deep imaging

Lecture 21: Reinforcement Learning

Machine Learning and Imaging

BME 590L
Roarke Horstmeyer



deep imaging

Resources for this lecture

Stanford CS231n, Lecture 17

Berkeley CS 294: Deep Reinforcement Learning
http://rail.eecs.berkeley.edu/deepricourse-fal7/f17docs/lecture 3 rl intro.pdf

V. Mnih et al., “Human-level control through deep reinforcement learning,” Nature (2016)

Technical note: Q-Learning
http://www.gatsby.ucl.ac.uk/~Dayan/papers/cjch.pdf




deep imaging

Reinforcement learning - in a nutshell

 So far, we’ve looked at:
1) Decisions from fixed images (classification, detection, segmentation)

CNN’s
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deep imaging

Reinforcement learning - in a nutshell

 So far, we’ve looked at:
1) Decisions from fixed images (classification, detection, segmentation)

CNN’s

2) Decisions from time-sequence data (captioning as classification, etc.)

RNN’s
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Fixed set of
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deep imaging

Reinforcement learning - in a nutshell

 So far, we’ve looked at:
1) Decisions from fixed images (classification, detection, segmentation)

CNN’s

2) Decisions from time-sequence data (captioning as classification, etc.)
Decisions from images and time-sequence data (video classification, etc.)

RNN’s



Example: Image captioning _.%
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Prospective identification
of hematopoietic lineage
choice by deep learning
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deep imaging

Reinforcement learning - in a nutshell

 So far, we’ve looked at:
1) Decisions from fixed images (classification, detection, segmentation)

CNN’s

2) Decisions from time-sequence data (captioning as classification, etc.)
Decisions from images and time-sequence data (video classification, etc.)

RNN’s

« Now, we’re going to consider decisions for dynamic data
« Most successful application: dynamic image data
e.g.: video games, images of a Go game, car turning through obstacles

Reinforcement Learning
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The step from fixed video to dynamic video deep imaging

Outcome:
Cell type B

Goal: examine all data
to make final decision

Machine Learning and Imaging — Roarke Horstmeyer (2020)



The step from fixed video to dynamic video qeen macing

N Outcome:
Cell type B

Goal: examine all data
to make final decision

forward
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The step from fixed video to dynamic video

~ 1/ Outcome:
- Cell type B

Goal: examine all data
to make final decision

Goal: decide on path
through data to get to
final result

forward
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The step from fixed video to dynamic video desp imaging

o 7 Outcome:
e Cell type B

Goal: examine all data
to make final decision

“jump” H E B
Outcome:
lock " Win the game!
E—
forward




The step from fixed video to dynamic video
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deep imaging

Outcome:
Cell type B

Goal: examine all data
to make final decision

Qutcome:
Win the game!




Supervised ML Reinforcement learning _,%

. / deep imaging
~ U0 — N/ YIS | Outcome: e —
N Fkon
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Outcome:
Win the game!

* Fixed image sequence » Dynamic/active image sequence

« Goal: match to known label « Goal: get to known desired outcome
(large labeled dataset needed) (no labels needed, really...)

* Qutput: label « Qutput: sequence of actions

 Examines all data * Not possible to examine all data



Terms and notation

deep imaging

Example situation: Preparing for surgery using a robotically controlled instrument with an
endoscope camera. You want endoscope to guide itself to tumor as quickly as possible

Movement choices:

Up
First image , Down
(of skin)
Left
Initial state s Right

Action ag



Terms and notation

deep imaging

Example situation: Preparing for surgery using a robotically controlled instrument with an
endoscope camera. You want endoscope to guide itself to tumor as quickly as possible

Movement choices: How’d we do?
Up
First image . Down .1 for darkerimage — =Saseie —
(of skin) 'mage . .
Left -1 for lighter image ]E:onltmue “(”t'l
inal state (see
Initial state s Right state s, cumor)

Action ag Reward rj



Terms and notation

deep imaging

Example situation: Preparing for surgery using a robotically controlled instrument with an
endoscope camera. You want endoscope to guide itself to tumor as quickly as possible

Movement choices: How’d we do?
Up
First image . Down | L4 for darkerimage — s —
(of skin) | Image

POlICy Tt L eft -1 for Ilghter image Continue until

final state (see

Initial state s t Right state s, cumor) (
Action ag Reward rj

Optimization Goal: Find policy m* that maximizes total “discounted” reward Z ’Yt’f’t
t>0



TL;DR

-> Use a CNN to map images to actions, optimize CNN with respect
to loss function that depends on reward in a recursive manner

deep imaging

Movement choices: How’d we do?
Up
First image . Down .1 for darkerimage — SQsee
(of skin) . image
Policyn  Left -1 for lighter image
Initial state s 1 Right state s,
Action ag Reward rj

—

Continue until
final state (see
tumor)

Optimization Goal: Find policy m* that maximizes total “discounted” reward Z ’YtTt

t>0
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A simple MDP: Grid World

actions = { states
1. right — *
2. left <— Set a negative “reward”
3. U I * for each transition
- (e.g.r=-1)
4. down I
}

Objective: reach one of terminal states (greyed out) in
least number of actions

From Stanford CS231n Lecture 17



A simple MDP: Grid World
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Optimal Policy




Let’s jump into the math.... deep imaging

Definition of a Markov process:

Pr(Xpm1 =2 | Xi =21, X0 =29,..., X, =2,) =Pr( X1 =2 | X;, = x,)
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Let’s jump into the math.... deep imaging

Definition of a Markov process:

x =[1 0]

The weather on day 2 can be predicted by:

0.9 0.1

x) =xOp =11 0][
0.5 0.5

] —=[0.9 0.1]

2 states: Sunny and Rainy

Thus, there is a 90% chance that day 2 will also be sunny.

https://en.wikipedia.org/wiki/Markov chain
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Let’s jump into the math.... deep imaging

Definition of a Markov process:

PrXpmi=z | Xi =21, X0 =29,..., X, =2,) =Pr( X1 =2 | X;, =x,)

2 states: Sunny and Rainy
Thus, there is a 90% chance that day 2 will also be sunny.

Transition matrix — try to learn this from state to state
https://en.wikipedia.org/wiki/Markov chain




Assume transition between states follows Markov process —éi

deep imaging

P(St:1/Sts St.1---S0) = P(Si1 | S

Markov chain

M=A{S,T}

S — state space states s € S (discrete or continuous)

7T — transition operator p(St+1]st) Andrey Markov
why “operator”? let pi = p(sy =1) [i¢ is a vector of probabilities

let T;j = p(st4+1 = 1[st = j) then fiz11 = T i

Markov property
=@ independent of s;_;

3
@ P(St+1 |St) @ P(St+1 |St)

Berkeley CS 294: Deep Reinforcement Learning



Add in dependence on action: Markov decision process

P(si1/s) => P(St41 | St, @) = P(Ste1 | S @y, --- Sos @0)

Markov decision process M={S, AT, r}
S — state space states s € S (discrete or continuous)
A — action space actions a € A (discrete or continuous)

7 — transition operator (now a tensor!)

let pe,j = p(s¢ = J)

let &, = pla, = k) i = JX; T gkt

let T jk = P(St41 = t|s¢ = J,ar = k)

S
@ p(St+1st,at)

Berkeley CS 294: Deep Reinforcement Learning

Andrey Markov

Richard Bellman

JE=
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Add in dependence on action: Markov decision process

deep imaging

P(s:.1|s:, @) can include reward r(s;, a,)

Markov decision process M={S, AT, r}
S — state space states s € S (discrete or continuous)
A — action space actions a € A (discrete or continuous)

7T — transition operator (now a tensor!)

r — reward function r:SxA—R

r(s¢, a¢) — reward

Berkeley CS 294: Deep Reinforcement Learning



B
—p
deep imaging

The goal of reinforcement learning

we’ll come back to partially observed later
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Berkeley CS 294: Deep Reinforcement Learning
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The goal of reinforcement learning

we’ll come back to partially observed later
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Berkeley CS 294: Deep Reinforcement Learning



The optimal policy t*
We want to find optimal policy m* that maximizes the sum of rewards.

How do we handle the randomness (initial state, transition probability...)?
Maximize the expected sum of rewards!

Formally: 7* = argmaxE |  «'r|m| with so ~ p(s0), ar ~ 7(|s¢), 841 ~ P(-|s¢, az)

Discount factor: accumulate the rewards
“acquired” up to current state, but they become
less important the longer they were in the past

From Stanford CS231n Lecture 17



The optimal policy t*
We want to find optimal policy m* that maximizes the sum of rewards.

How do we handle the randomness (initial state, transition probability...)?
Maximize the expected sum of rewards!

Formally: 7* = arg max [ Z’Y re|m| with 8o ~ p(80),ar ~ m(+|8¢), St41 ~ D(-|5¢, az)
t>0

The Q-value function at state s and action a, Is the expected cumulative reward from
taking action a in state s and then following the policy:

Don’t have access
Q" (s,a) =E ‘rilso = 8,00 = a, T to all polici
ya) = Y T¢|80 = 8,ap = Q, o all policies, so
t>0 use Q in practice
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Bellman equation

The optimal Q-value function Q* is the maximum expected cumulative reward achievable
from a given (state, action) pair:

Q*(s,a) = maxE E Yir|so = s,a0 = a,
T
>0

Q* satisfies the following Bellman equation:
Q*(s,a) =Eg g ['r +ymax Q*(s',d)|s, a]

Intuition: if the optimal state-action values for the next time-step Q*(s’,a’) are known,
then the optimal strategy is to take the action that maximizes the expected value of

r+yQ*(s',a)

From Stanford CS231n Lecture 17
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Solving for the optimal policy: Q-learning

Q-learning: Use a function approximator to estimate the action-value function

Q(s, a; 9J,<Q* (s, a)
function parameters (weights)

If the function approximator is a deep neural network => deep qg-learning!

From Stanford CS231n Lecture 17
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Solving for the optimal policy: Q-learning
Remember: want to find a Q-function that satisfies the Bellman Equation:
Q* (.‘5‘7 a,) = ES/Ng [T + f)/ng}x Q*(S,, a/)|3, a]

Forward Pass
Loss function: L;(0;) = E; gp(.) (¥ — Q(s,0;6;))?]

where y; = Eg g [T-I-’Ymﬁ}XQ(S’aa';gi—l”Saa]
a

From Stanford CS231n Lecture 17
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Solving for the optimal policy: Q-learning
Remember: want to find a Q-function that satisfies the Bellman Equation:
Q*(s,a) =Eg g [’l‘ +7ymax QR*(s',a’)ls, a}

Forward Pass
Loss function: L;(60;) = Eg anp() [(Wi = Q(s,a;6;))°]

0 lteratively try to make the Q-value
where y; = Eg g [7' + ’Ymaf}x QR(s',a’;0;—1)|s,a close to the target value (y,) it

should have, if Q-function
corresponds to optimal Q* (and
BaCkward PaSS Opt|ma| po“cy -n*)

Gradient update (with respect to Q-function parameters 9):

ngLz(gz) . Es,a,\,p(.);swg |:7' + ")’IIlE,LX Q(S,v a’,; 9'5—1) o Q(Sv a, 92))V97,Q(87 a, 92)]

From Stanford CS231n Lecture 17



[Mnih et al. NIPS Workshop 2013; Nature 2015] > imaging

Case Study: Playing Atari Games

Objective: Complete the game with the highest score
State: Raw pixel inputs of the game state

Action: Game controls e.g. Left, Right, Up, Down
Reward: Score increase/decrease at each time step

From Stanford CS231n Lecture 17



Q-network Architecture

Q(Sa a, 9) : < Last FC layer has 4-d
neural network FCa (values) output (if 4 actions),
: : ) corresponding to Q(s,,
with weights @ FC-256 o) o 8 Q8
Q(s,.a,)

JJJ- < Input: state s,

Current state s.: 834x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

From Stanford CS231n Lecture 17
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https://www.youtube.com/watch?v=V1eYniJORnk

Machine Learning and Imaging — Roarke Horstmeyer (2020)
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Training the Q-network: Experience Replay

Learning from batches of consecutive samples is problematic:
- Samples are correlated => inefficient learning
- Current Q-network parameters determines next training samples (e.g. if maximizing
action is to move left, training samples will be dominated by samples from left-hand
size) => can lead to bad feedback loops

Address these problems using experience replay
- Continually update a replay memory table of transitions (s,, a,, r,, s,,,) as game
(experience) episodes are played
- Train Q-network on random minibatches of transitions from the replay memory,

instead of consecutive samples Each transition can also contribute

to multiple weight updates
=> greater data efficiency

From Stanford CS231n Lecture 17
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How can this be applied to optimized imaging?

Observations (0;)

Microscope . .
2 03
A 4
N4 Agent (6) — Decision

Sample (S)
|

» o o o Parameters (qbt)
LED Array - = s L

A
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How can this be applied to optimized imaging?

deep imaging
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