deep imaging

Lecture 9: Ingredients for a
convolutional neural network

Machine Learning and Imaging

BME 548L
Roarke Horstmeyer

Note: Much material borrowed from Stanford CS231n, Lectures 4 - 10

deep imaging

Today we’ll get into neural networks...

Weighted “synapse”

v

Input “axon” Output (axon)

Neuron
cell body

v

[
»

Activation function f()
(Non-linearity)

é\

Today we’ll get into neural networks... deep imaging

Weighted “synapse”

Wo
Input X, WoXo
Input “axon” Output (axon) |
Neuron ISlngle ”n(ejurotn”f:
W1X cell body v Inner proauct o
Input x; i ‘ f(Z wix; + b)‘ inputs x with learned
@— 2 WX+ Db

weights w & non-

Activation function f() linearity afterwards

(Non-linearity)

Input X»
WoXo

« Multiple weighted inputs: x -> y = w'x is “dendrites into cell body”
* Non-linearity f () after sum = “neuron’s activation function” (loose interp.)

¥
i | W
deep imaging

Today we’ll get into neural networks...

X W, W,

Output layer

Input layer
Hidden layer

* For multiple cells (units), use matrix W to connect inputs to outputs
 These cascade in layers

Today we’ll get into neural networks...

X W, W,

Output layer

Input layer
Hidden layer

* For multiple cells (units), use matrix W to connect inputs to outputs

 These cascade in layers

Y1

Y2

[IE=

deep imaging

Today we’ll get into neural networks...

[IE=

deep imaging

X W, W,
y y W, W, X
Y1 NL W11 | Wqo | W13 [W1y NL- Wip | Woqp | Woq [X1
V5 Wsq | Woo | Wog | Woy Wio | Woo | Woo X5
Wig | Wag | Wa3
X3
Wiy | W w
Output layer i I
Input layer
Hidden layer

* For multiple cells (units), use matrix W to connect inputs to outputs
 These cascade in layers

[IE=

Neural networks = cascaded set of matrix multiplies and non-linearities desp imaging
2-layer network: 3-layer network:
X W, W, X W W W

Output layer

Input layer Input layer

Hidden layer 1 Hidden layer 2

Hidden layer

or 3-layer Neural Network

f = W3 max(0, Wo max (0, Wix))

[IE=

Our very basic convolutional neural network deep imaging
Output
ya Model /EX [x1 ’y1] Ex. [XK’yK]\
Training error il r ~ BER]
Training
Lin(y, f(W,x)) = —) y* = f(W,x) K== Data
cross_entropy(y, f(W,x)) - _ Y, u R i Y.
4)
This is a SN[| %
3-layer Lin = max W; max W, max W,
Neural |
Network!
y* L]
- _/

Forward pass: from x; and current W’s, find L,

Insight: Do we really need to mix every image pixel with every other image pixel to start? I[%

deep imaging

Machine Learning and Imaging — Roarke Horstmeyer (2021)

Insight: Do we really need to mix every image pixel with every other image pixel to start?][%

deep imaging

We probably don’t need to mix these two pixels to figure out that this is a cat

Machine Learning and Imaging — Roarke Horstmeyer (2021)

Insight: Do we really need to mix every image pixel with every other image pixel to start? —»§

deep imaging

But understanding the stripes in these 3
pixels right near each other is going to be
pretty helpful...

[IE=

deep imaging

X = cat image

Eye pixel is here

Simultaneously having values in
these two rows means the eye and
the background are “mixing”

A

Background pixel is here

Machine Learning and Imaging — Roarke Horstmeyer (2021)

[IE=

deep imaging

X = cat image

A A

3 fur pixels

A

Simultaneously having values in
these three rows mixes the fur
pixels

Machine Learning and Imaging — Roarke Horstmeyer (2021)

—v >
deep imaging

Banded W X = cat image

This type of matrix can dramatically reduce
the number of weights that are used while still
allowing local regions to mix:

Full matrix: O(n2)

Banded matrix: k-O(n)

—v >
deep imaging

S Banded W X = cat image

Image interpretation

This type of matrix can dramatically reduce
the number of weights that are used while still
allowing local regions to mix:

Full matrix: O(n?) -

Mix all the pixels in the
red box, with associated
weights, to form this entry
of S

Banded matrix: k-O(n)

Simplification #2: Have each band be the same weights deep imaging

S Banded Toeplitz W X = cat image
W,

This type of matrix can dramatically reduce
the number of weights that are used while still
allowing local regions to mix:

Full matrix: O(n2)
Banded matrix: k-O(n)
Banded Toeplitz matrix: k

This is the definition of a convolution

[IE=

Our very basic convolutional neural network deep imaging
Output
v Model (Ex. Doyl EX. Dy
Training error 7 - ~ uin min
Training
Lin(y, fW,x)) = |¢== | y* = (W) K= Data
cross_entropy(y, f(W,x)) - _ y, - a)
(AT x)
. . |
Thisis a L W
3-layer in = max Y3
Neural |
Network! N |
N y

Forward pass: from x, and current W’s, find L,

Our very basic convolutional neural network deep imaging

O
U;I?_Ut Model /EX- [x1,y41] EX. [XK,yK]\
Training error 7 - ~ uin min
Training
Lin(Y1 f(W!X)) = <: <: y* = f(W,X) <:: cee Data
cross_entro , f(W,x - v, a : a)
py(y, f(W,x)) AL/dW ; N Y
1 N
_ —y;max(0,Wzmax(0,Wamax(0,Wix;)))
L(w)_N;In(1+e y ;)

W, and W, are banded Toeplitz matrices, W is a full matrix

3-layer network

deep imaging

Weights “savings” via convolution

N
1
L(w) Z ln(l + e—yimaX(O,ngax(O,Wgmax(O,Wlmi))))

1=1

« Having “fully connected” weight matrices can produce quite a lot of weights...

CIFAR10: 32x32 images = 1024 pixels
W1 =1024x512

W2 =512x12

W3:12x12 =144

Total number of weights: 530,152

« Convolution (ballpark) = ?

[IE=

Our very basic convolutional neural network deep imaging
Output
v Model CTERE
Training error il r ~ BER]
Training
Lin(y, f(W,x)) = —) y* = f(W,x) K== Data
cross_entropy(y, f(W,x)) - _ y, -) a :)
4 /N T] X A
I—in = max| W;j; max W, max
W,
* L
7 y,

Forward pass: from x; and current W’s, find L,

[IE=

Our very basic convolutional neural network deep imaging
Output
y* Model (Ex. [yl Ex. [xeyd
Training error il r ~ BER]
Training
Lin(y, fW,x)) = |¢==) y* = f(W,x) K== Data
cross_entropy(y, f(W,x)) - _ Y, u i Y.
AN\ %
I—in = max, W;j; max W, max W
Given a new L;,, | '
want to update W'’s

to make L., smaller! y* -
in . \ /

Next class: Gradient descent via L, to update many W’s

Our very basic convolutional neural network

Training error

Lin(Y1 f(W,X)) —

cross_entropy(y, f(W,x)) N

Output
y* Model

— 4)
(T) y* = f(W,x) K==

G J

/ y* \
Y G CONY, CONY, /

RelLU RelLU, ReLU,

3-layer network for 2D images

[IE=

deep imaging

Training
Data

deep imaging

A standard CNN pipeline:

RELU RELU

=
=
N
4
s
it
(i
14

RELU RELU

CONV

LR A S

CONV

coiwl

— [T EEE% ,22

miniAlexNet, 2014

ResNet (2015)

—tT >

- - f -
Complex networks are just an extension of this... e
image image image deep imaging
i
output pod /2
AlexNet (2012)
[33conv,128 | [77conv,64,/2 | [7x7conv, 64,2 |
‘ ‘ i pool, /2 pool, /2 pool, /2
N size:56 M 3gconv, 256 | [36come | [3o |
) 3 5 \dense [33conv,256 | [33conv,64 | [3x3conv,64
5 - - = v {7
Lo i \ [33conv,256 | [33conv,64 | [3x3conv, 64
\13 \13 \13 L Y 52
\ - Y A ¥V] [3acomv256 | [3Gcomes | [3aconv, 64
2 vy |)1 Y 4 / ‘
[} I;— '._ 5 Sense’| [Gensdd - [3!3:0;“4,64] [a:v,sa
\\‘; 3 3 1 ‘}i-‘l-’-, . e cn'nv, 6 | [3x3conv, 64
- 192 : 192 " 128 Max = . output pool, /2 [33conv, 128,12 | [
Max Max pooling #04% e size:28 [3:3:,0:\/, 52| [3;3:0:»/, 28| [
pooling pooling v ¥
[33cony, 512 | [3x3conv, 128 | [
[3a3conv,512 | [33conv, 128 | [
- [33conv,512] [33conv,128 | [
ConvNet Configuration] [
A A-LRN B C D E -
11 weight | 11 weight | 13 weight | 16 weight | 16 weight | 19 weight =S | [
VG G (2 O 14) layers layers layers layers layers layers [3aconv,128 | [
input (224 x 224 RGB image) ety pool, /2 [cantzss,/z] [
conv3-64 | conv3-64 | conv3-64 | conv3-64 | conv3-64 | conv3-64 v = .] =S .]S
LRN conv3-64 | conv3-64 | conv3-64 | conv3-64 v v e
maxpool [3a ca;v, 512 | [3a ca;v, 256 | [3a cc;v, 256 |
conv3-128 | conv3-128 | conv3-128 | conv3-128 | conv3-128 | conv3-128 [[3@convsz] [33conv256 | [33conv256 |
conv3-128 | conv3-128 | conv3-128 | conv3-128 T B B
maxpool 2 7
conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 T [o I
conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 [3aconv,256 | [36,256 |
conv1-256 | conv3-256 | conv3-256 T -
conv3-256
preppe| [T3a ca;v, 256 | [T3a cc;v, 256 |
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 [T CD J [eacom2s6]
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 [33256 | [33conv,256 |
convl-512 | conv3-512 | conv3-512 e] e
conv3-512 v v e
‘maxpool iy pool, /2 [33cony,512,72 | [B8cowsnz | 7,
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 [m:v, 2| [m:v, su | . Y
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | = SHI
convl-512 | conv3-512 | conv3-512 L 2 L 2
conv3-512 [33conv,512 | [33conv,512 |
maxpool [33conv,512 | [3a con, 512]
FC-4096 [33conv,512 | [3aconv,s12 |
4% Oipit fc 4096] I
utp < avg poo avg pool
FC-1000 size: 1 : i fs
soft-max [fc 4096 | [fc 1000] [fc 1000 |

Comparing complexity...

[E=

ip imaging

Inception-v4
80 1 80 1 : : 5
Inception-v3 ‘ ResNet-152
ResNet—SO‘ ; ' VGG-16 VGG-19
- 75 4 ResNet-101 |
° ResNet-34 :
2 70 E 704 ResNet-18
3 N -)
© © GooglLeNet
o 3 ENet
® 65 S 65 1
— ~
1 3 ° BN-NIN 3
F 60 B m N " 60 1 5M 35M - 65M - -95M - 125M - -155M
BN-AlexNet
55 R 55 AlexNet
>0 N ok B A0 49 Ak O . V.2 B b 00 5 10 15 20 2;5 30 35 40
\! S\ A% A0 A 2k O Dl > N .
P~ *$\0*$ $$ \\\ V\§\e\'\‘66\l66 9*\6‘(,&6"&6 "\\\\QV‘\"\O(\ "'\0(\ Operations [G-Ops]
N\ O Q\e QL7 Q%05 ?\es\ ¢ \(\Ce*?

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

Figures copyright Alfredo Canziani, Adam Paszke, Eugenio Culurciello, 2017. Reproduced with permission.

From Stanford CS231n: http://cs231n.stanford.edu/

L basic_tensorflow_eager_example.ipynb
File Edit View

Break here + Code + Text
to give brief

Insert Runtime Tools Help

° fimport numpy as np

ir]tr()(jlj(:ti()r] import tensorflow as tf

tf.enable_eager_ execution()

—tT >

— O B

aging

if we're using tf version 1.14, then we need to c?ll this command; if using 2.0, then

to ColLab

[1 optimizer
x = tf.vVariable(2.0)

for i in range(10):
with tf.GradientTape() as tape:
define our very simple minimization problem:

loss

X **% 2

tf.train.GradientDescentOptimizer(learning rate=.2) # choose our optimizer and learning rate

compute and apply gradients:
gradient = tape.gradient(loss, X)

optimizer.apply gradients([(gradient, x)])

print out current iteration and loss value:

print(i, 'loss = + str(loss.numpy()),

loss
loss
loss
loss
loss
loss
loss
loss
loss
loss

WO WNhEHO

O OO OO OO O K b

.0 x = 1.2

.44 x = 0.72

.5184 x = 0.432

.186624 x = 0.2592

.06718464 x = 0.15552
.024186473 x = 0.093312
.008707129 x = 0.0559872
.0031345668 x = 0.03359232
.001128444 x = 0.020155393
.00040623985 x = 0.012093236

define a variable to optimize, with an initial value of

iterative optimization loop
gradient tape keeps track of the gradients

we're going to minimize x"2, which occurs at x=0

' + str(x.numpy()))

2

associated with all the operations

Important components of a CNN deep imaging

CNN Architecture Loss function & optimization
« CONV size, stride, pad, depth » Type of loss function
* RelLU & other nonlinearities * Regularization
« POOL methods » Gradient descent method
* Fully connected layers » Gradient descent step size

« # of layers, dimensions per layer

Other specifics: Pre-processing, initialization, dropout, batch normalization, batch size

Convolutions: size, stride and padding

I

Slide one
pixel at a
time

—

[IE=

deep imaging

e /X7 input image
« 3x3 filter

|

* 5x5 output

Convolutions: size, stride and padding

I

This is called a “stride 2” convolution

Slide two
pixels at a
time

—

[IE=

deep imaging

/X7 input image
3x3 filter

|

3x3 output!

[IE=

Convolutions: size, stride and padding deep imaging
F F
N N
| Output matrix width W:
F
Slide three W = (N-F)/stride + 1
pixels at a
N time? 7 Example right: N=7, F=3

—

When stride=1: W =5

When stride =2: W=3

When stride = 3: W = 2.3377?7

This is called a “stride 3” convolution § _
Need to ensure integers work out!

Convolutions: size, stride and padding deep imaging

Q: What if you really, really want to use a stride = 3 with N = 7 and F=37?

Convolutions: size, stride and padding deep imaging

N

0(0|0]|0|O Q: What if you really, really want to use a stride = 3 with N = 7 and F=37?

A: Use padding

E.g., padding with 1 pixel around boarder makes N=9

o | O[O | O] O

Padding: add zeros around edge of image

Convolutions: size, stride and padding deep imaging

N

0(0|0]|0|O Q: What if you really, really want to use a stride = 3 with N = 7 and F=37?

A: Use padding

E.g., padding with 1 pixel around boarder makes N=9

o | O[O | O] O

W = (N-F)/stride + 1

W=9-3)/3+1=4 *Padding enables integer output!

Padding: add zeros around edge of image

Convolution layer: learn multiple filters

64x64x3 image

Convolution filter: 5x5x 3

3

3 color channels

(R, G, B)

64

)

64

1 entry

Multiply and sum
all entries, slide
to next entry

Output = “activation map” channel

V.

[0

60

E—

0
o
—

deep imaging

E—

0
o
—

deep imaging

Convolution layer: learn multiple filters

Second channel of activation map
64x64x3 image

64 %

Repeat with a new ‘ 1 entry

60

convolution filter Multiply and sum
(5 x5 x 3) all entries, slide
64 tonextentry 14 60
3 1

3 color channels
(R, G, B)

- Using more than one convolutional filter, with unknown weights that we will
optimize for, creates more than one channel

Convolution layer: learn multiple filters

64x64x3 image

64

6 unique

convolution filters ‘ Multiply and sum
(5x5 x 3) all entries, slide
64 tonextentry

v

6 channels

I e

60

E—

0
o
—

deep imaging

Convolution layer: learn multiple filters

64x64x3 image

6 unique
convolution filters
(5x5x3)

64

I

64 CONYV,
RELU

e

5x5x3 filter

6 Channels

64

Multiply and sum
all entries, slide

64 tonextentry

v

CONYV,
RELU

—

5x5x6 filter
10 Channels

6 channels

I e

60

CONYV,
RELU

E—

0
o
—_

deep imaging

Convolution layer: learn multiple filters

64x64x3 image

6 unique
convolution filters
(5x5x 3)

64

I

64

Multiply and sum
all entries, slide

64 tonextentry

3
64 CONV, 60
RELU
5x5x3 filter
6 Channels
60

v

CONYV,
RELU

—

5x5x6 filter
10 Channels

6 channels

I e

60

CONYV,
RELU

E—

0
o
—_

deep imaging

Convolution layer: learn multiple filters

64x64x3 image

6 unique
convolution filters
(5x5x 3)

64

I

64

6 channels

60

Multiply and sum
all entries, slide

64 tonextentry

3
64 CONV, 60
RELU
5x5x3 filter
6 Channels
60

v

I e

CONV, 56
RELU

—

5x5x6 filter
10 Channels

56
10

CONYV,
RELU

E—

0
o
—_

deep imaging

Summarize multiple filters with stacked matrices H%é

deep imaging

X, = output image Banded Toeplitz W X; = Input image
e :
° e —
_ W,
0
0
W

Convolution layer example mapping

Examples time: / /

Input volume: 32x32x3
10 5x5x3 filters with stride 1, pad 2 i

deep imaging

<
<

Output volume size: ?

Convolution layer example mapping

Examples time:

Input volume: 32x32x3
10 5x5x3 filters with stride 1, pad 2

Output volume size: ?

A: (N-F)/stride + 1 = (32+4-5)/1 + 1 = 32x32 spatial extent

So, output is 32x32x10

A

deep imaging

Convolution layer example mapping

Examples time: / /

Input volume: 32x32x3
10 5x5x3 filters with stride 1, pad 2 _/

deep imaging

How many weights make up this transformation?

Convolution layer example mapping

Examples time: / /

Input volume: 32x32x3
10 5x5x3 filters with stride 1, pad 2 _/

deep imaging

How many weights make up this transformation?

A: Each convolution filter: 5x5x3
1 offset parameter b per filter (untied biases)
Mapping to 10 output layers = 10 filters
Total: (5x5x3+1)*10 = 760

What do these convolution filters look like after training?

Preview

[Zeiler and Fergus 2013]

Low-level
features

Mid-level
features

E—

0
o
—_

deep imaging
Visualization of VGG-16 by Lane MclIntosh. VGG-16
architecture from [Simonyan and Zisserman 2014].

High-level Linearly
> —| separable —
features .
classifier
\

7

What do these convolution filters look like after training? 4,%

deep imaging
Preview [Zeiler and Fergus 2013 o e e 0041
. . Linearl
Low-level Mid-level High-level Y
— — —| separable —
features features features .
classifier

W

VGG-16 Convi _1

What do these convolution filters look like after training? 4,%

deep imaging

Retinal ganglion cell LGN and V1

receptive fields simple cells Complex cells:
Response to light

orientation and movement

Hypercomplex cells:
response to movement
with an end point

\\

No response Response
(end point)

 "Wavey” or wavelet like features are common in first layer
« Match how neurons within our eye map image data to our brain in an effective manner

[LE =

NEJESOASTISRSRESRS

example 5x5 filters
(32 total)

GINEESONIITAANR

ne filter =>
one activation map

-

)
0

i
Y

Activations:

“Activation” map means the
resulting image generated after
convolution with each filter

. ‘ . . Figure copyright Andrej Karpathy.

Convolution layer: learn multiple filters

64x64x3 image

6 unique
convolution filters
(5x5x 3)

64

I

64

6 channels

60

Multiply and sum
all entries, slide

64 tonextentry

3
64 CONV, 60
RELU
5x5x3 filter
6 Channels
60

v

I e

CONV, 56
RELU

—

5x5x6 filter
10 Channels

56
10

CONYV,
RELU

E—

0
o
—_

deep imaging

Important components of a CNN deep imaging

CNN Architecture Loss function & optimization
« CONV size, stride, pad, depth » Type of loss function
* RelLU & other nonlinearities * Regularization
 POOL methods » Gradient descent method
« # of layers, dimensions per layer » Gradient descent step size

* Fully connected layers

Other specifics: Pre-processing, initialization, dropout, batch normalization, batch size

Non-linear “activation” functions

Sigmoid

o(z) = —

l4+e—7
tanh
tanh(x)

RelLU
max (0, x)

10

[IE=

deep imaging

10

Leaky RelLU
max (0.1, x)

Maxout
max(wi z + by, wa T + by)

10

ELU

T x>0
ae®—1) z<0 -a—A 10

-2

From Stanford CS231

—A =

0

o
—

Non-linear “activation” functions deep imaging
o) =1/(1+e7%)

- Squashes numbers to range [0,1]

- Historically popular since they
have nice interpretation as a
saturating “firing rate” of a neuron

a)
\vJ

-10 10

Sigmoid

From Stanford CS231

Non-linear “activation” functions

—J10

a)
\vJ

Sigmoid

10

[IE=

deep imaging

olx)=1/(1+e%)

- Squashes numbers to range [0,1]

- Historically popular since they
have nice interpretation as a
saturating “firing rate” of a neuron

3 problems:

1. Saturated neurons “kill” the
gradients

2. Sigmoid outputs are not
zero-centered

3. exp() is a bit compute expensive

From Stanford CS231

[IE=

Non-linear “activation” functions deep imaging

- Squashes numbers to range [-1,1]
- zero centered (nice)
- still kills gradients when saturated :(

tanh(x)

From Stanford CS231

Non-linear “activation” functions deep imaging
Computes f(x) = max(0,x)

- Does not saturate (in +region)

- Very computationally efficient

- Converges much faster than
sigmoid/tanh in practice (e.g. 6x)

- Actually more biologically plausible
than sigmoid

10

RelLU - Not zero-centered output
(Rectified Linear Unit) - An annoyance:

hint: what is the gradient when x < 0?

From Stanford CS231

Non-linear “activation” functions

active ReLU
DATA CLOUD
=> people like to initialize
dead RelLU

RelLU neurons with slightly
positive biases (e.g. 0.01)

will never activate
=> never update

[IE=

deep imaging

From Stanford CS231

Important components of a CNN deep imaging

CNN Architecture Loss function & optimization
« CONV size, stride, pad, depth » Type of loss function
* RelLU & other nonlinearities * Regularization
« POOL methods » Gradient descent method
« # of layers, dimensions per layer « SGD batch and step size

* Fully connected layers

Other specifics: Pre-processing, initialization, dropout, batch normalization, augmentation

E—

0
Fo
—

deep imaging

Pooling operation — reduce the size of data cubes along space

224x224x64
112x112x64

pool

—

- 112
224 downsampling !

112
224

Pooling operation — reduce the size of data cubes along space

Common option #1:

224x224x64
112x112x64 MAX POOLING
pool
Single depth slice
X“ 111121 4
max pool with 2x2 filters
l I 516 |]7|8 and stride 2
32110]
224 ’ downsampli =112
- pling - 112|314
224 .
y

deep imaging

Related options: Sum pooling, mean pooling

Pooling operation — reduce the size of data cubes along space

deep imaging

Common option #2: just use bigger strides

224x224x64

112x112x64 STRIDE =2

pool

7

1 | 7
> o 112
224 downsampling

112
224 C1

/X7 input -> 3x3 output

Important components of a CNN

Let’s
view
some
code!

Other specifics: Pre-processing, initialization, dropout, batch normalization, augmentation

CNN Architecture

CONV size, stride, pad, depth
RelLU & other nonlinearities

POOL methods

of layers, dimensions per layer

Fully connected layers

Loss function & optimization

» Type of loss function
* Regularization
* Gradient descent method

« SGD batch and step size

deep imaging

Important components of a CNN deep imaging

CNN Architecture Loss function & optimization
« CONV size, stride, pad, depth » Type of loss function
* RelLU & other nonlinearities * Regularization
« POOL methods » Gradient descent method
« # of layers, dimensions per layer « SGD batch and step size

* Fully connected layers

Other specifics: Pre-processing, initialization, dropout, batch normalization, augmentation

Common loss functions used for CNN optimization deep imaging

Cross-entropy loss function
« Softmax cross-entropy — use with single-entry labels
« Weighted cross-entropy — use to bias towards true pos./false neg.
« Sigmoid cross-entropy
« KL Divergence

Pseudo-Huber loss function

L1 loss loss function

MSE (Euclidean error, L2 loss function)

Mixtures of the above functions

Important components of a CNN deep imaging

CNN Architecture Loss function & optimization
« CONV size, stride, pad, depth » Type of loss function
* RelLU & other nonlinearities * Regularization
« POOL methods » Gradient descent method
« # of layers, dimensions per layer « SGD batch and step size

* Fully connected layers

Other specifics: Pre-processing, initialization, dropout, batch normalization, augmentation

E—

0
o
—

Regularization - the basics deep imaging

.= regularization strength
(hyperparameter)

N
1
L(W) = Z;Lz'(f(l‘i, W), i)
1=
N J R{_/
Y

Data loss: Model predictions Regularization: Prevent the model
should match training data from doing too well on training data

Simple examples

L2 reqularization: R(W) = Y-, >, W2,

L1 regularization: R(W) =Y, >, Wiy

Elastic net (L1 + L2): R(W) = >, >, BW?, + Wil

— P
deep imaging

Regularization prefers less complex models & help avoids overfitting

L2 Regularization

T = :1, 1,1,1] RW) =3, >, W2
wi = [1,0,0,0]
f f
wy = [0.25,0.25,0.25,0.25] Y ?

{ LT ¢ S
wlaz—'w2:c—1

Regularization pushes against fitting the data
too well so we don't fit noise in the data

A two-layer neural network with regularization:

L(w) =

N
1
Ry 2 (1 e v Wames0) X[Wall + [Wala)

Q: How do we determine the best weights W, and W, to use from this model?

—v >

deep imaging

A two-layer neural network with regularization: deep imaging

N
L(w) = Z (1 + emviWemax(Waza0)) 4 X(|[Whl[2 + |[Wa |2)

1
N

Q: How do we determine the best weights W, and W, to use from this model?

A: Gradient descent!

Q: How does Tensorflow figure out the gradients for dL/dW, and dL/dW,?

—A =
S
—=>

A two-layer neural network with regularization: deep imaging
1 N
_ y; Womax(Wizx;,0)
L(w) = + §_: n(1 4 e~ ¥ Wemax(Waeo0))y L (||| + |[Wa 2)

Q: How do we determine the best weights W, and W, to use from this model?

A: Gradient descent!

Q: How does Tensorflow figure out the gradients for dL/dW, and dL/dW,?

A: Chain rule! (next lectures)

Important components of a CNN deep imaging

CNN Architecture Loss function & optimization
« CONV size, stride, pad, depth » Type of loss function
* RelLU & other nonlinearities * Regularization
+ POOL methods « Gradient descent method
« # of layers, dimensions per layer « SGD batch and step size
* Fully connected layers Very quick outline — details next class!

Other specifics: Pre-processing, initialization, dropout, batch normalization, augmentation

A variety of gradient descent solvers available in Tensorflow deep imaging

« Stochastic Gradient Descent (bread-and-butter, when in doubt...)

« Adam Optimizer (update learning rates with mean and variance)

* Nesterov/ Momentum (add a velocity term)

« AdaGrad (Adaptive Subgradients, change learning rates)

* Proximal AdaGrad (Proximal = solve second problem to stay close)
« Ftrl Proximal (Follow-the-regularized-leader)

« AdabDelta (Adaptive learning rate)

Implementation detail #1 — method for gradient descent deep imaging

while
weights grad = evaluate gradient(loss fun, data, weights)
weights += - step size * weights grad

Stochastic Gradient Descent (SGD)

| N Full sum expensive
L(W) = N Z Li(xi,y;, W) + AR(W) when N is large!
i=1

Approximate sum

N
1 | -
VwL(W) =~ Y " VwLi(zi,y:, W) + AVw R(W) gig‘rg ;e':'"'batch of

o 32 /64 / 128 common

Implementation detail #1 — method for gradient descent deep imaging

while
data batch = sample training data(data, 256)
weights grad = evaluate gradient(loss fun, data batch, weights)
weights += - step size * weights grad

Stochastic Gradient Descent (SGD)

| N Full sum expensive
L(W) = N Z Li(xi,y;, W) + AR(W) when N is large!
i=1

Approximate sum

N
1 | -
VwL(W) =~ Y " VwLi(zi,y:, W) + AVw R(W) gig‘rg ;e':'"'batch of

o 32 /64 / 128 common

A variety of gradient descent solvers available in Tensorflow deep imaging

« Stochastic Gradient Descent (bread-and-butter, when in doubt...)

« Adam Optimizer (update learning rates with mean and variance)

* Nesterov/ Momentum (add a velocity term)

« AdaGrad (Adaptive Subgradients, change learning rates)

* Proximal AdaGrad (Proximal = solve second problem to stay close)
» Ftrl Proximal (Follow-the-regularized-leader)

« AdabDelta (Adaptive learning rate)

Next lecture: how Tensorflow solves gradient descent for you

Computational Graphs and the Chain Rule!

f=

Wz

v

I

D iy, max(0,s; — sy, + 1)

\ s (scores)
S 0=@—¢
R

R(W)

L

[IE=

deep imaging

