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deep imaging

Announcements

* HW1 due TODAY, 2/11 at 11:59pm

* Submit via Canvas
* Lab workbooks due today
* HW2 will be posted soon, will be due ~“two weeks after
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The linear classification model — what’s not to like? deepimaging
Output
uyecu Model /EX- [x1,y4] EX. [XK,YK]\
Training error o - N o i
Training
Lin = || Wx - y| = | y*=Wx | (== S Data
B y,
dL/dW 1 N = /

. Can only separate data with lines (hyper-planes)...

We only allowed for binary labels (y = +/- 1)

Error function L;, inherently makes assumptions
about statistical distribution of data




Cost functions matter: a simple example

What if you’re a CIA agent?

L., = 100,000 ReLU[f(x, W)-y] + ReLU[y-f(x, W)]

BIG penalty Don’t mind about
for intruder annoyance...

https://www.cnet.com/how-to/apple-face-id-everything-you-need-to-know/

-1
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+1 =You

f(x, W)——

-1 = Bad guy

£(x, W)

+1

-1

No Error

False reject

False accept

N

No Error

Letting an intruder in

It’s you, but you
can’t getin...
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The linear classification model — what’s not to like?

Training error

Lin(y1 f(W,X))

Output
y*

Model / E_x._[x1,y1] E_X-_[XK,YK]\
y* = f(W,x)
j: ] ces |
(W) =Wx

Mo,
50
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Training
Data

1. Can only separate data with lines (hyper-planes)...

2. We only allowed for binary labels (y = +/- 1)

3. Error function L;, inherently makes assumptions

about statistical distribution of data



Deriving cost function for logistic classification for probabilistic outputs

Similar to the linear classification case, the likelihood of observing N independent outputs is given by,

N
P(y1,Y2..- YN | X435 Xpy 0 Xy) = ﬂ P(yn | Xp)

n=1

N
=TT 6(y, w'x,)
n=1

The Logistic Function 6

0(x) =

ex
1+ex

This is the probability of the labels, given the data. We’d like to maximize this probability!

Also called
Sigmoid
function

*Like the linear regression case, but now the probability of classes given the data is not Gaussian

distributed, but instead follows the sigmoid curve (is bound to [0,1], which is more realistic)

N

Maximize P(Y1,Yo..- YN | X15 Xo5 -.Xn) = [] 8y, WTX,)

n=1

deep imaging



Deriving cost function for logistic classification for probabilistic outputs

deep imaging
N
Maximize P(y1,Y2... Yn | X1, X2, o.Xn) = [T 8(y, W'X,)

n=1

N
1
Minimize N In (H 0(ynw x))

n=1
1 1 1

e — In Use relationship ~ 0(a) =

Minimize N nz_:l (Q(yanx)) 14+ ea
1 & N
. T

Minimize  Lin(W) = ~ Zln(l—l—e YW X) Lin(w) = Z n— wX)

Cross entropy error for logistic classification Mean-square error for linear classification

Typically requires iterative solution to minimize Closed form solution available



The linear classification model — what’s not to like?

Training error

L(y, (W) = |

cross_entropy(y, f(W,x))

Output
y*

Model
~N
y* = Wx
J

Probabilistic mapping to y

%%,
_>O/Q

deep imaging

Training
Data



The linear classification model — what’s not to like?

Output
y*

Training error

Lin(y1 f(W'X)) - <: <:

cross_entropy(y, f(W,x))

Model / E_x._[x1,y1] E_X-_[XK,YK]\
)
y* = Wx <: coe
T

Probabilistic mapping to y

%%,
| oo

deep imaging

Training
Data

1. Can only separate data with lines (hyper-planes)...

2. We only allowed for binary labels (y = +/- 1)

3. Error function L;, inherently makes assumptions

about statistical distribution of data
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Learned f: not flexible

Machine Learning and Imaging — Roarke Horstmeyer (2026)
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Learned f: not flexible

f X
e |—|

Can we add flexibility by multiplying with another weight matrix?

- fi=Wiz+ b

I
g

Jo = Wajf1 + b2

X

fz = Wg(Wl.’E + bl) + b2 |
1! /
fa=Wxz+b Unfortunately not...

Machine Learning and Imaging — Roarke Horstmeyer (2026)



f=W1:L'

Learned f: not flexible

Can we add flexibility by multiplying with another weight matrix?

- fi=Wiz+ b

Jo = Wajf1 + b2

f X

k=

deep imaging

X

Machine Learning and Imaging — Roarke Horstmeyer (2026)



f=W1:L'

Learned f: not flexible

X
‘e o . Training data Add a non-linearity!
y o o o° °
[ )
S o f= Wzmax(Wla:, 0)
[ )
’ ° ° Learned f: a bit flexible
o o

k=

deep imaging

f X

X
Wz .NL.-|

Machine Learning and Imaging — Roarke Horstmeyer (2026)
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Learned f: not flexible

f X
e |—|

e , lraining data

o o° ° f

X
o f = Womax(Wix,0)
°® . I = W2 o NL o
e o Learned f: a bit flexible
™Y {

f = Wsmax(0, Womax(Wiz,0))

Learned f: more flexible

J We can keep adding

Does it generalize??? these “layers”...

Machine Learning and Imaging — Roarke Horstmeyer (2026)
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Getting us to Convolutional Neural Networks eop imasing

After, apply non-linearity and sub-sampling

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5
6@28x28

S2: f. maps C5: layer .
6@14x14 120 O Ferlayer OUTPUT

INPUT
32x32

Original Image published in [LeCun et al., 1998]

| | Full conr#ection ‘ Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection
Each matrix W is a convolution matrix  Repeat a few times At the end, use a full W for a

final matrix multiplication



Getting us to Convolutional Neural Networks

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5
INPUT
6@28x28
S2: f. maps

32x32
6@14x14

E—

E—

>0

deep imaging

| Full conrl\ection ‘ Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection
7x7 conv
input g4 filters 3x3 conv 3x3
: 33 3x3conv 33 m 3%3 conv 0 T 3x3conv  3x3conv
ad - sﬁ ﬁf,‘;’,';’ s TR . ﬁﬁg:\: 128 Gfors 128 filters Norm 128 filters 128 filters Ngrm
Relu Norm drop Relu Norm d Norm Norm d
I n p ra Ct| ce th | S POOI m sat out Sum ReLu rop S“’“ ReLu dmp S"'“ ReLu ol =i
1)

many times: \/ \/ v \,/

Norm
3x3 conv 3x3 conv 3x3conv  3x3 conv 3x3 conv %3 conv 3x3 conv 3x3 conv FC (84) Softmax
256 fiters 256 fiers N°"" e ﬁ"eﬁ* 256 filters 223512 f'"eff-N 512fiters o™ 512ﬁ|teril 512fiters oL
orm orm orm — orm drop
Relu mdm" Sum Relu drop Sum RelLu drop Sum Relu {\D Pool

B \\\\\\\_____///2’ \\\\\____ﬂ,,,//’ ‘\\\\\ﬁ___#,,,//’

Original Image published in [LeCun et al.,

1998]
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Aside #1 before convolutional neural network details

Q: Can we try to avoid making these learning models too complicated?

Learned f: more flexible

Does it generalize???




deep imaging

Aside #1 before convolutional neural network details

Q: Can we try to avoid making these learning models too complicated?

Learned f: more flexible

Does it generalize???

A: Yes, by transforming the data coordinates before classification
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Image Features: Motivation
o y g ©
° e} o.
o o ®
® o Q. o f(X, y) = (r(X, y)s G(X, y)) ® ..
[ ] @ o ® > L J :
X o] ° ® PO r : :
e o . :
o o) . R
o
Cannot separate red After applying feature

and blue points with

transform, points can
linear classifier

be separated by linear
classifier

From Stanford CS231: http://cs231n.stanford.edu/



http://cs231n.stanford.edu/
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Example: Color Histogram

From Stanford CS231: http://cs231n.stanford.edu/



http://cs231n.stanford.edu/

%%,
| W=t

Example: Histogram of Oriented Gradients (HoOG)  «omeen

! ‘.*. .
s

s

Divide image into 8x8 pixel regions Example: 320x240 image gets divided

Within each region quantize edge into 40x30 bins; in each bin there are
direction into 9 bins 9 numbers so feature vector has

30*40*9 = 10,800 numbers

Lowe, “Object recognition from local scale-invariant features”, ICCV 1999
Dalal and Triggs, "Histograms of oriented gradients for human detection," CVPR 2005

From Stanford CS231: http://cs231n.stanford.edu/
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Example: Bag of Words

2

deep imaging

Step 1: Build codebook

Fei-Fei and Perona, “A bayesian hierarchical model for learning natural scene categories”, CVPR 2005

V.
4 Cluster patches to
Extract random - form “codebook”
patches (R of “visual words”
- .
~N
N
I:| ] D I:| DD = [ |:| |
bl 1] B
o
Jll:] ELDDI:IWL:] D D D D
d"E BE=ENE

From Stanford CS231: http://cs231n.stanford.edu/



http://cs231n.stanford.edu/

ﬂ%
Image features vs ConvNets “deopimasing
“Hand crafted”

. —_— e
Feature EXtraCtIOH 10 numbers giving
scores for classes
H[Iﬂﬂﬂﬂuﬂ-ﬂuuﬂnﬂuﬂunﬂ"”nﬂ"ﬂﬂcﬂﬂﬂuﬂ —————
training
(o [ — —
i e A A
» 10 numbers giving
scores for classes
training

From Stanford CS231: http://cs231n.stanford.edu/



http://cs231n.stanford.edu/

Image features vs ConvNets “deopimasing
“Hand crafted” :

Featu re EXtraCtIOH 10 numbers giving

scores for classes

B ——
training

» 10 numbers giving

scores for classes

training
History has now proven — bottom approach works better!
From Stanford CS231: http://cs231n.stanford.edu/



http://cs231n.stanford.edu/

Statistical Machine Learning in ~30 minutes

deep imaging

Two competing goals in machine learning:

1. Can we make sure the in-sample error L, (y, f(x,W)) is small enough
during network training?

« Appropriate cost function
« ‘“complex enough” model



Statistical Machine Learning in ~30 minutes

deep imaging

Two competing goals in machine learning:

1. Can we make sure the in-sample error L, (y, f(x,W)) is small enough
during network training?
« Appropriate cost function
« ‘“complex enough” model

2. Can we make sure that L (y, f(x,W)) is close enough to L, (y, f(x,W))
during network testing?

* Probabilistic analysis says yes!

* |L, — L,y bounded from above

« Bound grows with model capacity (i.e., complexity - bad)
« Bound shrinks with # of training examples (good)



Model overfitting versus underfitting — a thought exercise

deep imaging

Let’s fit these “training” data points:

X1

10t order Polynomial Fit



Model overfitting versus underfitting — a thought exercise

Let’s fit these “training” data points: And then here’s our testing dataset — good?
oO
y y o oy
(
X4 X1

10t order Polynomial Fit

deep imaging



Model overfitting versus underfitting — a thought exercise

deep imaging
Let’s fit these “training” data points: And then here’s our testing dataset — good?

Perfect! But lucky....

X4 X1

10t order Polynomial Fit



Model overfitting versus underfitting — a thought exercise

deep imaging

Let’s fit these “training” data points: What if our test dataset was this :

y y

+—>

Noisy, low
< complexity target

X4 X1

10t order Polynomial Fit
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Model overfitting versus underfitting — a thought exercise il

deep imaging

Let’s fit these “training” data points: What if our test dataset was this :

If our data was noisy and
the target followed a low-
complexity model, we'd be
better off with a second
order fit!

X4 X1
— 10t order Polynomial Fit

—— 2" order Polynomial Fit



Model overfitting versus underfitting — a thought exercise

Training data

X4

Model capacity: ability to fit a wide
range of functions

Error

deep imaging

If our data was noisy and
the target followed a low-
complexity model, we'd be
better off with a second

Test data order fit!

X1

Underfitting zone

Overfitting zone

— - Training error
Generalization error

Deep Learning, |. Goodfellow
et al,, Fig. 5.3

- —

Optimal Capacity

Capacity
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Model overfitting versus underfitting — a thought exercise JLE

deep imaging

If our data was noisy and
the target followed a low-
complexity model, we'd be
better off with a second

Training data T .

g est data order fit!
X4 X4

Model capacity: ability to fit a wide |l gerfitting zone| Overfitting zone " graiﬂinf error

range Of fun ctions — eneralization error

Control capacity through model’s

hypothesis space (set of functions
Deep Learning, |. Goodfellow
model can take) k e
\ I Generalization gap

Hard to know ahead of time! . e Bt
0 Optimal Capacity

Error

Capacity
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Low CapaCity Model deep imaging

Relatively
v Training error L,  nigh error

Expected Error

# of data points, J

Machine Learning and Imaging — Roarke Horstmeyer (2026)



Expected Error

Low Capacity Model

wermr Lout
Relatively

f Training error L, high error

# of data points, J

%%,
| oo

deep imaging



Expected Error

Low Capacity (complexity) Model

wermr Lout
Relatively

ﬁ Training error L, high error

# of data points, J

Expected Error

Mo,
50

—p

High Capacity (complexity) Model  iecpimaging

/Training error L,

# of data points, J

Relatively
low error



Expected Error

Low Capacity (complexity) Model

wermr Lout
Relatively

ﬁ Training error L, high error

# of data points, J

Expected Error

Mo,
50

—p

High Capacity (complexity) Model  iecpimaging

Test error L

/Training error L,

# of data points, J

But harder to get
test error down...

Relatively
low error



Low Capacity (complexity) Model

wermr Lout
Relatively

f Training error L, high error

Expected Error

# of data points, J

Take away concepts:

Expected Error

High Capacity (complexity) Model  iecpimaging

Test error L

/kTraining error L,

# of data points, J

« Can't ever really expect test error to be less than training error

« Complicated models tend to appear to “do better” during training, before trying test data

But harder to get
test error down...

Relatively
low error

 When the model gets complicated and you don’t have enough data, challenging to get test error down
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Model bias versus variance %ﬁo

deep imaging

“True” model  Bias = distance between

rue and learned model
Learned f

Hypothesis space

Learned f




Model bias versus variance

deep imaging

“True” model Bias = distance between
rue and learned model
O
9 Learned f
Hypothesis space O

Bias = (g(x) — f(x))?

Learned f Measures how far our learning model f is biased

away from target function g (for perfect training
X data classification)

Models that tend to be “a bit too simple”
are biased away from "true” model
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Model bias versus variance _»%SG

deep imaging

Variance

“True” model  Bias = distance between

rue and learned model
Learned f

Hypothesis space

More complicated datasets exhibit lots of
variance between ideal boundary for
training and testing



Model bias versus variance

“True” model  Bias = distance between

rue and learned model
Learned f

Hypothesis space

—
@)
=
L
©
)
-
O
()
o
X
L

Error vs. # data points

Variance Test error L

/ Bias Training error L,

# of data points, J

deep imaging

Variance

Test Error is sum of model
bias and variance!

Goal is to find a model f that
balances between these two
quantities for a given dataset



How to formally define capacity and complexity?

deep imaging

« Short answer: it's complicated...

« Related to something called the VC Dimension
« Can provide theoretical bounds on performance
* Dimensional bounds rather than scalar bounds...

| decided not to go into it, but please do take a look at the following
lecture material to learn more!

Learning From Data (Caltech, Prof. Y Abu-Mostafa)
https://www.youtube.com/watch?v=Dc0srOkdBVI#t=3m24s



Conclusions from statistical machine learning

deep imaging

- Conclusion: you want a model that is complex enough to capture variations within high-
dimensional space, but not too complex such that it overfits the data

- Want a model with a high capacity, but can still generalize to data outside training set
« More data -> less overfitting, complex target -> more overfitting

- For simple models, we can measure complexity via degrees of freedom, the VC bound
and so-on to help us nail down ideal models that can generalize well



Conclusions from statistical machine learning

deep imaging

- Conclusion: you want a model that is complex enough to capture variations within high-
dimensional space, but not too complex such that it overfits the data

Want a model with a high capacity, but can still generalize to data outside training set
« More data -> less overfitting, complex target -> more overfitting

For simple models, we can measure complexity via degrees of freedom, the VC bound
and so-on to help us nail down ideal models that can generalize well

For DL models: this will get too hard...here’s a few counter-intuitive properties:

1. Afixed DL architecture exhibits data-dependent complexities

* e.g., ‘good” DL networks achieve 0 training error on images with random labels, so
cannot generalize at all in this case, and are too complex

2. DL networks with more hidden units leads to better generalization (the main finding of the
last few years). So deeper models tend to be less complex, actually...

3. Complexity depends upon loss function and optimization method...



Important to remember: “No Free Lunch Theorem”

deep imaging

« “Averaged over all possible data-generating distributions, every classification algorithm has the
same error rate when classifying previously unobserved points.”

« The most sophisticated DL algorithm has same average performance (averaged over all possible
tasks) as the simplest.
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Important to remember: “No Free Lunch Theorem”

» “Averaged over all possible data-generating distributions, every classification algorithm has the
same error rate when classifying previously unobserved points.”

» The most sophisticated DL algorithm has same average performance (averaged over all possible
tasks) as the simplest.

» Must make assumptions about probability distributions of inputs we’ll encounter in real-world

Set of 20 “images”, random Gaussian distribution Face at different orientations =
manifold n-D space
EEEEEEEEREXXEYYIIINN
EREEEEEEFERNA]YIFITT
ERBEEEEEERENNYNIE3III
A o o e p A
B B B I Y
M- NN A4 4 of of sf-Shiinefe e Refheibpbe
I e e o o o

Deep Learning, |. Goodfellow et al., Fig. 5.12-13
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Important to remember: “No Free Lunch Theorem”

» “Averaged over all possible data-generating distributions, every classification algorithm has the
same error rate when classifying previously unobserved points.”

» The most sophisticated DL algorithm has same average performance (averaged over all possible
tasks) as the simplest.

» Must make assumptions about probability distributions of inputs we’ll encounter in real-world

CT reconstructions of every brain in the
1D Manifold in 2D space world = kD manfold in nD space?

2.5

2.0 |

Manifold
Hypothesis

{ &

1.5 |

1.0 |

0.5 |

0.0 |

—-0.5

| 1 | |

| |
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

-1.0

Deep Learning, |. Goodfellow et al., Fig. 5.11
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