
Machine Learning and Imaging – Roarke Horstmeyer (2019)

deep imaging

• Linear black-box systems
• Convolutions in 1D and 2D
• Fourier transforms
• Convolution theorem
• Sampling theorem

Machine Learning and Imaging

Lecture 3: From continuous to 
discrete functions

BME 590L
Roarke Horstmeyer



Machine Learning and Imaging – Roarke Horstmeyer (2019)

deep imaging

Real World
Measurement device

Digitization 
Machine LearningML+Imaging pipeline introduction

γ -> e-



Machine Learning and Imaging – Roarke Horstmeyer (2019)

deep imaging

Continuous
complex fields

(last class)

Black box transformations
• Convolution
• Fourier Transform

(last class, this class)

ML+Imaging pipeline introduction

Real World
Measurement device

Digitization 
Machine Learning

γ -> e-



Machine Learning and Imaging – Roarke Horstmeyer (2019)

deep imaging

(last class) (last class, this class) (this class, 
next class)

ML+Imaging pipeline introduction

Real World
Measurement device

Digitization 
Machine Learning

γ -> e-



Machine Learning and Imaging – Roarke Horstmeyer (2019)

deep imaging
Linear systems and the black box

The “optical” black box system:

An optical black box system maps an input function Ui(xi,yi) to an output function Uo(xo,yo) via a transform T:

Uo(xo,yo) = T [ Ui(xi,yi) ]

Where T[ ] denotes the optical black box transformation 

Ui(xi, yi) Uo(xo, yo)

xi

yi

xo

yo

T
(physical 
or digital)
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Linear systems and the black box

Important properties of linear systems:

1. Homogeneity and additivity (superposition):

T [aU1(x,y) + bU2(x,y)] = aT [U1(x,y)] + bT [U2(x,y)] 

The “optical” black box system:

An optical black box system maps an input function Ui(xi,yi) to an output function Uo(xo,yo) via a transform T:

Uo(xo,yo) = T [ Ui(xi,yi) ]

Where T[ ] denotes the optical black box transformation 
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Linear systems and the black box

Important properties of linear systems:

1. Homogeneity and additivity (superposition):

T [aU1(x,y) + bU2(x,y)] = aT [U1(x,y)] + bT [U2(x,y)] 

2. Shift invariance: for shift distances dx and dy, we assume that, 

Uo(xo - dx,yo- dy) = T [Ui(xi-dx, yi-dy)]

The “optical” black box system:

An optical black box system maps an input function Ui(xi,yi) to an output function Uo(xo,yo) via a transform T:

Uo(xo,yo) = T [ Ui(xi,yi) ]

Where T[ ] denotes the optical black box transformation 
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Assuming 1) linearity and 2) shift-invariance, we can model any black box with 1 piece of information:

Black box transforms as a convolution

Input Dirac delta function into the black box:
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Assuming 1) linearity and 2) shift-invariance, we can model any black box with 1 piece of information:

Black box transforms as a convolution

∂(xi,yi)

LSI 
system

h (xo,yo)

A “perfect” 
point 
source

h(xo,yo) = T [ ∂(xi,yi) ]

Input Dirac delta function into the black box:
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Assuming 1) linearity and 2) shift-invariance, we can model any black box with 1 piece of information:

Black box transforms as a convolution

∂(xi-dx,yi-dy)

LSI 
system

h (xo-dy,yo-dy)

A “perfect” 
point 
source

h(xo-dy,yo-dy) = T [ ∂(xi-dx,yi-dy) ]

We know the system is shift invariant: 
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Assuming 1) linearity and 2) shift-invariance, we can model any black box with 1 piece of information:

Black box transforms as a convolution

∂(xi,yi)

LSI 
system

h (xo,yo)

A “perfect” 
point 
source

h(xo,yo) = T [ ∂(xi,yi) ]

Input Dirac delta function into the black box:

h(xo,yo) is the 
system’s point-
spread function

Point-spread function
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Knowing the point-spread function, it is direct to model any output of the black box, given an input:

h (xo, yo)

Output of linear 
system is a 
convolution of the 
input with its point-
spread function

Convolve = “smear and multiply”

Black box transforms as a convolution

Ui(xi, yi) Uo(xo, yo)
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1D convolution example

Steps to perform a convolution:

1. Flip one signal (the second one = the PSF)

2. Position PSF right before overlap

With incremental steps:

3. Step PSF over to position xo

4. Compute area of overlap of two functions

5. Convolution value at xo= area of overlap

6. Repeat 3-5 until signals do not overlap

https://en.wikipedia.org/wiki/Convolution
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U1(x,y) U0(x,y)

=

2D convolution example

• Direct extension of 1D concept to 2D functions 

• Note – it is effectively the same with discrete functions = matrices

x

y

x

y

x2

y2
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U1(x,y) U0(x,y)

=

2D convolution example

Blur caused by camera lens

x

y

x

y

x2

y2

High-res. real-world object Image at camera sensor plane
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Optical modification Ex. #1: The cubic phase mask

Standard camera 
Point-spread function

in focus
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Optical modification Ex. #1: The cubic phase mask

Standard camera: 
Limited depth-of-field

in focus defocused
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Optical modification Ex. #1: The cubic phase mask

Standard camera: 
Limited depth-of-field

in focus defocused defocused
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Optical modification Ex. #1: The cubic phase mask
Fourier plane

Blur proportional to Fourier 
transform of shape of aperture
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Optical modification Ex. #1: The cubic phase mask

Standard camera: 
Limited depth-of-field

in focus defocused defocused

Insert CPM

Cubic phase mask: 
extended depth-of-
field

Blurry at focal plane

CPM Phase profile

E. Dowski and W. T Cathey, "Extended depth of field through wave-front coding," Appl Opt. 1994  
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Optical modification Ex. #1: The cubic phase mask

Standard camera: 
Limited depth-of-field

in focus defocused defocused

Insert CPM

Cubic phase mask: 
extended depth-of-
field

Same blur!

CPM Phase profile

E. Dowski and W. T Cathey, "Extended depth of field through wave-front coding," Appl Opt. 1994  
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Optical modification Ex. #1: The cubic phase mask

Standard camera: 
Limited depth-of-field

in focus defocused defocused

Insert CPM

Cubic phase mask: 
extended depth-of-
field

Same blur!

CPM Phase profile

E. Dowski and W. T Cathey, "Extended depth of field through wave-front coding," Appl Opt. 1994  
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Optical modification Ex. #1: The cubic phase mask

Insert CPM

Uniformly 
Blurry image

Simple image 
deblurring
(deconv.)

All in-focus image

E. Dowski and W. T Cathey, "Extended depth of field through wave-front coding," Appl Opt. 1994  
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Optical modification Ex. #1: The cubic phase mask

Insert CPM

Uniformly 
Blurry image

Standard camera 
image

CPM image, 
raw

CPM image, 
deconvolved

Simple image 
deblurring
(deconv.)

All in-focus image

E. Dowski and W. T Cathey, "Extended depth of field through wave-front coding," Appl Opt. 1994  
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Optical modification Ex. #1b: Double helix mask

Insert DHM

Depth-varying 
image

Depth detection
in focus defocused defocused

Jia et	al.,	Nature	Photonics	2014

Moerner Lab
Nobel Prize in 
Chemistry, 2014 
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U(x)	*	h(x)	=	h(x)	*	U(x)

U(x)	*	[V(x)	*	W(x)]	=	[U(x)	*	V(x)]	*	W(x)]

U(x)	*	[h1(x)	*	h2(x)]	=	U(x)	*	h1(x)	+	U(x)*	h2(x)	
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U(x)	*	h(x)	=	h(x)	*	U(x)

U(x)	*	[V(x)	*	W(x)]	=	[U(x)	*	V(x)]	*	W(x)]
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U(x)	*	h(x)	=	h(x)	*	U(x)

U(x)	*	[V(x)	*	W(x)]	=	[U(x)	*	V(x)]	*	W(x)]
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Signals in space and spatial frequency

• What we have so far:
• Continuous & (possibly) complex function for images across space 
• Black-box linear transformation from one domain to the next via convolution
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Signals in space and spatial frequency

• What we have so far:
• Continuous & (possibly) complex function for images across space 
• Black-box linear transformation from one domain to the next via convolution

• Analogy:
• Time-varying voltage/current going through a circuit
• Audio signal passing through a filter Complex function of time -> frequency
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• What we have so far:
• Continuous & (possibly) complex function for images across space 
• Black-box linear transformation from one domain to the next via convolution

• Analogy:
• Time-varying voltage/current going through a circuit
• Audio signal passing through a filter Complex function of time -> frequency

Fourier Transforms

Signals in space and spatial frequency
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• What we have so far:
• Continuous & (possibly) complex function for images across space 
• Black-box linear transformation from one domain to the next via convolution

• Analogy:
• Time-varying voltage/current going through a circuit
• Audio signal passing through a filter

• Here, we have 2D (complex) function across space (x,y) -> spatial frequency (fx, fy)

Complex function of time -> frequency

U(x)

x

Fourier	
Transform

Û(fx)

fx

2π/T T

Signals in space and spatial frequency
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• What we have so far:
• Continuous & (possibly) complex function for images across space 
• Black-box linear transformation from one domain to the next via convolution

• Analogy:
• Time-varying voltage/current going through a circuit
• Audio signal passing through a filter

• Here, we have 2D (complex) function across space (x,y) -> spatial frequency (fx, fy)

Complex function of time -> frequency

U(x,y) Fourier	
Transform

fxx

y fy

Û(fx, fy)2π/Tx

Tx

Signals in space and spatial frequency
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• What we have so far:
• Continuous & (possibly) complex function for images across space 
• Black-box linear transformation from one domain to the next via convolution

• Analogy:
• Time-varying voltage/current going through a circuit
• Audio signal passing through a filter

• Here, we have 2D (complex) function across space (x,y) -> spatial frequency (fx, fy)

Complex function of time -> frequency

U(x,y) Fourier	
Transform

y fy

2π/Ty

Ty

Signals in space and spatial frequency

Û(fx, fy)

fxx
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Continuous Fourier transforms – for 2D images

Decomposition of a signal into elementary functions of form, :
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Additional Details:
• Goodman Chapter 2.1
• Mathworld/Wikipedia, Fourier Transform

U is absolutely integrable & no infinite discontinuities. The inverse Fourier transform is, 

Decomposition of a signal into elementary functions of form, :

Continuous Fourier transforms – for 2D images
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A few examples of Fourier transform pairs, 1D

U(x) Û(fx)
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Examples of Fourier transform pairs, 2D
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U1(x,y) U2(x,y)
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Û1(fx, fy)

Û2(fx, fy)
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Important properties of the Fourier transform

Additional Details:
• Goodman Chapter 2.1
• Mathworld/Wikipedia, Fourier Transform

• Linearity

• Scaling

• Shift

• Parseval’s Theorem (energy conservation)

• Fourier integral theorem
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Convolution - Fourier Transform relationship: Convolution Theorem

“The convolution of two functions in space can be performed by a 
multiplication in the Fourier domain (spatial frequency domain)”
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Example of convolution theorem, 1D

U1(x)

x

U2(x)=sinc(ax)

x
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Example of convolution theorem, 1D

U1(x)

F [U1]

Û1(fx)

x

U2(x)=sinc(ax)

x

•

F [U2]

fx fx

Û2(fx) = rect(fx/a)
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Example of convolution theorem, 1D

U1(x)

F [U1]

Û1(fx)

x

U2(x)=sinc(ax)

x

•

F [U2]

fx fx

Û2(fx) = rect(fx/a)

fx

=
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Example of convolution theorem, 1D

U1(x)

F [U1]

Û1(fx)

F -1[Û2Û1]

x

=

U2(x)=sinc(ax)

x

•

U1(x) * U2(x)

F [U2]

fx

x

fx

Û2(fx) = rect(fx/a)

fx

=
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Next Class: The Sampling Theorem – from Goodman Section 2.4.1

Signal sampling occurs with:

- CMOS (pixel) sensors, PMTs, SPADs
- A-to-D after antennas
- A-to-D after acoustic transducers

Sampling interval width X and Y


