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Announcements and schedule

« Last Lecture: Thursday 4/16, course review

« TA’s will hold labs on M/W next week

« Homework #5 Due: Tuesday April 21 (1 week)

« Then final projects will be due (Friday 24 — Wednesday 29)

* Project help:
« | will continue my office hours
 Wednesday and Thursday, 10am — 11am
« Email me if you’d like to meet another time
« Email TA’s / reach out on Slack to meet them as well — | think they might setup
some additional times to help out
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Components of final project

40% of total grade
1. Presentation Slides — 10%
- 8-10 minute presentation, 1 minute for questions
2. 4-6 page write up with at least 3 figures and 5 references - 20%
- Introduction, related work, methods, results, discussion
3. Code used for final results in folder or .ipynb’s — 5%
4. brief website template & permission to share results - 5%
5. shared annotated datasets & permissions — no grade, but would be much

appreciatedif using an interesting dataset



Final project webpage
- Must be submitted
- Will share template

- Will post to
deepimaging.io with
permission

- Will also send permission
form, which must be
submitted with final
project as well

Optimizing illumination for overlapped classification

Amey A Chaware

amey.chaware@duke.edu

Paper PDF
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This project presents an imaging system that simultaneously captures multiple images and automatically classifies
their contents to increase detection throughput. Our optical design consists of a set of multiple lenses that each
image a unique field-of-view onto a single image sensor. The resulting “overlapped” image exhibits reduced contrast,
but includes measurements from across a proportionally larger viewing area. We then post-process this overlapped
image with a deep convolutional neural network to classify the presence or absence of certain features of interest.
We examine the specific case of detecting the malaria parasite within overlapped microscope images of blood
smears. We demonstrate that it is possible to overlap 7 unique images onto a common sensor while still offering
accurate classification of the presence or absence of the parasite, thus offering a 7x potential speed-up for
automated disease diagnosis with microscope image data. Additionally, we explore the use of supervised deep-
learning network to jointly optimize the physical setup of an optical microscope to improve automatic image
classification accuracy in overlapped imaging. We take advantage of the wide degree of flexibility available in
choosing how a sample is illuminated in a microscope to design a specific pattern of light that leads to a better
performance.

Paper:
. Paper PDF

Code and Data:

« You can provide a link to your code here: Code

—
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Where are things going with Machine Learning and Imaging in 10 years?



Where are things going with Machine Learning and Imaging in 10 years?

1. Proliferation of trained models, similar datasets and shared goals

S— Visipedia
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Where are things going with Machine Learning and Imaging in 10 years? deep imaging

2. “Cameras” on many devices & new types of sensors

Standard CMOS pixel = bucket that collects electrons SPAD pixel: was there a photon or not?
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Where are things going with Machine Learning and Imaging in 10 years? geep maging
2. “Cameras” on many devices & new types of sensors

- Lighttravels 1 ftin 1 ns.

- SPADs can precisely photon arrival time to measure travel distance (TOF)

laser m /\

Detected photon
-

I I
| |
I I _
I 1 | |
I 1 | |
I 1 I |
Pulsed laser | ! ! |
| > ! | ¢ »!
start-stop-time 1 I : start-stop-time 2 '

SPAD array @ 34ns @ 4.7 ns

https://www.picoquant.com/images/uploads/page/files/7253/technote tcspc.pdf




Where are things going with Machine Learning and Imaging in 10 years? deep imaging

2. “Cameras” on many devices & new types of sensors

Background light
Figure 1: Imaging Through Thick Scattering.

Processing SPAD camera
Translator I

Field of view

Scene of interest

Pulse broadening Diffuser

Pulsed laser

mirrors

G. Satat et al, https://www.nature.com/articles/srep33946

Frontal view Tilted view

D. Shen et al, https://www.nature.com/articles/ncomms12046




LIiDAR
Scanner

LiDAR (Light Detection and Ranging) is
used to determine distance by measuring
how long it takes light to reach an object
and reflect back. It is so advanced, it's
being used by NASA for the next Mars

landing mission. And it's now been
engineered to fit in the thin and light
iPad Pro.

The custom-designed LiDAR Scanner
uses direct time of flight to measure
reflected light from up to five meters away,
both indoors and out. It works at the
photon level, operates at nanosecond
speeds, and opens up tremendous
possibilities for augmented reality

and beyond.

deep imaging



Where are things going with Machine Learning and Imaging in 10 years? deep imaging

3. Beyond convolutions - new constructs for deep networks



Where are things going with Machine Learning and Imaging in 10 years? deep imaging

3. Beyond convolutions - new constructs for deep networks

Dynamic Routing Between Capsules

Sara Sabour Nicholas Frosst

Geoffrey E. Hinton
Google Brain
Toronto
{sasabour, frosst, geoffhinton}@google.com
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Where are things going with Machine Learning and Imaging in 10 years?

3. Beyond convolutions - new constructs for deep networks

Capsule vs. Traditional Neuron
Input from low-level
P vector(u;) scalar(zx;)
capsule/neuron
Affine -
Transform ujji = Wit .
Operation v 2.2 42
Weightin -
SR s = Yty | @y = X, wimi+b
Sum
Nonlinear Is;[I? s
pp— ¢ J . o .
Activation | 7 1+ls]? Tis;ll hj = f(a;)
Output vector(v;) scalar(h;)
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Where are things going with Machine Learning and Imaging in 10 years?

4. Generative data is getting pretty realistic...

Face2Face: Real-time Face Capture and Reenactment of RGB Videos

Justus Thies Michael Zollhofer 2 Marc Stamminger 3 Christian Theobalt 2 Matthias NieRner '

" Technical University of Munich 2 Max Planck Institute for Informatics 3 University of Erlangen-Nuremberg

RGB-Input

Transfer

Example of Realistic Synthetic Photographs Generated with BigGANTaken from Large Scale GAN Training for High Fidelity So urce
Natural Image Synthesis, 2018.

Proc. Computer Vision and Pattern Recognition (CVPR), IEEE, June 2016

What are the implications of this for medical imaging?
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Generative Models

Given training data, generate new samples from same distribution

B4 B

Training data ~ p,_,.(X) Generated samples ~

model )

Want to learn p_ . (x) similar to p__, (X)

Stanford CS231n, Lecture 12
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Generative Models

Given training data, generate new samples from same distribution

A r.—:aq

Training data ~ p,,.(X) Generated samples ~ p

model X)

Want to learn p_ . (x) similar to p__, (X)

Addresses density estimation, a core problem in unsupervised learning

Several flavors:
- Explicit density estimation: explicitly define and solve for p . (x)
- Implicit density estimation: learn model that can sample from p__._(x) w/o explicitly defining it

Stanford CS231n, Lecture 12



Taxonomy of Generative Models

Direct

Generative models

/\

Explicit density

L

Implicit density

GAN

\

Tractable density

Approximate density

Markov Chain

Fully Visible Belief Nets

e

- NADE
- MADE

Variational

- PixelRNN/CNN
Change of variables models
(nonlinear ICA)

\

Markov Chain

Variational Autoencoder Boltzmann Machine

GSN

E=

Jdeep imaging

Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Stanford CS231n, Lecture 12



Taxonomy of Generative Models

Direct

Generative models

/\

Explicit density

L

Implicit density

GAN

\

Tractable density

Approximate density

Markov Chain

Fully Visible Belief Nets

e

- NADE
- MADE

Variational

\

Markov Chain

- PixelRNN/CNN
Change of variables models

Variational Autoencoder Boltzmann Machine

(nonlinear ICA)

GSN

E=

Jdeep imaging

Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Stanford CS231n, Lecture 12
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Example: Variational Autoencoder (VAE)

Force this vector to follow a Gaussian PDF

—~

* Good generative model

Encoder Decoder 0 c 4 .
e — =) | Network * Have a clean probability distribution to
{ont) (d=conz) select from to generate new examples

latent vector / variables

Minimize (KL) distance between latent
vector and Gaussian normal

VAE reconstruction
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Example: Variational Autoencoder (VAE)

* With Gaussian PDF, can startto
add/subtract latent vector in a

Force this vector to follow a Gaussian PDF normalized vector space
Encoder Decoder
Network — = | Network
(conv) (deconv)
latent vector / variables Face without glasses

Minimize (KL) distance between latent

' Adding new features to samples
vector and Gaussian normal

Glasses

Generative Example (once trained):

* Encode image with glasses, obtain latent vector PDF P,
* Encode image without glasses, obtain PDF P,

* Compute diff = Pg- P,

* Encode new image to obtain P, , add in diff

* Decode P, + diff to get guy with glasses!

Exploring a specific variation of input data[1]



Example: Variational Autoencoder (VAE)

Force this vector to follow a Gaussian PDF

—~

Encoder Decoder
Network - — Network
(conv) (deconv)
latent vector / variables
Sample from
true conditional h
po- (| =) }
Decoder
network
Sample from
true prior
P 2

po-(2)

JE=
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Taxonomy of Generative Models

Generative models

Direct

GAN

/\

Explicit density

L

Tractable density

Implicit density

\

Approximate density

Markov Chain

Fully Visible Belief Nets

— MADE
PixelRNN/CNN

NADE

e

Variational

Change of variables models
(nonlinear ICA)

Variational Autoencoder

\

GSN

Markov Chain

Boltzmann Machine

E=

Jdeep imaging

Figure copyright and adapted from lan Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Stanford CS231n, Lecture 12



Fully visible belief network

Explicit density model
Use chain rule to decompose likelihood of an image x into product of 1-d

distributions:
([

p(.CL') — Hp(:z:z-\xl, ...,LL‘Z‘_l)
o=

Likelihood of Probability of i'th pixel value
Image X given all previous pixels

Then maximize likelihood of training data
Stanford CS231n, Lecture 12



Fully visible belief network

Explicit density model

Use chain rule to decompose likelihood of an image x into product of 1-d
distributions:

n
This is a really complex
p(CL‘) — H p(.’Ez ‘33]_ g seey :Ez_]_) distribution, obviously
T =1 T Simplify by going
through image pixel by
Likelihood of Probability of i'th pixel value  pixel, rely on RNN
Image X given all previous pixels

Then maximize likelihood of training data
Stanford CS231n, Lecture 12



PixelRNN pan der oord et al. 20167

Generate image pixels starting from corner

Dependency on previous pixels modeled
using an RNN (LSTM)

Drawback: sequential generation is slow!

O O—

© O

© O O

© O O O
© O O O O

Stanford CS231n, Lecture 12
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occluded completions

Figure 1. Image completions sampled from a PixeIRNN.

A. Van der Oord et al., https://arxiv.org/abs/1601.06759
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Plxel C N N [van der Oord et al. 2016]

Softmax loss at each pixel

Still generate image pixels starting from
corner

Dependency on previous pixels now
modeled using a CNN over context region / /

Training: maximize likelihood of training

Images
n

p(z) = Hp(xz'|371, ey Ti—1)

1=1

Figure copyright van der Oord et al., 2016. Reproduced with permission.



GARBAGE IN, NON-GARBAGE OUT —

Google Brain super-resolution image

124
!

tech makes “zoom, enhance!” real

Google Brain creates new image details out of thin air.

SEBASTIAN ANTHONY - 2/7/2017, 8:38 AM

deep imaging
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So far...

PixelCNNs defin(TeL tractable density function, optimize likelihood of training data:

p@(x) — Hp9($i|x1, ceey .’1’)7;_1)
=1

VAESs define intractable density function with latent z:

po(z) = / po(2)pe (z]2)dz

Cannot optimize directly, derive and optimize lower bound on likelihood instead

Stanford CS231n, Lecture 12
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So far...

PixelCNNs defincTeL tractable density function, optimize likelihood of training data:

p@(x) — Hp9($i|x1, ceey .’17.,;_1)
=1

VAESs define intractable density function with latent z:

po(e) = [ po(2Ipo(alz)dz
Cannot optimize directly, derive and optimize lower bound on likelihood instead
What if we give up on explicitly modeling density, and just want ability to sample?
GANSs: don’t work with any explicit density function!

Instead, take game-theoretic approach: learn to generate from training distribution
through 2-player game

Stanford CS231n, Lecture 12



l. A. Attacking a network with adversarial examples %
1aging
Goal: Given a network pretrained on ImageNet, find an input image that is not a iguana
but will be classified as an iguana.

f0.04\ “car"
0.85 1 “iguana
Neural network 0.0 | oo
X | = (pretrainedon | > [oer|we
ImageNet) atl
k0.0'Z) “crab”
(0)
1. Rephrasing what we want: 1 2. Defining the loss function 3. Optimize the image
) . ’ R 1 R Net\fvork A
Find x such that: 3(x)=y,.... =| 0 L(3:9)= 2 |POV5:2) = ¥ g i X = e ) L(Y, )
0
. After many iterations l
0 oL _aL
? ™ X=x—0o ™
[lan J. Goodfellow, Jonathon Shlens & Christian Szegedy (2015): Explaining and harnessing adversarial examples] Kian Katanforoosh, Andrew Ng, Younes Bensouda Mourri

Stanford CS230, Lecture 3
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l. A. Attacking a network with adversarial examples

Question: Will the forged image x look like an iguana?
-~ N

75 632x32x3 ~1 07400 Sp_ace of possible Space of injlages classified
= input images as iguanas

—

Space of real images

Kian Katanforoosh, Andrew Ng, Younes Bensouda Mourri

Stanford CS230, Lecture 3



l. A. Attacking a network with adversarial examples —>§

deep imaging

Goal: Given a network pretrained on ImageNet, find an input image that is a cat but will

be classify as an iguana.

1. Rephrasing what we want: 0

Find x such that: 7®=7..=0

And: x=x

cat

Neural network
(pretrained on
ImageNet)

(0.04)
0.85
0.02

2 oo

0.81

002

2. Defining the loss function

LG =5 P55 =7 g
#Alk-x, |}

[lan J. Goodfellow, Jonathon Shlens & Christian Szegedy (2015): Explaining and harnessing adversarial examples]

“car”

“iguana
“tomato”
“hillke™

“cat”

3. Optimize the image

Network A
E M | e L)

After many iterations 1 \—/

Kian Katanforoosh, Andrew Ng, Younes Bensouda Mourri

Stanford CS230, Lecture 3



l. A. Attacking a network with adversarial examples

15632323 _ 1()7400 Space of possible Space of images classified
= input images " as iguanas

Space of real images

Space of images that look real to humans

Kian Katanforoosh, Andrew Ng, Younes Bensouda Mourri




l. B. Defenses against adversarial examples %

1aging

Knowledge of the attacker:

White-box
Black-box

Solution 1

Create a SafetyNet _ PPN

Solution 2

Train on correctly labelled adversarial examples

Solution 3

* Adversarial training L = L(W,b,x,y)+ALW ,b,x_, ,y)
* Adversarial logit pairing L = L(W,b,x,y)+ le(x;W,b) — f(xadv;W,b)I E

[Lu et al. (2017): SafetyNet: Detecting and Rejecting Adversarial Examples Robustly]
[Harini Kannan et al. (2018): Adversarial Logit Pairing] Kian Katanforoosh, Andrew Ng, Younes Bensouda Mourri

Stanford CS230, Lecture 3
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NO Need to Worry about Adversarial Examples in Object Detection in
Autonomous Vehicles

Jiajun Lul Hussein Sibai; Evan Fabry, David Forsyth
University of Illinois at Urbana Champaign
{jlu23, sibai2, efabry2, daf} @illinois.edu



It has been shown that most machine learning algorithms
are susceptible to adversarial perturbations. Slightly per-
turbing an image in a carefully chosen direction in the im-
age space may cause a trained neural network model to mis-
classifv it. Recently, it was shown that physical adversarial
examples exist: printing perturbed images then taking pic-
tures of them would still result in misclassification. This
raises security and safety concerns.

Original hypothesis: "Do adversarial examples exist?"

To prove true: need just one example

To prove false: seems challenging... (do unicorns exist?)

JE=

deep imaging



However, these experiments ignore a crucial property of %
physical objects: the camera can view objects from differ- —a-

ent distances and at different angles. In this paper, we show deepimaging
experiments that suggest that current constructions of phys-

ical adversarial examples do not disrupt object detection

from a moving platform. Instead, a trained neural network

classifies most of the pictures taken from different distances

and angles of a perturbed image correctly. We believe this is

because the adversarial property of the perturbation is sen-

sitive to the scale at which the perturbed picture is viewed,

so (for example) an autonomous car will misclassify a stop

sign only from a small range of distances.

New hypothesis: "Are adversarial examples robust?"

To prove true: need just one example implementation

To prove false: Need to show all possible implementations fail




4 different adversarial examples for object detector: %

E——

deep imaging
No Attack FastSign Attack  Iterative Attack LBFGS Attack

4 different adversarial examples for object classifier:

No Attack FastSign Attack  Iterative Attack LBFGS Attack




No Attack | FastSign Attack terative Attack  LBFGS Attack

Figure 3: This figure shows experiment setup, and we use the printed stop signs to simulate real stop signs with natural
background. These are examples for successful 0.5 meters and 1.5 meters detection: both original images and adversarial
examples are detected in both distances. It demonstrates that adversarial examples in a physical setting do not reliably fool
stop sign detectors.

—

deep imaging
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Within 5 days (!), a blog post from OpenAl:

https://blog.openai.com/robust-adversarial-inputs/



Generative adversarial networks

E——

. deep imaging

IlLA - Motivation

Probability distributions:

Samples from the “real data distribution” “real data distribution”

-~ #40 \

=

Matching distributions

Goal

Image space
“generated distribution”

Image space

Image space

[Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaogang Wang, Xiaolei Huang, Dimitris Metaxas (2017): StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks) Klan Katanforoosh , And rew N g , YOU nes Bensouda MOU rri

Stanford CS230, Lecture 3




II.B - G/D Game —'

deep imaging

100-d (64,64,3)
random code generated image
047

Generator “G”
(Neural Network)

0.19
How can we train G to generate images from the true data
distributions?
[Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xi Wang, Xiaolei Huang, Dimitris Metaxas (2017): StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks] Kian KatanforOOSh‘ Andrew Ng, Younes Bensouda Mourri

Stanford CS230, Lecture 3



100-d
random code

0.47

0.19

—\

|JE=

".B = G/D Game deep imaging

(64,64,3)
generated image

Generator “G”
(Neural Network)

Run Adam simultaneously on two minibatches
(true data / generated data)

Real images
(database)

Gradients Binary classification

;5 y=0 if x=G(z)

Discriminator “D”
(Neural Network)

y=1 otherwise

Probability distributions

Image space

Kian Katanforoosh, Andrew Ng, Younes Bensouda Mourri

Stanford CS230, Lecture 3



I.B - G/D Game - | | O%

1aging
100-d (64,64,3)
random code generated image
0.47

Generator “G”
(Neural Network)

0.19 ke 4
Z \ l GradientsBinary classification
End goal: G is outputting | Discriminator “D” < y=0if x=G(2)
images that are X \:{> (Neural Network)
indistinguishable from real y=1 otherwise
images for D

Probability distribution

Real images
(database)

Image space

Kian Katanforoosh, Andrew Ng, Younes Bensouda Mourri

Stanford CS230, Lecture 3



II.B - G/D Game %
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Training procedure, we want to minimize: L abels: + Yreal is always 1
| Veen is always O

* The cost of the discriminator

Myeal gen
(D) _ (i) OANY (i) (1)
7P =——L3 30 log(D)-—— Y (1- ) log(1- D(G(z"))
real i=1 ) gen =1
cross-entropy 1: cross-entropy 2:
“D should correctly label real data as 1" “D should correctly label generated data as 0”

e The cost of the generator

gen

(G) (D) — (i) “G should try to fool D: by minimizing the
J J log(l D(G(Z ))) opposite of what D is trying to minimize”
gen i=1
“Maximize probability that the discriminator is wrong and labels the fake
examp|e as a real examp|e” Kian Katanforoosh, Andrew Ng, Younes Bensouda Mourri

Stanford CS230, Lecture 3



II. D. In terms of code

. . . . def build_discriminator(self): imaging
# Build and compile the discriminator

self.discriminator =|self.build_discriminator() _
self.discriminator.compile(loss="'binary_crossentropy', model = Sequential()

optimizer=optimizer,

metrics=['accuracy'l]) model.add(Flatten(input_shape=self.img_shape))
model.add(Dense(512))
# Build the generator model.add(LeakyReLU(alpha=0.2))
self.generator =|self.build_generator() model.add(Dense(256))
model.add(LeakyReLU(alpha=0.2))
# The generator takes noise as input and generates imgs model.add(Dense(1, activation='sigmoid'))
z = Input(shape=(self.latent_dim,)) model.summary ()

img = self.generator(z)

img = Input(shape=self.img_shape)

# For the combined model we will only train the generator validity = model(img)

self.discriminator.trainable = False

# The discriminator takes generated images as input and determines validity return Model(img, validity)

validity = self.discriminator(img)

# The combined model (stacked generator and discriminator)

# Trains the generator to fool the discriminator

self.combined = Model(z, validity)
self.combined.compile(loss="binary_crossentropy', optimizer=optimizer)

Erik Linder-Norén (Github): eriklindernoren/Keras-GAN: link] Kian Katanforoosh, Andrew Ng, Younes Bensouda Mourri

Machine Learning and Imaging — Roarke Horstmeyer (2020)



Qperation on codes

Code 1

0.12

0.92

Code 2

Code 3

0.42

0.07

SN

=N

Generator “G”
(Neural Network)

Generator “G”
(Neural Network)

Generator “G”
(Neural Network)

Il.LE - Nice results

(64,64,3)
generated image

(64,64,3)
generated image

- il

(64,64,3)
generated image

-

Code 1

0.12

0.92

Man with glasses - man + woman = woman with glasses

Code 2 Code 3

0.47 0.42

0.19) 10.07

[Radford et al. (2015): UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS]

=\

Generator “G”
(Neural Network)

\i:(.;%
p>

1aging

Kian Katanforoosh, Andrew Ng, Younes Bensouda Mourri

Stanford CS230, Lecture 3
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https://colab.research.google.com/github/tensorflow/gan/blob
/master/tensorflow gan/examples/colab notebooks/tfgan tut
orial.ipynb?utm source=ss-gan&utm campaign=colab-
external&utm medium=referral&utm content=tfgan-intro

Machine Learning and Imaging — Roarke Horstmeyer (2020)



Take-aways for the future of machine learning and imaging

1. It’s not going away....it works, there’s a big community (and lots of $)
2. Hardware and software are rapidly evolving
3. CNN’s work very well, but they are not the final solution...

4. There is currently a lack of safeguards and not enough consideration for
how to ensure processed results are accurate, secure and trustworthy

5. Things are likely going to get quite complicated...

deep imaging



