Lecture 8: Theoretical basics of machine learning

Machine Learning and Imaging

BME 590L
Roarke Horstmeyer
Last time: the linear classification model – what’s not to like?

1. Can only separate data with lines (hyper-planes)…
2. We only allowed for binary labels (y = +/- 1)
3. Error function L_{in} inherently makes assumptions about statistical distribution of data
Cost functions matter: a simple example

What if you’re a CIA agent?

\[L_{\text{in}} = 100,000 \text{ReLU}[f(x, W) - y] + \text{ReLU}[y - f(x, W)] \]

BIG penalty for intruder

Don’t mind about annoyance...

Letting an intruder in

Y

<table>
<thead>
<tr>
<th></th>
<th>+1</th>
<th>-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>No Error</td>
<td>False reject</td>
</tr>
<tr>
<td>-1</td>
<td>False accept</td>
<td>No Error</td>
</tr>
</tbody>
</table>

It’s you, but you can’t get in...

https://www.cnet.com/how-to/apple-face-id-everything-you-need-to-know/
Last time: the linear classification model – what’s not to like?

1. Can only separate data with lines (hyper-planes)...
2. We only allowed for binary labels ($y = +/- 1$)
3. Error function L_{in} inherently makes assumptions about statistical distribution of data
Deriving cost function for logistic classification for probabilistic outputs

Maximize \(P(y_1, y_2, \ldots, y_N \mid x_1, x_2, \ldots, x_N) = \prod_{n=1}^{N} \theta(y_n w^T x_n) \)

Minimize \(-\frac{1}{N} \ln \left(\prod_{n=1}^{N} \theta(y_n w^T x) \right) \)

Minimize \(\frac{1}{N} \sum_{n=1}^{N} \ln \left(\frac{1}{\theta(y_n w^T x)} \right) \)

Use relationship \(\theta(a) = \frac{1}{1 + e^{-a}} \)

Minimize \(L_{in}(w) = \frac{1}{N} \sum_{n=1}^{N} \ln(1 + e^{-y_n w^T x}) \)

Cross entropy error for logistic classification
Requires iterative solution to minimize

Mean-square error for linear classification
Closed form solution available

Minimize \(L_{in}(w) = \frac{1}{N} \sum_{n=1}^{N} (y_n - w^T x)^2 \)
The linear classification model – what’s not to like?

\[L_{\text{in}}(y, f(W,x)) = \text{cross_entropy}(y, f(W,x)) \]

\[y^* = Wx \]

Probabilistic mapping to y
The linear classification model – what’s not to like?

1. Can only separate data with lines (hyper-planes)...
2. We only allowed for binary labels ($y = +/- 1$)
3. Error function L_{in} inherently makes assumptions about statistical distribution of data
\[f = W_1 x \]

Learned \(f \): not flexible
Can we add flexibility by multiplying with another weight matrix?

\[
\begin{align*}
 f_1 &= W_1 x + b_1 \\
 f_2 &= W_2 f_1 + b_2 \\
 f_2 &= W_2 (W_1 x + b_1) + b_2 \\
 f_2 &= W' x + b'
\end{align*}
\]

Unfortunately not…
Learned f: not flexible

$$f = W_1 x$$

Learned f: a bit flexible

$$f = W_2 \max(W_1 x, 0)$$
Deep Imaging

Training data

\[f = W_1 x \]

Learned \(f \): not flexible

Training data

\[f = W_2 \max(W_1 x, 0) \]

Learned \(f \): a bit flexible

Training data

\[f = W_3 \max(0, W_2 \max(W_1 x, 0)) \]

Learned \(f \): more flexible

Does it generalize???

We can keep adding these “layers”…
Getting us to Convolutional Neural Networks

Each matrix W is a convolution matrix

After, apply non-linearity and sub-sampling

Repeat a few times

At the end, use a full W for a final matrix multiplication

Original Image published in [LeCun et al., 1998]
Getting us to Convolutional Neural Networks

In practice, this process is repeated many times:
Aside #1 before convolutional neural network details

Q: Can we try to avoid making these learning models too complicated?

A: Yes, by transforming the data coordinates before classification.
Image Features: Motivation

Cannot separate red and blue points with linear classifier

\[f(x, y) = (r(x, y), \theta(x, y)) \]

After applying feature transform, points can be separated by linear classifier

From Stanford CS231: http://cs231n.stanford.edu/
Example: Color Histogram

From Stanford CS231: http://cs231n.stanford.edu/
Example: Histogram of Oriented Gradients (HoG)

Divide image into 8x8 pixel regions
Within each region quantize edge
direction into 9 bins

Example: 320x240 image gets divided
into 40x30 bins; in each bin there are
9 numbers so feature vector has
30*40*9 = 10,800 numbers

From Stanford CS231: http://cs231n.stanford.edu/
Example: Bag of Words

Step 1: Build codebook
- Extract random patches
- Cluster patches to form "codebook" of "visual words"

Fei-Fei and Perona, "A bayesian hierarchical model for learning natural scene categories", CVPR 2005

Step 2: Encode images

From Stanford CS231: http://cs231n.stanford.edu/
Image features vs ConvNets

From Stanford CS231: http://cs231n.stanford.edu/
Hand-crafted versus learned features also applies to imaging

Normal camera

Classification acc.: $\text{NN} \rightarrow 80\%$

Pre-designed mask

Classification acc.: $\text{NN} \rightarrow 90\%$

ML-optimized mask

Classification acc.: $\text{NN} \rightarrow 95\%$
Statistical Machine Learning in 30 minutes

Two competing goals in machine learning:

1. Can we make sure the in-sample error $L_{in}(y, f(x,W))$ is small enough?
 - Appropriate cost function
 - “Complex enough” model
Statistical Machine Learning in 30 minutes

Two competing goals in machine learning:

1. Can we make sure the in-sample error $L_{in}(y, f(x,W))$ is small enough?
 - Appropriate cost function
 - “complex enough” model

2. Can we make sure that $L_{out}(y, f(x,W))$ is close enough to $L_{in}(y, f(x,W))$?
 - Probabilistic analysis says yes!
 - $|L_{in} - L_{out}|$ bounded from above
 - Bound grows with model capacity (bad)
 - Bound shrinks with # of training examples (good)
Model overfitting versus underfitting – a thought exercise

Let’s fit these “training” data points:

And then here’s our testing dataset – good?

Perfect! But lucky….

10^{th} order Polynomial Fit
Model overfitting versus underfitting – a thought exercise

Let’s fit these “training” data points:

What if our test dataset was this:

Noisy, low complexity target

10th order Polynomial Fit
Let’s fit these “training” data points:

What if our test dataset was this:

If our data was noisy and the target followed a low-complexity model, we’d be better off with a second order fit!
Model overfitting versus underfitting – a thought exercise

If our data was noisy and the target followed a low-complexity model, we’d be better off with a second order fit!

Model capacity: ability to fit a wide range of functions

Control capacity through model’s hypothesis space (set of functions model can take)

Hard to know ahead of time!

Deep Learning, I. Goodfellow et al., Fig. 5.3
Low Capacity Model

Expected Error

- Test error L_{out}
- Training error L_{in}

Relatively high error

of data points, J
Deep Imaging

Low Capacity Model

- Relatively high error
- Test error L_{out}
- Training error L_{in}

of data points, J

High Capacity Model

- Relatively low error
- Test error L_{out}
- Training error L_{in}

But harder to get test error down...

of data points, J
Take away concepts:

• Can’t ever really expect test error to be less than training error

• Complicated models tend to appear to “do better” during training, before trying test data

• When the model gets complicated and you don’t have enough data, challenging to get test error down
Model bias versus variance

“True” model

Bias = distance between true and learned model

Hypothesis space

True model

Learned f

Learned f

x

y
Model bias versus variance

Models that tend to be “a bit too simple” are biased away from “true” model.

Bias = distance between true and learned model

Bias = (g(x) - f(x))^2

Measures how far our learning model f is biased away from target function g (for perfect training data classification).
Model bias versus variance

Bias = distance between true and learned model

Variance = \text{Var}[g(x)]

More complicated datasets exhibit lots of variance between training and test set.
Model bias versus variance

Bias = distance between true and learned model

“True” model g

Hypothesis space

Learned f

Hypothesis space

Test Error is sum of model bias and variance!

Goal is to find a model f that balances between these two quantities for a given dataset

Error vs. # data points

Expected Error

Variance

Test error L_{out}

Bias

Training error L_{in}

of data points, J
How to formally define capacity and complexity?

• Short answer: it’s complicated…

• Related to something called the VC Dimension
 • Can provide theoretical bounds on performance
 • Dimensional bounds rather than scalar bounds…

• I decided not to go into it, but please let me know if you’d like me to!
Conclusions from statistical machine learning

- Conclusion: you want a model that is complex enough to capture variations within high-dimensional space, but not too complex such that it overfits the data

- Want a model with a high capacity, but can still generalize to data outside training set
 - More data -> less overfitting, complex target -> more overfitting

- For simple models, we can measure complexity via degrees of freedom, the VC bound and so-on to help us nail down ideal models that can generalize well
Conclusions from statistical machine learning

- Conclusion: you want a model that is complex enough to capture variations within high-dimensional space, but not too complex such that it overfits the data

- Want a model with a high capacity, but can still generalize to data outside training set
 • More data -> less overfitting, complex target -> more overfitting

- For simple models, we can measure complexity via degrees of freedom, the VC bound and so-on to help us nail down ideal models that can generalize well

- **For DL models:** this will get too hard...here's a few counter-intuitive properties:

 1. A fixed DL architecture exhibits data-dependent complexities
 • e.g., “good” DL networks achieve 0 training error on images with random labels, so cannot generalize at all in this case, and are too complex

 2. DL networks with more hidden units leads to *better* generalization (the main finding of the last few years). So deeper models tend to be less complex, actually...

 3. Complexity depends upon loss function and optimization method...
Important to remember: “No Free Lunch Theorem”

- “Averaged over all possible data-generating distributions, every classification algorithm has the same error rate when classifying previously unobserved points.”

- The most sophisticated DL algorithm has save average performance (averaged over all possible tasks) as the simplest.
Important to remember: “No Free Lunch Theorem”

• “Averaged over all possible data-generating distributions, every classification algorithm has the same error rate when classifying previously unobserved points.”

• The most sophisticated DL algorithm has save average performance (averaged over all possible tasks) as the simplest.

• Must make assumptions about probability distributions of inputs we’ll encounter in real-world

Set of 20 “images”, random Gaussian distribution

Face at different orientations = manifold n-D space

Deep Learning, I. Goodfellow et al., Fig. 5.12-13
Important to remember: “No Free Lunch Theorem”

- “Averaged over all possible data-generating distributions, every classification algorithm has the same error rate when classifying previously unobserved points.”

- The most sophisticated DL algorithm has save average performance (averaged over all possible tasks) as the simplest.

- Must make assumptions about probability distributions of inputs we’ll encounter in real-world

CT reconstructions of every brain in the world = kD manifold in nD space?

1D Manifold in 2D space