an accuracy of 95% and sensitivity of 96%. Much future work 
could be done to this project. We may add some noise to see if changing the weights of color 
channel can improve the classification performance. In addition, we could explore other 
physical layers such as feature extraction or illumination phase. Since we have a great dataset 
with bounded box for bacilli locations, we can also train neural networks to perform cell 
identification. In conclusion, deep neural network is a promising way to classify microscopic 
sputum with TB bacilli, but much work is needed in the future to turn it into an effective and 
accurate diagnostic tools for tuberculosis.  
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APPENDIX A. Addition Results from Variations on Networks 

Figure A.1 Classification result with VGG with ‘relu’ activation of original images 
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 Figure A.2 Classification result with untrained weights of colors 
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