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Announcements

• HW1 due TODAY, 2/11 at 11:59pm 
• Submit via Canvas

• Lab workbooks due today

• HW2 will be posted soon, will be due ~two weeks after
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Model
Output

y* Ex. [x1,y1] Ex. [xK,yK]

…
Training 

Data

Training error

dL/dW

The linear classification model – what’s not to like?

y* = Wx

x

y 1. Can only separate data with lines (hyper-planes)…

2. We only allowed for binary labels (y = +/- 1)

3. Error function Lin inherently makes assumptions 

about statistical distribution of data

+1

-1

+1

-1

Lin = || Wx - y||2
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x

f(x, W)

+1 = You

-1 = Bad guy

What if you’re a CIA agent? f(x, W)

y
+1

-1

+1 -1

No Error

No Error

It’s you, but you 
can’t get in…

Letting an intruder in

Lin = 100,000 ReLU[f(x, W)-y] + ReLU[y-f(x, W)] 

 
BIG penalty 
for intruder

Don’t mind about 
annoyance…

False reject

False accept

https://www.cnet.com/how-to/apple-face-id-everything-you-need-to-know/
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Model
Output

y* Ex. [x1,y1] Ex. [xK,yK]

…
Training 

Data

Training error

dL/dW

The linear classification model – what’s not to like?

Lin(y, f(W,x))
y* = f(W,x)

f(W,x)=Wx

x

y 1. Can only separate data with lines (hyper-planes)…

2. We only allowed for binary labels (y = +/- 1)

3. Error function Lin inherently makes assumptions 

about statistical distribution of data

+1

-1

+1

-1
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Deriving cost function for logistic classification for probabilistic outputs 

Similar to the linear classification case, the likelihood of observing N independent outputs is given by,

P(y1,y2... yN | x1, x2, ...xN)   = ∏ P(yn | xn)  
n=1

N

= ∏ θ(yn w
Txn) 

n=1

N

This is the probability of the labels, given the data. We’d like to maximize this probability!

*Like the linear regression case, but now the probability of classes given the data is not Gaussian 

distributed, but instead follows the sigmoid curve (is bound to [0,1], which is more realistic)

Maximize P(y1,y2... yN | x1, x2, ...xN)  = ∏ θ(yn w
Txn) 

n=1

N

The Logistic Function θ 

θ(x) =
ex

1+ex

Also called 
Sigmoid 
function
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Maximize P(y1,y2... yN | x1, x2, ...xN)  = ∏ θ(yn w
Txn) 

n=1

N

Deriving cost function for logistic classification for probabilistic outputs 

Minimize 

Minimize Use relationship

Minimize 

Cross entropy error for logistic classification Mean-square error for linear classification

Closed form solution availableTypically requires iterative solution to minimize
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Model
Output

y* Ex. [x1,y1] Ex. [xK,yK]

…
Training 

Data

Training error

dL/dW

The linear classification model – what’s not to like?

Lin(y, f(W,x)) = y* = Wx

x

y

cross_entropy(y, f(W,x))

Probabilistic mapping to y
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Model
Output

y* Ex. [x1,y1] Ex. [xK,yK]

…
Training 

Data

Training error

dL/dW

The linear classification model – what’s not to like?

Lin(y, f(W,x)) = y* = Wx

x

y 1. Can only separate data with lines (hyper-planes)…

2. We only allowed for binary labels (y = +/- 1)

3. Error function Lin inherently makes assumptions 

about statistical distribution of data

cross_entropy(y, f(W,x))

Probabilistic mapping to y
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x

y

Learned f: not flexible

W1

xf

=

Training data
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x

y

Learned f: not flexible

Can we add flexibility by multiplying with another weight matrix?

W1

xf

=

W1

xf

= W2

Unfortunately not…

Training data
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x

y

Learned f: not flexible

Can we add flexibility by multiplying with another weight matrix?

W1

xf

=

W1

xf

= W2

Training data
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x

y

Training data

x

y

Learned f: not flexible

W1

xf

=

Learned f: a bit flexible

Training data

W1

xf

= W2 • NL •

Add a non-linearity!
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x

y

Training data

x

y

Learned f: not flexible

W1

xf

=

Learned f: a bit flexible

Training data

W1

xf

= W2 • NL •

x

y

Learned f: more flexible

We can keep adding 

these “layers”…Does it generalize???
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Each matrix W is a convolution matrix 

Getting us to Convolutional Neural Networks

After, apply non-linearity and sub-sampling

Repeat a few times At the end, use a full W for a 
final matrix multiplication

Original Image published in [LeCun et al., 1998]
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In practice, this 

process is repeated 

many times:

Original Image published in [LeCun et al., 1998]
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x

y

Learned f: more flexible

Aside #1 before convolutional neural network details

Q: Can we try to avoid making these learning models too complicated? 

Does it generalize???
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x

y

Learned f: more flexible

Does it generalize???

Aside #1 before convolutional neural network details

Q: Can we try to avoid making these learning models too complicated? 

A: Yes, by transforming the data coordinates before classification
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From Stanford CS231: http://cs231n.stanford.edu/

http://cs231n.stanford.edu/
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From Stanford CS231: http://cs231n.stanford.edu/
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Machine Learning and Imaging – Roarke Horstmeyer (2026)

deep imaging

From Stanford CS231: http://cs231n.stanford.edu/

“Hand crafted”

http://cs231n.stanford.edu/
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From Stanford CS231: http://cs231n.stanford.edu/

History has now proven – bottom approach works better!

“Hand crafted”

http://cs231n.stanford.edu/
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Statistical Machine Learning in ~30 minutes

1. Can we make sure the in-sample error Lin(y, f(x,W)) is small enough 
during network training?

• Appropriate cost function

• “complex enough” model

Two competing goals in machine learning:
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2.   Can we make sure that Lout(y, f(x,W)) is close enough to Lin(y, f(x,W)) 
during network testing? 

• Probabilistic analysis says yes!

• |Lin – Lout| bounded from above
• Bound grows with model capacity (i.e., complexity - bad)

• Bound shrinks with # of training examples (good)

Statistical Machine Learning in ~30 minutes

Two competing goals in machine learning:

1. Can we make sure the in-sample error Lin(y, f(x,W)) is small enough 
during network training?

• Appropriate cost function

• “complex enough” model
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Model overfitting versus underfitting – a thought exercise

x1

y

Let’s fit these “training” data points: 

10th order Polynomial Fit
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Model overfitting versus underfitting – a thought exercise

x1

y

Let’s fit these “training” data points: 

x1

y

And then here’s our testing dataset – good?

10th order Polynomial Fit
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Model overfitting versus underfitting – a thought exercise

x1

y

Let’s fit these “training” data points: 

x1

y

And then here’s our testing dataset – good?

Perfect! But lucky….

10th order Polynomial Fit
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x1

y

Let’s fit these “training” data points: 

x1

y

What if our test dataset was this :

10th order Polynomial Fit

Noisy, low 
complexity target

Model overfitting versus underfitting – a thought exercise
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x1

y

Let’s fit these “training” data points: 

x1

y

10th order Polynomial Fit

2nd order Polynomial Fit

If our data was noisy and 
the target followed a low-
complexity model, we’d be 
better off with a second 
order fit! 

What if our test dataset was this :

Model overfitting versus underfitting – a thought exercise
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x1

y

x1

y
If our data was noisy and 
the target followed a low-
complexity model, we’d be 
better off with a second 
order fit! 

Model capacity: ability to fit a wide 

range of functions 

Training data Test data

Model overfitting versus underfitting – a thought exercise

Deep Learning, I. Goodfellow 
et al., Fig. 5.3
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x1

y

x1

y
If our data was noisy and 
the target followed a low-
complexity model, we’d be 
better off with a second 
order fit! 

Model capacity: ability to fit a wide 

range of functions 

Control capacity through model’s 

hypothesis space (set of functions 

model can take)

Hard to know ahead of time!

Training data Test data

Model overfitting versus underfitting – a thought exercise

Deep Learning, I. Goodfellow 
et al., Fig. 5.3
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# of data points, J

E
x
p

e
c
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d
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o
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Low Capacity Model

Relatively 

high errorTraining error Lin
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# of data points, J

E
x
p

e
c
te

d
 E

rr
o

r

Low Capacity Model

Relatively 

high errorTraining error Lin

Test error Lout
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# of data points, J

E
x
p

e
c
te

d
 E

rr
o

r
Relatively 

high errorTraining error Lin

Test error Lout

# of data points, J

E
x
p

e
c
te

d
 E

rr
o

r

Relatively 

low error
Training error Lin

Low Capacity (complexity) Model High Capacity (complexity) Model
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# of data points, J

E
x
p

e
c
te

d
 E

rr
o

r
Relatively 

high errorTraining error Lin

Test error Lout

# of data points, J

E
x
p

e
c
te

d
 E

rr
o

r

Relatively 

low error
Training error Lin

Test error Lout

But harder to get 

test error down…

Low Capacity (complexity) Model High Capacity (complexity) Model
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# of data points, J

E
x
p

e
c
te

d
 E

rr
o

r

Low Capacity (complexity) Model

Relatively 

high errorTraining error Lin

Test error Lout

# of data points, J

E
x
p

e
c
te

d
 E

rr
o

r

High Capacity (complexity) Model

Relatively 

low error
Training error Lin

Test error Lout

Take away concepts: 

• Can’t ever really expect test error to be less than training error

• Complicated models tend to appear to “do better” during training, before trying test data

• When the model gets complicated and you don’t have enough data, challenging to get test error down

But harder to get 

test error down…
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Model bias versus variance

True model

x

y

Learned f

g

bias

“True” model 

Hypothesis space

Learned f

Bias = distance between 

true and learned model
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Model bias versus variance

Models that tend to be “a bit too simple” 

are biased away from ”true” model 

True model

x

y

Learned f

Bias = (g(x) – f(x))2

Measures how far our learning model f is biased 

away from target function g (for perfect training 

data classification)

bias

g

“True” model 

Hypothesis space

Learned f

Bias = distance between 

true and learned model
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Model bias versus variance

More complicated datasets exhibit lots of 

variance between ideal boundary for 

training and testing

True model

x

y

Variance = Var[g(x)]

True model

x

y
Variance

g

“True” model 

Hypothesis space

Learned f

Bias = distance between 

true and learned model

f
Hypothesis space Variance
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Model bias versus variance

# of data points, J

E
x
p

e
c
te

d
 E

rr
o

r
Error vs. # data points

Training error Lin

Test error Lout

Bias

Variance

Test Error is sum of model 

bias and variance! 

Goal is to find a model f that 

balances between these two 

quantities for a given dataset

f
Hypothesis space Variance

g

“True” model 

Hypothesis space

Learned f

Bias = distance between 

true and learned model
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How to formally define capacity and complexity?

• Short answer: it’s complicated…

• Related to something called the VC Dimension

• Can provide theoretical bounds on performance

• Dimensional bounds rather than scalar bounds…

• I decided not to go into it, but please do take a look at the following 

lecture material to learn more!

Learning From Data (Caltech, Prof. Y Abu-Mostafa) 

https://www.youtube.com/watch?v=Dc0sr0kdBVI#t=3m24s
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- Conclusion: you want a model that is complex enough to capture variations within high-

dimensional space, but not too complex such that it overfits the data

- Want a model with a high capacity, but can still generalize to data outside training set

• More data -> less overfitting, complex target -> more overfitting

- For simple models, we can measure complexity via degrees of freedom, the VC bound 

and so-on to help us nail down ideal models that can generalize well

Conclusions from statistical machine learning
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- Conclusion: you want a model that is complex enough to capture variations within high-

dimensional space, but not too complex such that it overfits the data

- Want a model with a high capacity, but can still generalize to data outside training set

• More data -> less overfitting, complex target -> more overfitting

- For simple models, we can measure complexity via degrees of freedom, the VC bound 

and so-on to help us nail down ideal models that can generalize well

- For DL models: this will get too hard…here’s a few counter-intuitive properties:

1. A fixed DL architecture exhibits data-dependent complexities 

• e.g., “good” DL networks achieve 0 training error on images with random labels, so 

cannot generalize at all in this case, and are too complex

2. DL networks with more hidden units leads to better generalization (the main finding of the 

last few years). So deeper models tend to be less complex, actually…

3. Complexity depends upon loss function and optimization method…

Conclusions from statistical machine learning
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• “Averaged over all possible data-generating distributions, every classification algorithm has the 

same error rate when classifying previously unobserved points.” 

• The most sophisticated DL algorithm has same average performance (averaged over all possible 

tasks) as the simplest. 

Important to remember: “No Free Lunch Theorem”
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• “Averaged over all possible data-generating distributions, every classification algorithm has the 

same error rate when classifying previously unobserved points.” 

• The most sophisticated DL algorithm has same average performance (averaged over all possible 

tasks) as the simplest. 

• Must make assumptions about probability distributions of inputs we’ll encounter in real-world

Important to remember: “No Free Lunch Theorem”

Set of 20 “images”, random Gaussian distribution Face at different orientations = 

manifold n-D space

Deep Learning, I. Goodfellow et al., Fig. 5.12-13
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• “Averaged over all possible data-generating distributions, every classification algorithm has the 

same error rate when classifying previously unobserved points.” 

• The most sophisticated DL algorithm has same average performance (averaged over all possible 

tasks) as the simplest. 

• Must make assumptions about probability distributions of inputs we’ll encounter in real-world

Important to remember: “No Free Lunch Theorem”

CT reconstructions of every brain in the 

world = kD manfold in nD space?1D Manifold in 2D space

…

Manifold 

Hypothesis

Deep Learning, I. Goodfellow et al., Fig. 5.11
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