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Linear systems and the black box

deep imaging

The “optical” black box system:

An optical black box system maps an input function U(x;,y;) to an output function U,(X,,Y,) via a transform T:

Us(Xo0:Yo) = T [ Ui(x,,y) |

Where T[ ] denotes the optical black box transformation

Ui(xia yi) T Uo(xo’ yo)

(physical
or digital)

Yi Yo
X {/(X o
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Linear systems and the black box

deep imaging

The “optical” black box system:

An optical black box system maps an input function U(x;,y;) to an output function U,(X,,Y,) via a transform T:

Us(Xo0:Yo) = T [ Ui(x,,y) |

Where T[ ] denotes the optical black box transformation

Important properties of linear systems:
1. Homogeneity and additivity (superposition):

T [aU4(x,y) + bU,(x,y)] = aT [U;(x,y)] + bT [Us(x,y)]
2. Shift invariance: for shift distances d, and d,, we assume that,

UO(XO B dx’yo_ dy) =T [Ui(xi'dx’ yi'dy)]
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Assuming 1) linearity and 2) shift-invariance, we can model any black box with 1 piece of information:

Input Dirac delta function into the black box: 5(w) = { 0 ’ 8
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Black box transforms as a convolution
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Assuming 1) linearity and 2) shift-invariance, we can model any black box with 1 piece of information:

Input Dirac delta function into the black box: 5(w) - oo, z=0
0, x # 0
A “perfect”
point LS|
source — _
system
a(X;,Y;) h (X,,Yo)

h(Xo,¥o) = T [ 9(xiyi) ]



Black box transforms as a convolution

deep imaging

Assuming 1) linearity and 2) shift-invariance, we can model any black box with 1 piece of information:

We know the system is shift invariant:

A “perfect”
point \ LS \
source
_,  Ssystem
a(Xi_dX’yi_dy) h (Xo_dy,yo_dy)

h(Xo-dy,yo-dy) = T [ d(x-dy,yi-dy) ]



Black box transforms as a convolution

deep imaging

Assuming 1) linearity and 2) shift-invariance, we can model any black box with 1 piece of information:

Input Dirac delta function into the black box: d(x) = { 3:00’ i ; 8
A "perfect” h(x,,Y,) is the
point LSI system’s point-
source — e .
system spread function
a(Xi,yi) h (Xo’yo)

Point-spread function T [ a(xi,yi) ]



Black box transforms as a convolution _.§§

deep imaging

Knowing the point-spread function, it is direct to model any output of the black box, given an input:

I Convolve = “smear and multiply”

Output of linear
system is a
convolution of the
input with its point-
spread function




1D convolution example

_ deep imaging
Convolution Steps to perform a convolution:
f |_| 1. Flip one signal (the second one = the PSF)
9 I\ L .
2. Position PSF right before overlap
Pxg With incremental steps:
A1 11 -
ya Pi 3. Step PSF over to position x,
_l4 .
» 4. Compute area of overlap of two functions
g
[Nl N 5. Convolution value at x,= area of overlap
I N i
N 6. Repeat 3-5 until signals do not overlap

https://en.wikipedia.org/wiki/Convolution




2D convolution example %?

deep imaging
« Direct extension of 1D concept to 2D functions

* Note - it is effectively the same with discrete functions = matrices




2D convolution example

—_—
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High-res. real-world object Image at camera sensor plane
Blur caused by camera lens

UO(X’y)




Optical modification Ex. #1: The cubic phase mask
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Point-spread function

in focus
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Optical modification Ex. #1: The cubic phase mask %/%

Fourier plane deep imaging

Blur proportional to Fourier
transform of shape of aperture




Optical modification Ex. #1: The cubic phase mask

deep imaging
Insert CPM

Blurry at focal plane

in focus defocused defocused

Standard camera:
Limited depth-of-field

&

Cubic phase mask:
extended depth-of-
field

E. Dowskiand W. T Cathey, "Extended depth of field through wave-front coding," Appl Opt. 1994



Optical modification Ex. #1: The cubic phase mask

deep imaging
Insert CPM

Same blur!

=

in focus defocused defocused

Standard camera:
Limited depth-of-field

Cubic phase mask:
extended depth-of-
field

E. Dowskiand W. T Cathey, "Extended depth of field through wave-front coding," Appl Opt. 1994




Optical modification Ex. #1: The cubic phase mask

deep imaging
Insert CPM

Same blur!

E

in focus defocused defocused

Standard camera:
Limited depth-of-field

CPM Phase profile

Cubic phase mask: =
extended depth-of-
field

E. Dowskiand W. T Cathey, "Extended depth of field through wave-front coding," Appl Opt. 1994




Optical modification Ex. #1: The cubic phase mask

deep imaging
Insert CPM

Uniformly
A Blurry image

; ! l
-

L ____\=

Simple image
deblurring
(deconv.)

!

All in-focus image

E. Dowskiand W. T Cathey, "Extended depth of field through wave-front coding," Appl Opt. 1994



Optical modification Ex. #1: The cubic phase mask

deep imaging
Insert CPM

Uniformly
Blurry image

!T

L ____\=

AB

/

% &

Standard camera CPM image, CPM image,
image raw deconvolved

Simple image
deblurring
(deconv.)

!

All in-focus image

Machine Learning and Imaging — Roarke Horstmeyer (2019)



Optical modification Ex. #1b: Double helix mask

—_—

deep imaging
Insert DHM

Depth-varying
image

}
=

L ____\=

in focus defocused defocused

Depth detection
. . . i ®®4 | Moerner Lab

Nobel Prize in
Chemistry, 2014

Jia et al., Nature Photonics 2014
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1.Commutativity Ux) *h(x) = h(x) * Ux)

— You can choose which signal to “flip”
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— Can change order — sometimes one order 1s easier than another




Useful properties of the convolution

deep imaging
1.Commutativity Ux) *h(x) = h(x) * Ux)
— You can choose which signal to “flip”

2. Associativity Ux) *[V(x) *W(x)] =[Ux) *V(x)] * W(x)]

— Can change order — sometimes one order 1s easier than another

3. Distributivity ~ U(x) *[h,(x) * h,(x)] = U(x) *h,(x) + U(x)* h,(x)




Signals in space and spatial frequency
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« What we have so far:
« Continuous & (possibly) complex function for images across space
 Black-box linear transformation from one domain to the next via convolution
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. Audio signal passing through a filter Complex function of time -> frequency



Signals in space and spatial frequency

deep imaging

« What we have so far:
« Continuous & (possibly) complex function for images across space
 Black-box linear transformation from one domain to the next via convolution

* Analogy:
« Time-varying voltage/current going through a circuit

. Audio signal passing through a filter Complex function of time -> frequency

Fourier Transforms



Signals in space and spatial frequency

deep imaging

« What we have so far:
« Continuous & (possibly) complex function for images across space
 Black-box linear transformation from one domain to the next via convolution

* Analogy:
« Time-varying voltage/current going through a circuit _ _
. Audio signal passing through a filter Complex function of time -> frequency
« Here, we have 2D (complex) function across space (x,y) -> spatial frequency (fy, f,)

2i/T T
n/ Fourier

Transform [

VAVAVAVAVAV IR




Signals in space and spatial frequency _.8%0/

deep imaging

« What we have so far:
« Continuous & (possibly) complex function for images across space
 Black-box linear transformation from one domain to the next via convolution

* Analogy:

« Time-varying voltage/current going through a circuit

. Audio signal passing through a filter } Complex function of time -> frequency

« Here, we have 2D (complex) function across space (x,y) -> spatial frequency (fy, f,)

2n/T Ux.y) Fourier LAJ(fx, fy)

Transform
Ty
° o °

A
v




Signals in space and spatial frequency

deep imaging

« What we have so far:
« Continuous & (possibly) complex function for images across space
 Black-box linear transformation from one domain to the next via convolution

* Analogy:
« Time-varying voltage/current going through a circuit

. Audio signal passing through a filter Complex function of time -> frequency

« Here, we have 2D (complex) function across space (x,y) -> spatial frequency (fy, f,)

U(xy) Fourier LAJ(fx’ fy)
21/T, Transform
| — - > ¢
| ——

y Ty ’
—_— T,
| — (]
| ——

X fx



Continuous Fourier transforms - for 2D images

deep imaging

Decomposition of a signal into elementary functions of form, exp (—27i(fz + fyy)) :

FU@ )} = 0nfy) = [ Ules)exp (-2nillaa+ fyu) dudy



Continuous Fourier transforms - for 2D images

deep imaging

Decomposition of a signal into elementary functions of form, exp (—27i(fz + fyy)) :

FU@u)} =0 fy) = [[ Uty exp (-2milfon + ) dody

U is absolutely integrable & no infinite discontinuities. The inverse Fourier transform is,
FUO s £} =Ua) = [ Oty exp @il faz + fy) dla

Additional Details:
 Goodman Chapter 2.1
« Mathworld/Wikipedia, Fourier Transform



A few examples of Fourier transform pairs, 1D

deep imaging
Rectangle function Sinc function
1
U(x) < W “""Cll’% U(f,)
Rect (x) Sine (u) = sin Ty

Triangle function

/f\
Sinc? (v)

1 1
2 3

Exponential

I

Gaussian

\
/




Examples of Fourier transform pairs, 2D

imaging

deep
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deep imaging

N\

U1 (fx, fy)

magnitude of cheetah phase of cheetah

N\

U 2(fx, fy)

magnitude of zebra phase of zebra




Important properties of the Fourier transform

deep imaging

* Linearity

« Scaling

 Shift

« Parseval’s Theorem (energy conservation)

* Fourier integral theorem

Additional Details:
 Goodman Chapter 2.1
« Mathworld/Wikipedia, Fourier Transform



Convolution - Fourier Transform relationship: Convolution Theorem

deep imaging

Convolution theorem. If F{g(x, y)) = G(fx, fr)and F{h(x,y)} = H(fx, fr), then

o0

“ o€, m) h(x — &y — ) dEdnS = G(fx, fyr) H(fxr fo).

—00

F

A\

S

“The convolution of two functions in space can be performed by a
multiplication in the Fourier domain (spatial frequency domain)”




Example of convolution theorem, 1D

deep imaging

»(X)=sinc(ax)

AV L,



Example of convolution theorem, 1D

smc ax
\F[ua F[UQ]

I\

U,(f,) = rect(f,/a)

deep imaging



Example of convolution theorem, 1D

smc ax
\F[ua F[UQ]

I\

U,(f,) = rect(f,/a)

deep imaging



Example of convolution theorem, 1D

deep imaging
=sinc(ax) U4(x) * Us(X)
WAA x
\ F[U4] F[Uz] ' F -7[0,04]

I\

U,(f,) = rect(f,/a)




Next Class: The Sampling Theorem - from Goodman Section 2.4.1

deep imaging

Us(z,y) = comb(z/X)comb(y/Y)U(x,y)

Signal sampling occurs with:

- CMOS (pixel) sensors, PMTs, SPADs
- A-to-D after antennas
- A-to-D after acoustic transducers

Sampling interval width X and Y




