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Resources for this lecture

Stanford CS231n, Lecture 17

Berkeley CS 294: Deep Reinforcement Learning
http://rail.eecs.berkeley.edu/deeprlcourse-fal7/f17docs/lecture 3 rl intro.pdf

V. Mnih et al., “Human-level control through deep reinforcement learning,” Nature (2016)

Technical note: Q-Learning
http://www.gatsby.ucl.ac.uk/~Dayan/papers/cjch.pdf



http://rail.eecs.berkeley.edu/deeprlcourse-fa17/f17docs/lecture_3_rl_intro.pdf
http://www.gatsby.ucl.ac.uk/~Dayan/papers/cjch.pdf

deep imaging

Reinforcement learning - in a nutshell

« So far, we've looked at:
1) Decisions from fixed images (classification, detection, segmentation)

CNN’s
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deep imaging

Reinforcement learning - in a nutshell

« So far, we've looked at:
1) Decisions from fixed images (classification, detection, segmentation)

CNN’s

2) Decisions from time-sequence data (captioning as classification, etc.)

RNN'’s
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Fixed set of
temporal sequences
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deep imaging

Reinforcement learning - in a nutshell

« So far, we've looked at:
1) Decisions from fixed images (classification, detection, segmentation)

CNN’s

2) Decisions from time-sequence data (captioning as classification, etc.)
Decisions from images and time-sequence data (video classification, etc.)

RNN'’s



Example: Image captioning H%é
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Prospective identification
of hematopoietic lineage
choice by deep learning
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deep imaging

Reinforcement learning - in a nutshell

« So far, we've looked at:
1) Decisions from fixed images (classification, detection, segmentation)

CNN’s

2) Decisions from time-sequence data (captioning as classification, etc.)
Decisions from images and time-sequence data (video classification, etc.)

RNN'’s

* Now, we’re going to consider decisions for dynamic data
* Most successful application: dynamic image data
e.g.: video games, images of a Go game, car turning through obstacles

Reinforcement Learning
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The step from fixed video to dynamic video

Outcome:
Cell type B

Goal: examine all data
to make final decision

Machine Learning and Imaging — Roarke Horstmeyer (2020)



The step from fixed video to dynamic video
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Outcome:
Cell type B

Goal: examine all data
to make final decision
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The step from fixed video to dynamic video

N Outcome:
- Cell type B

Goal: examine all data
to make final decision

Goal: decide on path
through data to get to
final result

forward



The step from fixed video to dynamic video
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Outcome:
Cell type B

Goal: examine all data
to make final decision

Outcome:
Win the game!
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The step from fixed video to dynamic video

Outcome:
Cell type B

Goal: examine all data
to make final decision

Goal: decide on path
through data to get to
final result

Outcome:
" Win the game!

forward
forward




Supervised ML Reinforcement learning H%
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N
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Outcome:
Win the game!

forward

Fixed image sequence Dynamic/active image sequence

Goal: match to known label Goal: get to known desired outcome

(large labeled dataset needed) (no labels needed, really...)

Output: label Output: sequence of actions

Examines all data Not possible to examine all data



Terms and notation

deep imaging

Example situation: Preparing for surgery using a robotically controlled instrument with an
endoscope camera. You want endoscope to guide itself to tumor as quickly as possible

Movement choices:

Up
First image ., Down —
(of skin)

Left
Initial state s Right

Action a,



Terms and notation

deep imaging

Example situation: Preparing for surgery using a robotically controlled instrument with an
endoscope camera. You want endoscope to guide itself to tumor as quickly as possible

Movement choices: How’d we do?
Up
First image . bown . .1 for darker image — S0l —
(of skin) image
|eft -1 for lighter image Continue until
final state (see
Initial state s Right state s cumor) (

Action ag Reward rg



Terms and notation

deep imaging

Example situation: Preparing for surgery using a robotically controlled instrument with an
endoscope camera. You want endoscope to guide itself to tumor as quickly as possible

Movement choices: How’d we do?
Up
First image . bown . .1 for darker image — S0l —
(of skin) | Innietgf=
Policy 1 Left -1 for lighter image Continue until
R final state (see
Initial state s Right state s cumor) (
Action ag Reward rg

Optimization Goal: Find policy m* that maximizes total “discounted” reward Z’}/tn
t>0



TL;DR

-> Use a CNN to map images to actions, optimize CNN with respect
to loss function that depends on reward in a recursive manner

deep imaging

Movement choices: How’d we do?
Up
First image . Down .1 for darker image —* SEEeE
(of skin) _ image
Policym  Left -1 for lighter image
Initial state s, t Right state s;
Action ag Reward r

-

Continue until
final state (see
tumor)

Optimization Goal: Find policy m* that maximizes total “discounted” reward Z’}/t'f‘t

t>0
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A simple MDP: Grid World

actions = { states
1. right — *
2. left <«— Set a negative “reward”
3 * for each transition
Cw ]
(e.g.r=-1)
4. down I
}

Objective: reach one of terminal states (greyed out) in
least number of actions

From Stanford CS231n Lecture 17



A simple MDP: Grid World
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Let’S jump intO the math- Ean deep imaging

Definition of a Markov process:

PrXpmi=x | Xi =21, X0 =29,...,Xp, =2,) =Pr(Xp1 =2 | X, = x,)
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Let’S jump intO the math- Y deep imaging

Definition of a Markov process:

PrXpmi=x | Xi =21, X0 =29,...,Xp, =2,) =Pr(Xp1 =2 | X, = x,)

x9 =11 0]

The weather on day 2 can be predicted by:

0.9 0.1
0.5 0.5

xOP =11 o][ ]=[0.9 0.1]

2 states: Sunny and Rainy

Thus, there is a 90% chance that day 2 will also be sunny.

https://en.wikipedia.org/wiki/Markov chain



https://en.wikipedia.org/wiki/Markov_chain
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Let’S jump intO the math- Y deep imaging

Definition of a Markov process:

PrXpmi=x | Xi =21, X0 =29,...,Xp, =2,) =Pr(Xp1 =2 | X, = x,)

2 states: Sunny and Rainy

Thus, there is a 90% chance that day 2 will also be sunny.

Transition matrix — try to learn this from state to state
https://en.wikipedia.org/wiki/Markov chain



https://en.wikipedia.org/wiki/Markov_chain

Assume transition between states follows Markov process ﬂg

deep imaging

P(St1[St, St1---S0) = P(St41 | S)

Markov chain

M={S,T}

S — state space states s € S (discrete or continuous)

T — transition operator p(St+1]5t) Andrey Markov
why “operator”? let pyi = p(sy =1) fi; is a vector of probabilities

let T;j = p(st+1 =1t[st = j) then fiy 11 =T i

Markov property
s independent of s;_1

@ p(stt1]st) =@ p(stt1]se) @/

Berkeley CS 294: Deep Reinforcement Learning



Add in dependence on action: Markov decision process

P(st.1]st) => P(St1 | St, @) = P(Ste1 | St @ -+ So, Qo)

Markov decision process M={S, AT, r}
S — state space states s € S (discrete or continuous)
A — action space actions a € A (discrete or continuous)

7T — transition operator (now a tensor!)

let pr,; = p(se = J)

let & = p(ar = k) Hti = k URRIURISH:

Js
let T jx = P(St41 = 1|t = J,ar = k)

S » S
@ p(st+1|st,at) \2/ p(St+1‘St,at)

Berkeley CS 294: Deep Reinforcement Learning

Andrey Markov

Richard Bellman

[IE=
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Add in dependence on action: Markov decision process

deep imaging

P(s.1|St, ay) can include reward r(s,, a,)

Markov decision process M={S, AT, r}
S — state space states s € S (discrete or continuous)
A — action space actions a € A (discrete or continuous)

T — transition operator (now a tensor!)

r — reward function r:SxA—-R

r(s¢, ar) — reward

» S
P(St+1\st,at) \y P(St+1\St,at>

»

Berkeley CS 294: Deep Reinforcement Learning
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The goal of reinforcement learning

we’ll come back to partially observed later
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The goal of reinforcement learning

we’ll come back to partially observed later
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The optimal policy m*
We want to find optimal policy m* that maximizes the sum of rewards.

How do we handle the randomness (initial state, transition probability...)?
Maximize the expected sum of rewards!

FOrma”y: T = a‘rgmgxIE Z’)’t'rtlﬂ- with g ™~ p(SU)a ag ~ ﬂ-('lst): St+1 ™ p('|8ts at)
t>0

Discount factor: accumulate the rewards
“acquired” up to current state, but they become
less important the longer they were in the past

From Stanford CS231n Lecture 17



The optimal policy t*
We want to find optimal policy m* that maximizes the sum of rewards.

How do we handle the randomness (initial state, transition probability...)?
Maximize the expected sum of rewards!

FOrma”y: T = argmgx]E Z’Y Ttl‘ﬂ- with g ™~ p(SO): ag ~ ﬂ-('lst)s St4+1 ™ p('|8t3at)
t}O

The Q-value function at state s and action a, Is the expected cumulative reward from
taking action a in state s and then following the policy:

to all policies, so
use Q in practice

Q" (s,a) =E |:nyt'rt|so =8,a9=aQ,T

Don’t have access
t>0
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Bellman equation

The optimal Q-value function Q* is the maximum expected cumulative reward achievable
from a given (state, action) pair:

Q*(Saa‘) — mgxIE Z’yt?“tlso = S8,ap0 =a,T
t>0

Q* satisfies the following Bellman equation:
Q*(s,a) =Eg g [’r +ymax Q*(s',a")|s, a]

Intuition: if the optimal state-action values for the next time-step Q*(s’,a’) are known,
then the optimal strategy is to take the action that maximizes the expected value of

r+vQ*(s',a’)

From Stanford CS231n Lecture 17
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Solving for the optimal policy: Q-learning

Q-learning: Use a function approximator to estimate the action-value function

Q(s, a; 9),{@”‘ (s,a)
function parameters (weights)

If the function approximator is a deep neural network => deep q-learning!

From Stanford CS231n Lecture 17
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Solving for the optimal policy: Q-learning

Remember: want to find a Q-function that satisfies the Bellman Equation:
Q*(s,a) =Eg g ['r +ymax Q*(s’,d’)|s, a]
a/

Forward Pass
Loss function: L;(0;) = E; qp(.) [(ys — Q(s,a;6;))°]

where y; = Eg g [7’+’7m2}XQ(3’aa’;9i—1)|3,a]
a

From Stanford CS231n Lecture 17
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Solving for the optimal policy: Q-learning
Remember: want to find a Q-function that satisfies the Bellman Equation:
Q" (s,a) =Ey~e ['r + v max Q"(s',a’)s, a]

Forward Pass
Loss function: L;(0;) = Eg aup() [(¥i = Q(s, a36,))?]

’ 7 lteratively try to make the Q-value
where y; = Egng [7" + ")’H}I@X Q(s,a’;0;-1)|s,a close to the target value (y) it

should have, if Q-function
corresponds to optimal Q* (and
Backward Pass optimal policy n*)

Gradient update (with respect to Q-function parameters 8):

VOZLZ(QZ) - ES,QNP(.);SINg [T + ’)’Inaalx Q(SI, a,; 91’—1) - Q(Sa a, 92))v61Q(57 a, 97,):|

From Stanford CS231n Lecture 17



[Mnih et al. NIPS Workshop 2013; Nature 2015] >°p imaging

Case Study: Playing Atari Games

Objective: Complete the game with the highest score
State: Raw pixel inputs of the game state

Action: Game controls e.g. Left, Right, Up, Down
Reward: Score increase/decrease at each time step

From Stanford CS231n Lecture 17



Q-network Architecture

s,a;0): Last FC layer has 4-d
n%tgra’I n’etvgork FO-4 (Qrvalues) = oitsput (ifiy:cr:ti:nss),
. : ] corresponding to Q(s,,
with weights @ FC-256 ) Ol )
Q(s,.a,)

“j- < Input: state s,

Current state s.: 834x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

From Stanford CS231n Lecture 17
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https://www.youtube.com/watch?v=V1eYniJORnk

Machine Learning and Imaging — Roarke Horstmeyer (2020)


https://www.youtube.com/watch?v=V1eYniJ0Rnk

deen imaging

Training the Q-network: Experience Replay

Learning from batches of consecutive samples is problematic:
- Samples are correlated => inefficient learning
- Current Q-network parameters determines next training samples (e.g. if maximizing
action is to move left, training samples will be dominated by samples from left-hand
size) => can lead to bad feedback loops

Address these problems using experience replay
- Continually update a replay memory table of transitions (s,, a,, r,, s,,,) as game
(experience) episodes are played
- Train Q-network on random minibatches of transitions from the replay memory,

instead of consecutive samples Each transition can also contribute

to multiple weight updates
=> greater data efficiency

From Stanford CS231n Lecture 17



How can this be applied to optimized imaging?

Observations (0;)

Microscope
-l
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Sample (S)
|

0, 0Os

A 4

Agent ()

— Decision

Am m a aa g Parameters (qbt)

LED Array

b1

b
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MNIST Results
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How can this be applied to optimized imaging?
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