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Human-centered hardware design Computer-centered software design

Where your final 
project is aimed

Computer-
centered hardware 

+ software
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Real World
Measurement device

Continuous
complex fields

Black box transformations
• Convolution
• Fourier Transform

Digitization 

Sampling 
Theorem

Discrete math & 
Linear algebra

Machine Learning

Optimization

Linear classification

Logistic classifier

Neural networks

Convolutional NN’s

ML+Imaging pipeline introduction

γ -> e-

Summarize with simple models Use Tensorflow
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deep imagingPhysical models for light propagation to sensor

• Interpretation #1: Radiation  (Incoherent)
• Model: Rays • Real, non-negative

• Complex field
• Interpretation #2: Electromagnetic wave (Coherent)
• Model: Waves

Is = H B S0

IC = | H C SC |2

• Sample absorption S
• Illumination brightness B
• Blur in H

• Sample abs./phase S
• Illumination wave B
• Blur in H
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Mathematical model of for incoherent image formation 

Illumination brightness: S0(x,y)

B S0

Object absorption:

(B S0) * h
multiplication

convolution

• All quantities are real, and non-negative 

B(x,y)
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=
Input 
intensity

Output intensity
Convolution filter h

Lenses blur and rescale images:

“Incoherent point-
spread function”

h(x,y)  = | F[ A(fx,fy) ] |2
h(x,y) 

A(fx,fy) 

] |2= | F [
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Mathematical model of for incoherent image formation 

Illumination brightness: S0(x,y)

B S0

Object absorption:

(B S0) * h
multiplication

convolution

• All quantities are real, and non-negative 

B(x,y)

Photons (intensity) hits 
detector

Is = H B S0
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deep imagingPhysical models for light propagation to sensor

• Interpretation #1: Radiation  (Incoherent)
• Model: Rays • Real, non-negative

• Complex field
• Interpretation #2: Electromagnetic wave (Coherent)
• Model: Waves

Is = H B S0

IC = | H C SC |2

• Sample absorption S
• Illumination brightness B
• Blur in H

• Sample abs./phase S
• Illumination wave B
• Blur in H



Machine Learning and Imaging – Roarke Horstmeyer (2020)

deep imagingLet’s	take	a	step	back:	how	does	light	propagate?

Maxwell’s	equations	
without	any	charge

1. Take	the	curl	of	both	sides	of	 first	equation
2. Substitute	2nd and	3rd equation
3. Arrive	at	the	wave	equation:
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deep imagingLet’s	take	a	step	back:	how	does	light	propagate?

Considering	 light	that	isn’t	pulsed	over	time,	we	can	use	the	following	solution:

With	this	particular	solution,	 we	get	the	following	 important	 time-independent	 equation:

This	is	an	important	equation	in	physics.	We	won’t	go	into	the	details,	but	it	leads	to	the	Huygen-Fresnel	principle:

Helmholtz	
Equation

2
2

2
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deep imagingFrom	the	Fresnel	approximation	to	the	Fraunhofer approximation

Fresnel	Approximation:

Lets	assume	that	the	second	plane	is	“pretty	far	away”	from	the	first	plane.	Then,

1.	Expand	the	squaring	

2.	Front	term	comes	out,	assume	second	term	goes	away,	then,

Fraunhofer diffraction	 is	a	Fourier	 transform!!!!!!!
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deep imagingModel	of	a	microscope	(or	camera)	using	Fourier	transforms:

2D	Fourier	Transform

from	lens	to	sensor,	 light	undergoes	 an	

inverse	Fourier	 transform!

2D	inverse	Fourier	Transform
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Sample absorption = S(x,y)

Incident field:

C(x,y) = Ai(x,y) 

Mathematical model of for coherent image formation 

• Pretty much the same thing, but now we have an amplitude and a complex phase

Point #1: Amplitudes behave just like before

Transmitted field:

U(x,y) = At(x,y) = Ai(x,y) S(x,y)

(Laser	light
or

Ultrasound)

At(x,y) = Ai(x,y) S(x,y) 

100 
photons

20% 
transmission

20 
photons
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Sample absorption = S(x,y)

Sample phase delay = exp[ikϕ(x,y)]

Incident field:

C(x,y) = Ai(x,y) exp[ikϕi(x,y)]

Mathematical model of for coherent image formation 

• Pretty much the same thing, but now we have an amplitude and a complex phase

New: complex phase delay 
• Needed to represent wave
• Represents wave delay across space

Transmitted field:

U(x,y) = Ai(x,y) S(x,y) exp[ikϕt(x,y)]

(Laser	light
or

Ultrasound)
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Sample absorption = S(x,y)

Sample phase delay = exp[ikϕ(x,y)]

Mathematical model of for coherent image formation 

• Pretty much the same thing, but now we have an amplitude and a complex phase

New: complex phase delay 

(Laser	light
or

Ultrasound)

ϕi(x,y) = 0

π/6 deg. 
Phase delay
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deep imagingModel	of	image	formation	for	wave	optics	(coherent	light):

Discrete sample 
function s(x,y) 
(complex)

2. Compute its 2D 
Fourier transform

“Fourier plane”

ŝ(fx, fy)

2D FT

1. Transmitted field 
sc(x,y) = C(x,y) s(x,y) 

3. Multiply by 
“aperture” 
function A(fx, fy)

4. Compute 
inverse Fourier 
transform s’(x’,y’) 
(complex)

“Blurred 
image”

2D IFT

5. Detector 
measures 
|s’(x’,y’)|2

Model #1: Ic(x,y) = |F-1AFCs|2



Machine Learning and Imaging – Roarke Horstmeyer (2020)

deep imaging

Coherent image blur – two implementations

U1(x,y) U2(x,y)=
Input image Output image

Convolution filter h

F [U1]
F [h]

Û1(fx,fy)

Input 
spectrum 

• =

F -1[HÛ1]

fx

fy

fx

fy

fx

fy
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deep imagingModel	of	image	formation	for	wave	optics	(coherent	light):

Discrete sample 
function s(x,y) 
(complex)

1. Transmitted field 
sc(x,y) = C(x,y) s(x,y) 

4. Blur image: 
s’=sc(x’,y’) * h(x’,y’)

2D IFT

5. Detector 
measures 
|s’(x’,y’)|2

Model #2: Ic(x,y) = |h * Cs|2

2. “aperture” 
function A(fx, fy)

3. Compute blur 
function
h(x,y) = F[A(fx, fy)]
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Real World
Measurement device

Continuous
complex fields

Black box transformations
• Convolution
• Fourier Transform

Digitization 

Sampling 
Theorem

Discrete math & 
Linear algebra

Machine Learning

Optimization

Linear classification

Logistic classifier

Neural networks

Convolutional NN’s

γ -> e-

IInc = H B S0

ICoh = | H C SC |2
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Model
Output

y* Ex. [x1,y1] Ex. [xK,yK]

… Training 
Data

Training error

dL/dW

What we need for network training:
1. Labeled examples  
2. A model and loss function 
3. A way to minimize the loss function L

Summary of machine learning pipeline:

Lin(y, f(W,x)) f(W,x)

1. Network Training 



Machine Learning and Imaging – Roarke Horstmeyer (2020)

deep imaging
Summary of machine learning pipeline:

2. Network Testing

What we need for network testing:

4. Unique labeled test data
5. Evaluation of model error

Modely* Ex. [xL,yL] Ex. [xN,yN]

… Test Data not from 
Training Dataset

Test error

Lout(y, y*) f(W,x)
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Let’s start with a simpler approach: linear regression

General linear model: W

xy

# classes

Assume 1 class = 
1 linear fit wT

xy

=

=1 var.

Use MSE error 
model

Where labels 
determined by 
thresholding
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x1 x2

y

• If yi can be anything, minimizing L
makes w the plane of best fit 

Without sgn(): regression for best fit

w

-w0/|w|



Machine Learning and Imaging – Roarke Horstmeyer (2020)

deep imaging

x1 x2

y

• Anything point to one side of y=0 
intersection is class +1, anything on 
the other side of intersection is 
class -1

With sgn() operation:

-1

+1 Projected to -1 or +1

0

Why does linear regression with sgn() achieve classification?
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x1 x2

Sign operation takes linear regression 
and makes it a classification operation!

With sgn() operation:

y=-1
y=+1Linear classification 

boundary

Why does linear regression with sgn() achieve classification?
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dL(W1)/dW1 = 12.8-12.79/.001

dL(W1)/dW1 = 10

With a matrix, compute this for each entry:

In the rest of this class: solve via gradient descent

W1+h = [1.001,2;3,4]
L(W1+h, x, y) = 12.8 

Example: 

W = [1,2;3,4]
L(W, x, y) = 12.79

- Repeat	for	all	entries	of	W,	dL/dW will	have	NxMentries	for	NxMmatrix
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deep imagingSteepest descent and the best step size ε

1. Evaluate function f(x(0)) at an initial guess point, x(0)

2. Compute gradient g(0) = ∇xf(x(0))

3. Next point x(1) = x(0) - ε(0)g(0)

4. Repeat – x(n+1) = x(n) - ε(n)g(n), until |x(n+1)-x(n)| < threshold t
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x

y

Training data

x

y

Learned f: not flexible

W1

xf

=

Learned f: a bit flexible

Training data

W1

xf

= W2 •	NL •

x

y

Learned f: more flexible
We can keep adding 
these “layers”…Does it generalize???
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1. Can we make sure the in-sample error Lin(y, f(x,W)) is small enough?
• Appropriate cost function
• “complex enough” model

2.   Can we make sure that Lout(y, f(x,W)) is close enough to Lin(y, f(x,W))? 
• Probabilistic analysis says yes!
• |Lin – Lout| bounded from above
• Bound grows with model capacity (bad)
• Bound shrinks with # of training examples (good)

Before CNN’s – understand two competing goals in machine learning
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deep imagingImportant components of a CNN

CNN Architecture Loss function & optimization

• CONV size, stride, pad, depth

• ReLU & other nonlinearities

• POOL methods

• # of layers, dimensions per layer

• Fully connected layers 

• Type of loss function

• Regularization

• Gradient descent method

• SGD batch and step size

Other specifics: Pre-processing, initialization, dropout, batch normalization, augmentation
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Super-
resolution
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Post-processing of your results: a few options at different stages

Options to examine your test data after processing:
• ROC curve, Precision-Recall

• Confusion matrix
• Sliding window visualization

• Layer visualizations

• Saliency maps etc.
• tSNE visualization
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deep imagingInstead, compress x-y dimensions of input image 

• Compress spatial features into 
learned filters

• Then, decompress learned filters 
back into same spatial 
dimensions

• Can be an autoencoder
• Analogous to image compression
• A very powerful idea…

Compress Decompress

U-Net Architecture 

(encoder) (decoder)
Output	
image	tile
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Bringing together physical and digital image representations

Task

Physical
Function I0

Digitized 
Is

Is = f[I0]

Task = Wn …ReLU[W1 ReLU[W0 f[I0]]…]

Physical	Layers Digital	Layers

Physical layersDigital layers

f[ ]
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Output: 
Detected image

Photons	 to	
electrons

Digitazation

n x m pixel array

8 8
Input: physical object

What physical parameters effect image formation?

• Illumination
• Spatial pattern
• Angle of incidence
• Color, polarization

• Lens and optics
• Position/orientation
• Shape
• Focus
• Transparency

• Detector
• Pixel size
• Pixel shape & fill factor
• Color filters
• Other filters

• Digitization
• E to P curves
• Digitization schemes/thresholds
• Data transmission, multiplexing

• Physical object

Illumination

Lens and optics Detector

Digitization
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Example code to achieve this is in Homework #5 and linked on course website:
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Extensions beyond CNN’s
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M
ea

su
re

m
en

t

f(xt, ht-1)

State ht

Output ot

Many-to-one recurrent neural network

Label y Loss function L(ot, y)

Simple network structure:

ht = ReLU[Wht-1 + Uxt + b]

W W W W

U U U

Backpropagate to
minimize dL/dW, dL/DU V
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S. Hochreiter and J. Schmidhuber (1997)Forget gate:

Internal state:

External input gate:

LSTM output:
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Reinforcement learning - in a nutshell

2) Decisions from time-sequence data (captioning as classification, etc.)

• So far, we’ve looked at:
1) Decisions from fixed images (classification, detection, segmentation)

CNN’s

• Now, we’re going to consider decisions for dynamic data
• Most successful application: dynamic image data

e.g.: video games, images of a Go game, car turning through obstacles

Decisions from images and time-sequence data (video classification, etc.)
RNN’s

Reinforcement Learning
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“jump”

block

forward

“jump”

block
forward

“jump”

block
forward

Outcome: 
Win the game!

…

…

…

Supervised ML Reinforcement learning
Outcome: 
Cell type B

• Fixed image sequence • Dynamic image sequence

• Goal: match to known label • Goal: get to known desired outcome

• Output: label • Output: sequence of actions

(no labels needed, really…)

• Examines all data • Not possible to examine all data

(large labeled dataset needed)
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The Machine Learning in Imaging Ethics Questionnaire

Situation 4: In 10 years, you go up to a modified microscope, “the Tissue Scanner 
3000”, that has a number of fancy lenses and lights. As a machine learning expert by 
now, you’re aware that this microscope is optimized for looking at skin lesions. It 
performs a scan with a particular lighting configuration and reports a score of 98% 
confident that the lesion is benign, allowing you to look through other examples. It asks 
If you’d like another scan for additional confidence or a different outcome, at which 
point the illumination changes and it does some more scanning and reports a 99% 
confidence level. You can continue with another scan, but…

Are you now comfortable with leaving the office?

Yes:

No: 




