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Resources for this lecture:

- Stanford CS231n, Lecture 12
- Stanford CS230 course slides

- Deep Learning book, chapter 15
- Number of papers cited throughout slides
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Deep Learning Book, Ch. 10

RNN’s: Examine signals as a function of time

E.g., establish if mouse was scared from this EEG recording
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Recurrent neural networks in a nutshell
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Many-to-many recurrent neural network
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From Stanford CS231n Lecture 10 slides
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Example: Image captioning

From Stanford CS231n Lecture 10 slides



deep imaging

Machine Learning and Imaging – Roarke Horstmeyer (2020)



deep imaging

Machine Learning and Imaging – Roarke Horstmeyer (2020)

Output generative processing - be careful…

Output-generative: “Let’s figure out the 
next output based on the other outputs” 

“Non-output generative”: “I’ll just use all of 
my input data to determine my final output” 

These lines 
imply a lot!
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Output generative processing - be careful…

Output-generative: “Let’s figure out the 
next output based on the other outputs” 

“Non-output generative”: “I’ll just use all of 
my input data to determine my final output” 

Pros: You get a lot more “bang for your 
buck”

Cons: Fine line between hallucination and 
trustworthy output…

Pros: More repeatable and interpretable results

Cons: Hard to get more outputs from inputs
(and not as “cool”)

These lines 
imply a lot!
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Brainstorming time – physical layers in an RNN???

Simple example, “Output generative” flavor

Physical 
CNN

Design an optimal X to produce the best image captions
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Brainstorming time – physical layers in an RNN???

Simple example, “Non-output generative” flavor

Physical model down-samples movie sequence

1      0      0      1     0       0      0     0       1     ……

…..
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Brainstorming time – physical layers in an RNN???

Take a bit of time and try to think about/write down the following:

• With your image data (or some data that you are interested), what do you measure over time?

• What would your input data for an RNN be, and what might be a useful output?

• What physical parameters influence how you measure data over time?

• What physical parameters might be useful to tweak to improve your output?

• Can you think of a way to model that parameter in an RNN?
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Supervised versus unsupervised learning

Supervised Unsupervised 

• Have data x with labels y

• Goal is to learn function 
f(x) = y

• Just have data x with no labels

• Figure out and exploit underlying 
structure of data 



deep imaging

Machine Learning and Imaging – Roarke Horstmeyer (2020)

Supervised versus unsupervised learning

Supervised Unsupervised 

• Have data x with labels y

• Goal is to learn function 
f(x) = y

• Just have data x with no labels

• Figure out and exploit underlying 
structure of data 

Example: K-means clustering Example: PCA Example: tSNE
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Unsupervised learning example: autoencoder

U-Net Architecture 

Output 
image tile
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Unsupervised learning example: autoencoder

• Compress spatial features into 
learned filters

• Then, decompress learned filters 
back into same spatial 
dimensions

• Analogous to image compression

Compress Decompress

U-Net Architecture 

(encoder) (decoder)
Output 
image tile
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Example: Denoising Autoencoder

Compress Decompress

U-Net Architecture 

(encoder) (decoder)
Output 
image tile

Input noisy 
image

”Label” is 
noiseless 
image!
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Stanford CS231n, Lecture 12
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Stanford CS231n, Lecture 12
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Stanford CS231n, Lecture 12
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Stanford CS231n, Lecture 12
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Example: Variational Autoencoder (VAE) 

Force this vector to follow a Gaussian PDF

• Good generative model 
• Have a clean probability distribution to 

select from to generate new examples

Minimize (KL) distance between latent 
vector and Gaussian normal
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Example: Variational Autoencoder (VAE) 

Force this vector to follow a Gaussian PDF

• With Gaussian PDF, can start to 
add/subtract latent vector in a 
normalized vector space

Minimize (KL) distance between latent 
vector and Gaussian normal

Generative Example (once trained):
• Encode image with glasses, obtain latent vector PDF Pg
• Encode image without glasses, obtain PDF Png

• Compute diff = Pg- Png
• Encode new image to obtain Pnew , add in diff
• Decode Pnew + diff to get guy with glasses!
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Example: Variational Autoencoder (VAE) 

Force this vector to follow a Gaussian PDF
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Stanford CS231n, Lecture 12
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Stanford CS231n, Lecture 12
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Stanford CS231n, Lecture 12

This is a really complex 
distribution, obviously

Simplify by going 
through image pixel by 
pixel, rely on RNN
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Stanford CS231n, Lecture 12



deep imaging

Machine Learning and Imaging – Roarke Horstmeyer (2020)

A. Van der Oord et al., https://arxiv.org/abs/1601.06759

https://arxiv.org/abs/1601.06759
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Stanford CS231n, Lecture 12
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Stanford CS231n, Lecture 12
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Original hypothesis: "Do adversarial examples exist?"

To prove true: need just one example

To prove false: seems challenging… (do unicorns exist?)
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New hypothesis: "Are adversarial examples robust?"

To prove true: need just one example implementation

To prove false: Need to show all possible implementations fail
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4 different adversarial examples for object detector:

4 different adversarial examples for object classifier:
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Within 5 days (!), a blog post from OpenAI:

https://blog.openai.com/robust-adversarial-inputs/
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Generative adversarial networks

Stanford CS230, Lecture 3
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“Maximize probability that the discriminator is wrong and labels the fake 
example as a real example”
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