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Announcements and schedule

• Last Lecture: Thursday 4/16, course review

• TA’s will hold labs on M/W next week

• Homework #5 Due: Tuesday April 21 (1 week)

• Then final projects will be due (Friday 24 – Wednesday 29)

• Project help:
• I will continue my office hours 

• Wednesday and Thursday, 10am – 11am
• Email me if you’d like to meet another time
• Email TA’s / reach out on Slack to meet them as well – I think they might setup 

some additional times to help out
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40% of total grade

1. Presentation Slides – 10%
- 8-10 minute presentation, 1 minute for questions

2. 4-6 page write up with at least 3 figures and 5 references – 20%
- Introduction, related work, methods, results, discussion

3. Code used for final results in folder or .ipynb’s – 5%

4. brief website template & permission to share results – 5%
5. shared annotated datasets & permissions – no grade, but would be much 

appreciated if using an interesting dataset

Components of final project
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- Must be submitted 

- Will share template

- Will post to 
deepimaging.io with 
permission

- Will also send permission 
form, which must be 
submitted with final 
project as well
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Caltech	Visipedia

1. Proliferation of trained models, similar datasets and shared goals
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2. “Cameras” on many devices & new types of sensors

Standard CMOS pixel = bucket that collects electrons SPAD pixel: was there a photon or not?

e-

e-
E=hv
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2. “Cameras” on many devices & new types of sensors

- Light travels 1 ft in 1 ns.

- SPADs can precisely photon arrival time to measure travel distance (TOF)

Detected photon

https://www.picoquant.com/images/uploads/page/files/7253/technote_tcspc.pdf

Pulsed laser

SPAD array
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2. “Cameras” on many devices & new types of sensors

G.	Satat	et	al,	https://www.nature.com/articles/srep33946

D.	Shen	et	al,	https://www.nature.com/articles/ncomms12046
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3. Beyond convolutions - new constructs for deep networks
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3. Beyond convolutions - new constructs for deep networks
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3. Beyond convolutions - new constructs for deep networks
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4. Generative data is getting pretty realistic...

What are the implications of this for medical imaging?
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Force	this	vector	to	follow	a	Gaussian	PDF

• Good	generative	model	
• Have	a	clean	probability	 distribution	 to	

select	from	to	generate	new	examples

Minimize	(KL)	distance	between	latent	
vector	and	Gaussian	normal
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Force	this	vector	to	follow	a	Gaussian	PDF

• With	Gaussian	PDF,	can	start	to	
add/subtract	latent	vector	in	a	
normalized	vector	space

Minimize	(KL)	distance	between	latent	
vector	and	Gaussian	normal

Generative	Example	(once	 trained):
• Encode	image	with	glasses,	obtain	latent	vector	PDF	Pg
• Encode	image	without	glasses,	obtain	PDF	Png
• Compute	diff =	Pg- Png
• Encode	new	image	to	obtain	Pnew ,	add	in	diff
• Decode	Pnew +	diff to	get	guy	with	glasses!
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This	is	a	really	complex	
distribution,	 obviously

Simplify	by	going	
through	 image	pixel	by	
pixel,	rely	on	RNN
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A.	Van	der	Oord	et	al.,	https://arxiv.org/abs/1601.06759
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Original hypothesis: "Do adversarial examples exist?"

To prove true: need just one example

To prove false: seems challenging… (do unicorns exist?)
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New hypothesis: "Are adversarial examples robust?"

To prove true: need just one example implementation

To prove false: Need to show all possible implementations fail
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4	different	adversarial	examples	for	object	detector:

4	different	adversarial	examples	for	object	classifier:
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Within 5 days (!), a blog post from OpenAI:

https://blog.openai.com/robust-adversarial-inputs/
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Generative adversarial networks

Stanford CS230, Lecture 3
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Stanford CS230, Lecture 3

“Maximize probability that the discriminator is wrong and labels the fake 
example as a real example”



Machine Learning and Imaging – Roarke Horstmeyer (2020)

deep imaging

Stanford CS230, Lecture 3



Machine Learning and Imaging – Roarke Horstmeyer (2020)

deep imaging

Stanford CS230, Lecture 3



Machine Learning and Imaging – Roarke Horstmeyer (2020)

deep imaging

https://colab.research.google.com/github/tensorflow/gan/blob
/master/tensorflow_gan/examples/colab_notebooks/tfgan_tut
orial.ipynb?utm_source=ss-gan&utm_campaign=colab-
external&utm_medium=referral&utm_content=tfgan-intro
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1. It’s not going away....it works, there’s a big community (and lots of $)

2. Hardware and software are rapidly evolving

3. CNN’s work very well, but they are not the final solution...

4. There is currently a lack of safeguards and not enough consideration for 
how to ensure processed results are accurate, secure and trustworthy

5. Things are likely going to get quite complicated...


