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What was this class about?

Where your final
project is aimed

Computer-

centered hardware
+ software

Human-centered hardware design Computer-centered software design



ML+Imaging pipeline introduction —'%

Machine Learning deep imaging

Digitization

y->e

Measurement device

Real World

Optimization

. Linear classification
Sampling

Theorem

NN

Logistic classifier

Discrete math &
Black box transformations Linear algebra Neural networks

 Convolution

Continuous * Fourier Transform
complex fields

Convolutional NN'’s

Summarize with simple models Use Tensorflow
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Physical models for light propagation to sensor deep imaging

Interpretation #1: Radiation (Incoherent)
Model: Rays

* Real, non-negative

7 L= HB S,

- | | « Sample absorption S
|| f * [llumination brightness B

e BlurinH

Interpretation #2: Electromagnetic wave (Coherent)

Model: Waves

double slit screen _ >
lc = |HC S¢|

« Complex field

« Sample abs./phase S
s ))> e [lllumination wave B
e BlurinH




Mathematical model of for incoherent image formation —'%

deep imaging

« All quantities are real, and non-negative

Object absorption:

lllumination brightness: Solx.Y)

B(x,y)

multiplication

convolution
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We can also add in some lens blur deep imaging

Lenses blur and rescale images:

Convolution filter h

* -

“Incoherent point-
spread function”

h A(f,fy)
h(x,y)

h(xy) = | FLA(ff) ] B -~ 1P

Input

, . Output intensity
Intensity




Mathematical model of for incoherent image formation —'%

deep imaging

« All quantities are real, and non-negative

Object absorption:
L : So(X, Photons (intensity) hits
lllumination brightness: (%) detector( y)
B(x,y) /
1 ////?
=

multiplication

convolution



Physical models for light propagation to sensor

Interpretation #1: Radiation (Incoherent)
Model: Rays

JE=

deep imaging

Real, non-negative

L= HB S,

Sample absorption S
[llumination brightness B
Blurin H

Interpretation #2: Electromagnetic wave (Coherent)

Model: Waves

double slit

screen

Complex field
lc= |HC S¢[?

Sample abs./phase S
[llumination wave B
Blurin H




Let’s take a step back: how does light propagate?

Maxwell’s equations . OH
without any charge VXE = —”L}Tt_
V X 7-:( —— e_c?é
ot
V-e£ =0
V- p/fi = 0.

1. Take the curl of both sides of first equation
2. Substitute 2" and 3 equation

3. Arrive at the wave equation:

2 92 ¢
2“’ n&g_
VieE-Ggz =V "

I

\/Moeoi

deep imaging



Let’s take a step back: how does light propagate? deep imaging

Considering light that isn’t pulsed over time, we can use the following solution:

u(P,t) = A(P) cos[2mvt + ¢(P)]
u(P,t) = Re{U(P) exp(— j2mvr)},

With this particular solution, we get the following important time-independent equation:

Helmholtz [ 4 27T
Equation (V2 + kz)U = 0. k = 277”; = N

This is an important equation in physics. We won’t go into the details, but it leads to the Huygen-Fresnel principle:

U(P,) = _1} H up)XRURT2) o s
J L)

2
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From the Fresnel approximation to the Fraunhofer approximation deep imaging

Fresnel Approximation:

-+oo k[ 1\2 I\2
2 — |(z—2') +(y—y)] I 3.1
E(z,y,z z',y,0)e2 dx dy
z)\z
2D?
Lets assume that the second plane is “pretty far away” from the first plane. Then, > _/\_

1. Expand the squaring

Blz,y,2 z)\z // 2y, 0)es Ty ) e (0P 4y o5 (w2’ +uy") gt g

2. Front term comes out, assume second term goes away, then,

eikz

INZ




Model of a microscope (or camera) using Fourier transforms: deep imaging

from lens to sensor, light undergoes an

inverse Fourier transform!

_—

ES (w87 yS) 0) E;,(:Cd: yd) — Ea(SUd, yd)A(xda yd)

\/\_/

2D Fourier Transform 2D inverse Fourier Transform




deep imaging

Mathematical model of for coherent image formation

Pretty much the same thing, but now we have an amplitude and a complex phase

Point #1: Amplitudes behave just like before

Sample absorption = S(x,y)

100
photons

Aixy) = Ailx,y) S(x,y)

(Laser light
or
Ultrasound)

Incident field: Transmitted field:

C(x,y) = Ai(x,y) U(x,y) = AdXx,y) = Ai(x,y) S(X,y)




Mathematical model of for coherent image formation

Pretty much the same thing, but now we have an amplitude and a complex phase

New: complex phase delay

Sample absorption = S(x,y)
 Neededto represent wave
Represents wave delay across space

Sample phase delay = expl[ikp(x,y)]

(Laser light
or
Ultrasound)

Incident field: Transmitted field:

C(x,y) = Ai(x,y) explikei(x,y)]  UXy) = Ai(x,y) S(X,y) exp[ike(x,y)]

JE=

deep imaging



Mathematical model of for coherent image formation

Pretty much the same thing, but now we have an amplitude and a complex phase

New: complex phase delay

Sample absorption = S(x,y)

Sample phase delay = expl[ikp(x,y)]

(Laser light
or
Ultrasound)

Phase delay

JE=

deep imaging



Model of image formation for wave optics (coherent light):

Discrete sample
function s(x,y)
(complex)

‘1 . Transmitted field
sq(X,y) = C(x,y) s(X,y)

2. Compute its2D  3- Multiply by
Fourier transform aperture
8(f,, 1) . function A(fy, f,)

“Fourier plane”

(complex) /

Model #1: 1.(x,y) = [F1TAFCs|?

JE=

deep imaging
4. Compute 5. Detector
inverse Fourier measures
transform s'(x’,y’)  1S'(XLY)P

-

image”



Coherent image blur - two implementations

deep imaging

Convolution filter h

Input image Output image
U4(X,y) U,(X,Y)
| F-1HO]
fy
Input
spectrum

ZaN

U 1 (fx’fy)




Model of image formation for wave optics (coherent light): deep imaging

Discrete sample 2. "aperture” 5. Detectol
function s(x,y) function A(fy, f,) measures

4. Blur image:
(complex)

s'=sdxy) “hixy)  SECYIF

P

-

3. Compute blur
function
h(x,y) = F[A(fy, f,)]

‘1 . Transmitted field
sq(X,y) = C(x,y) s(X,y)

Model #2: 1.(x,y) = |h » Cs|?




Machine Learning %

Dlgltlzatlon deep imaging

y->e

Measurement device

Real World

Optimization

. Linear classification
Sampling

Theorem

NN

Logistic classifier

Discrete math &
Black box transformations Linear algebra Neural networks

. » Convolution Convolutional NN’s
Continuous * Fourier Transform
complex fields

IInc = HB S0

ICoh: |HCSC|2




Summary of machine learning pipeline:

deep imaging

1. Network Training

O
U;E)"Ut Model Ex. [x1,v1] EX. [xK,yK]\
Training error 4 - N m — L
Training
Lin(Y! f(W!X)) <:| <::| f(W,X) <::| . Data
| ) B o
dL/dW 1 \ = J

What we need for network training:

1. Labeled examples
2. A model and loss function

3. A way to minimize the loss function L



Summary of machine learning pipeline:

2. Network Testing

Test error

Lout(Y! Y)

(—

'<*

—

Model

-

\_

f(W,x)

~

J

T

/E_x._[xL,yL] E_X-_[XN,yN]\

N - /

What we need for network testing:

4. Unique labeled test data
5. Evaluation of model error

deep imaging

Test Data not from
Training Dataset



Let’s start with a simpler approach: linear regression _»%

deep imaging

1
L = N ZLi(f(fcuW) Yi)
1=1
y X
N -
1 _
General linear model: L = N Z L; (WXZ-, yi) # classesI H B w
1=1
] o T y x
Assume 1 class = L= N ZL(U} Li — yz) Tvar [ []=] | []
1 linear fit —1 w’
1 N
Use MSE error )2 |
model N Z w Ti yz)
Where labels —1 %fx <0,
determined by f(x;) =y = Sgn(WTXz') sgn(z) =< 0 ifz =0,

thresholding 1 if z > 0.



Why does linear regression with sgn() achieve classification?

-wo/ |w|
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Without sgn(): regression for best fit

f(x;) = wlx;

1
L= N Z(wT%‘ — ;)?

1=1

« If y; can be anything, minimizing L
makes w the plane of best fit



Why does linear regression with sgn() achieve classification?

+1

L+ 1O |- 01 pol1oaloid

1[5
deep imaging

With sgn() operation:

f(x:) =y; = Sgn(WTXi)

1
L= N Z(wTﬂii — ;)?

« Anything point to one side of y=0
intersection is class +1, anything on
the other side of intersectionis
class -1



Why does linear regression with sgn() achieve classification?

Linear classification
boundary

® y=-1
@ y=+1

With sgn() operation:

f(xi) =y; = Sgn(WTXi)
|
L=+ Z(wT:cz — ;)?

1=1

JE=

deep imaging

Sign operation takes linear regression
and makes it a classification operation!




In the rest of this class: solve via gradient descent —>§

deep imaging

With a matrix, compute this for each entry:

AL(W:) _ . L(Wi+h) — L(W))
dW; B h—0 h

Example:

W =[1,2;3,4] W,+h =[1.001,2;3,4] dL(W,)/dW, = 12.8-12.79/.001

L(W, x,y) =12.79  L(W4+h,x,y) =12.8

dL(W/)/dW, = 10

- Repeat for all entries of W, dL/dW will have NxM entries for NxM matrix



Steepest descent and the best step size € deep imaging

N N
L = ﬁ Z 'LU r; —

2. Compute gradient g© = V. f(x©) 9

VL(w) = —XT(Xw—19y) =0

Y Y

1. Evaluate function f(x©) at an initial guess point, x©

3. Next point x = x© - g0g©

4. Repeat — x(+) = x - ggM, until [x*+)-x| < threshold t

while previous step size > precision and iters < max iters:
prev_x = cur_ X
cur x -= gamma * df(prev_x)
previous step size = abs(cur x - prev_ X)
iters+=1
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f X deep imaging

e |-

Learned f: not flexible

f X
f — ngaX(Wla:, 0) I

= W2

Learned f: a bit flexible

f = W3ma,x(0, WQmaX(Wlx) 0))

Learned - more flexible

J We can keep adding

Does it generalize??? these “layers”...




Before CNN’s — understand two competing goals in machine learning desp imaging

1. Can we make sure the in-sample error L (y, f(x,W)) is small enough?
* Appropriate cost function
 “complex enough” model

2. Can we make sure that L (y, f(x,W)) is close enough to L,(y, f(x,W))?
« Probabilistic analysis says yes!
« |L, - L, bounded from above
 Bound grows with model capacity (bad)
 Bound shrinks with # of training examples (good)



Gets us to Convolutional Neural Networks

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5
INPUT
6@28x28
32x32 S2: f. maps
6@14x14

Full coanection ‘ Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection
7x7 conv
input g4 filters 2x3 conv 3x3 conv
i 3x3 conv 3x3 conv 3x3 conv m 3X3 conv 3x3 conv 3x3 conv
nade Norm 64 filters 64 filters Norm &4 filters 4 fiters 128 filters 128 filters  Nom 128 fiters 128 filters rm

Lu
Relu Norm drop Relu Norm dr Norrn Norm dr
m Pool m RelLu mom Sum ReLu °PSum drop Sum ReLu op Sum

Norm
3x3 conv 3x3 conv 3x3conv  3x3 conv 3x3 conv 3x3 conv 3x3 conv 3x3 conv ReLy FC (84)Softmax
256 filters 256 filters °"“ 256 filters  5pp gars  Norm512 filters 512 filters N°"“ 512ﬁlters 512 filters Sem“

Norm Norm Norm Norm dr
op
m Relu mdrop Sum @ Relu drop Sum Relu drop Sum ReLu Sook

—_—

deep imaging



Important components of a CNN deep imaging

CNN Architecture Loss function & optimization
« CONV size, stride, pad, depth « Type of loss function
* RelLU & other nonlinearities * Regularization
« POOL methods « Gradient descent method
» # of layers, dimensions per layer « SGD batchand step size

* Fully connected layers

Other specifics: Pre-processing, initialization, dropout, batch normalization, augmentation



deep imaging

Other Computer Vision Tasks

Semantic Classification Object Instance Super-
Segmentation + Localization Detection Segmentation resolution

4x SRGAN (proposed) original

Figure 1: Super-resolved image (left) is almost indistin-

7 DA R PAYAC N NS - : = = £ = guishable from original (right). [4x upscaling]
GRASS, ; CAT DOG, DOG, CAT DOG, DOG, CAT
Y h'd

v
No objects, just pixels Single Object Multiple Object Tis v .00 bl omaie




deep imaging

Post-processing of your results: a few options at different stages

Options to examine your test data after processing:
« ROC curve, Precision-Recall

» Confusion matrix
 Sliding window visualization
« Layer visualizations

« Saliency maps etc.

 tSNE visualization
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Instead, compress x-y dimensions of input image

deep imaging
U-Net Architecture
« Compress spatial features into T
. 128

learned filters Compress Decompress 1111
« Then, decompress learned filters input

back into same spatial image s » »|» |+ Output

. . e ol ol oofl o 7 1

dimensions encoder)  (decoder) 2| 9 g ¢ image tile
« Can be an autoencoder e gl &l 8
« Analogous to image compression o] o)

)

' 128 128

* A very powerful idea...

256 128

oM ©
N — o

512 256 t
‘ ]'E 'gl =» conv 3x3, ReLU

SRS copy and crop

2842

U-Net: Convolutional Networks for Biomedical
Image Segmentation

Olaf Ronneberger, Philipp Fischer, and Thomas Brox

Computer Science Department and BIOSS Centre for Biological Signalling Studies,
University of Freiburg, Germany
ronneber@informatik.uni-freiburg.de,

WWW home page: http://1lmb.informatik.uni-freiburg.de/

¥ max pool 2x2
4 up-conv 2x2
=p conv 1x1



Bringing together physical and digital image representations %

deep imaging
Physical Layers Digital Layers
z Task
. . ey ‘ r’_— o ] :TCRILRCK
Physical ] D'g'lt'zed sANV{= I
Function I, S 0 X H E
IS : f[I 0] CONVjTION + RELU POOLING CONVOLUTION + RELU POOLING FLATTEN FiY SOFTM_A)(BICYCLE
J k CONNECTED j
Y Y
FEATURE LEARNING CLASSIFICATION
Digital layers Physical layers

/ /
Task = W, ...ReLUW, ReLU[W, f[l]]...]



What physical parameters effectimage formation?

[llumination

» Spatial pattern

« Angle of incidence

» Color, polarization
Lens and optics

* Position/orientation

« Shape

 Focus

« Transparency
Detector

* Pixel size

» Pixel shape & fill factor

* Color filters

* Otherfilters

 EtoP curves

» Digitization schemes/thresholds
« Data transmission, multiplexing

Physical object

Input: physical object

[llumination

Output:
Detected image

Lens and optics

deep imaging

n x m pixel array

S

Digitazation PRotons to

electrons

Detector



Example code to achieve this is in Homework #5 and linked on course website:
: Jupyter physical_layers_example unsaved changes) @ Logout
File Edit View Insert Cell Kernel Help Not Trusted | Python3 O

B+ x @ B 4+ ¥ M B C Code

-

<
B

n N -

In [2]:
Out[2]:
In [0]:
In [0]:
In [0]:

import tensorflow as tf

import numpy as np

import matplotlib.pyplot as plt
tf. version

'2.0.0"

mnist = tf.keras.datasets.mnist
(x_train, y train), (x_test, y test) = mnist.load data()
x_test, x_train = x_test/255.0, x train/255.0 # normalization

# add channel dimension, Tensorflow requests NHWC (or BHWC) format. Number/Batch size, height, width, channels
# for 1D vectors, it should be Number/Batch size, length

X_train = x_train[...,None]

X test = x test[..., None]

# another way to define models
# lets us access intermediate results too

mask to multiply = tf.Variable(initial value = tf.initializers.GlorotNormal() (shape=(28,28,1)), trainable = True)
mask to multiply tf.expand dims(mask_to multiply, 0) # add extra axis for batch size

#PHYSICAL LAYERS

input image = tf.keras.layers.Input(shape = (28,28,1)) # Input layer, shape should be given as HWC

out = tf.math.multiply(input_image, mask_to multiply) # hadamard product for illumination physical layer

out = tf.keras.layers.Conv2D(filters = 1, kernel size = 5, strides =1, padding ="same", activation = "relu")(out) # con
el

E——

deep imaging
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Extensions beyond CNN’s

Machine Learning and Imaging — Roarke Horstmeyer (2020)



Many-to-one recurrent neural network

»

Measurement

fx, Ny1)

Backpropagate to
minimize dL/dW, dL/DU

Simple network structure:

v

State h,

|

Output o,

|

Label y —— Loss function L(o, y)

JE=

deep imaging
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The long short-term memory network deep imaging

Forget gate: S. Hochreiterand J. Schmidhuber (1997)

(t) - f f (t 1 output
N S W é

Internal state:
t (T —1 1
= 4 14 (z+zw” S X

External input gate:

gt_a bg Z ] J ZW‘Lth.gt Y

LSTM output: e 4)

20— s (49) AWAWAWA

input gate > > output gate



deep imaging

Reinforcement learning - in a nutshell

 So far, we’ve looked at:
1) Decisions from fixed images (classification, detection, segmentation)

CNN’s

2) Decisions from time-sequence data (captioning as classification, etc.)
Decisions from images and time-sequence data (video classification, etc.)

RNN’s

« Now, we’re going to consider decisions for dynamic data
« Most successful application: dynamic image data
e.g.: video games, images of a Go game, car turning through obstacles

Reinforcement Learning



Supervised ML Reinforcement learning _,%

_ / deep imaging
e & e TH IV, o - 1 Outcome: I
V - E - Rt it i
o - Q Cell type B = T -

Outcome:
Win the game!

Fixed image sequence

Dynamic image sequence

Goal: match to known label Goal: get to known desired outcome

(large labeled dataset needed) (no labels needed, really...)

Output: label Output: sequence of actions

Examines all data Not possible to examine all data
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How can this be applied to optimized imaging?

Observations (0;)

Microscope . .
2 03
A 4
N4 Agent (6) — Decision

Sample (S)
|

» o o o Parameters (qbt)
LED Array - = s L

A



deep imaging

The Machine Learning in Imaging Ethics Questionnaire

Situation 4: In 10 years, you go up to a modified microscope, “the Tissue Scanner
30007, that has a number of fancy lenses and lights. As a machine learning expert by
now, you’re aware that this microscope is optimized for looking at skin lesions. It
performs a scan with a particular lighting configuration and reports a score of 98%
confident that the lesion is benign, allowing you to look through other examples. It asks
If you’d like another scan for additional confidence or a different outcome, at which
point the illumination changes and it does some more scanning and reports a 99%
confidence level. You can continue with another scan, but...

Are you now comfortable with leaving the office?

Yes:

No:





