

Lecture 18: Coherent physical layers and general guidelines

Machine Learning and Imaging

BME 548L Roarke Horstmeyer

Summary of two models for image formation

- Interpretation #1: Radiation (Incoherent)
- Model: Rays

- Real, non-negative
- Models absorption and brightness

 $\mathbf{I}_{tot} = \mathbf{I}_1 + \mathbf{I}_2$

 $I_s = H B S_0$

- Interpretation #2: Electromagnetic wave (Coherent)
- Model: Waves

- Complex field
- Models Interference

$$\mathsf{E}_{tot}=\mathsf{E}_1+\mathsf{E}_2$$

General rules for applying the Fourier transform in optics

Situation 3: From an object to a plane 1 focal length away from a lens (1f-1f system)

deep imaging

Model of image formation for wave optics (coherent light):

deep imaging

deep imaging

You typically go between 4 functions to describe one imaging system:

Summary of two models for image formation

- Interpretation #1: Radiation (Incoherent)
- Model: Rays

• Real, non-negative

 $\mathbf{I}_{s} = \mathbf{h}_{i} * \mathbf{B} \mathbf{S}_{0}$

- Sample absorption **S**
- Illumination brightness B
- Blur in **H**

- Interpretation #2: Electromagnetic wave (Coherent)
- Model: Waves

• Complex-valued

 $I_{C} = |h_{c} * C S_{C}|^{2}$

- Sample abs./phase S
- Illumination wave **B**
- Blur in **H**

Coherent image formation equation as CNN operations

$$\mathbf{I}_{\mathbf{C}} = \mathbf{D} \| \mathbf{h}_{\mathbf{c}} * \mathbf{C} \mathbf{S}_{\mathbf{C}} \|^2$$

CNN layer

Step 1: Multiply with weightsStep 2: ConvolutionStep 3: Absolute value square (non-linearity)Step 4: Down-sampling by detector

(Step 1: Normalization) Step 2: Convolution Step 3: Non-linearity

Step 4: Down-sampling by max pooling

Example future situation: Hacking has brought online banking to a halt. We now rely on a special form of physical check that is made of visibly transparent plastic. To write the amount in, you press down with a pen-like instrument, and then the check is read out by shining a particular pattern of laser light onto it, and then imaging it with a lens.

<u>Question</u>: What type of illumination should you use to maximize the classification accuracy of the numbers on the check?

Step 1: Transform MNIST image data set into transparent plastic sheets with varying thickness

- 1. Normalize intensity map to 1
- 2. Define thickness map at some reasonable amount (100 µm max change)

- 1. Normalize intensity map to 1
- 2. Define thickness map at some reasonable amount (100 µm max change)
- 3. Convert thickness map into optical phase delay:

- 1. Normalize intensity map to 1
- 2. Define thickness map at some reasonable amount (100 µm max change)
- 3. Convert thickness map into optical phase delay:

```
n = 1
wavelength = 0.5e-3
mnist_raw_images = tf.placeholder(tf.float32, [image_size, None])
thickness_map = mnist_raw_images/np.amax(mnist_raw_images)
mnist_phase_delay_real = cos(thickness_map * n/wavelength)
mnist_phase_delay_imag = sin(thickness_map * n/wavelength)
mnist_phase_delay = tf.complex(mnist_phase_delay_real,mnist_phase_delay_imag)
```


detected_image then enters standard CNN classification pipeline

Example #2: Optimizing aperture shape for improved digit classification

Example future situation: Hacking has brought online banking to a halt. We now rely on a special form of physical check that is made of visibly transparent plastic. To write the amount in, you press down with a pen-like instrument, and then the check is read out by shining a particular pattern of laser light onto it, and then imaging it with a lens.

<u>Question #2</u>: What type of aperture shape should you use to maximize classification accuracy?

Example #2: Optimizing aperture shape for improved digit classification

deep imaging

<u>Question #2</u>: What type of aperture shape should you use to maximize classification accuracy?

deep imaging

Example #2: Optimizing aperture shape for improved digit classification

deep imaging

Example #2: Optimizing aperture shape for improved digit classification

Remaining questions to address about physical layers:

- Where and how should I implement my physical layer?
 - Simulation data
 - Experimental data
- How can I add some constraints to the physical weights that I'm optimizing?
- What are some common issues and pitfalls?

Some Examples:

- Optimized illumination
- Optimized sensor specifications
- Number of measurements and locations
- Radiation dosage, biomarkers

Q: Where and how should I implement my physical layer?

A: It depends on your data and implementation

- Situation #1: Fully simulated physical layers
- Situation #2: Experimentally-driven physical layers

Option (a): Simulate the input images and the labels from scratch

Simulated labels

Option (a): Simulate the input images and the labels from scratch

[CT phantom, 3D mesh surfaces]

Option (b): Augment an existing dataset that you download

Option (b): Augment an existing dataset that you download

Option (b): Augment an existing dataset that you download

Option (a) or Option (b): Choice on where and how to simulate/pre-process

Option (a) or Option (b): Choice on where and how to simulate/pre-process

 $I_s = f[I_0]$

2

CONVOLUTION + RELU

POOLING

FEATURE LEARNING

CONVOLUTION + RELU POOLING

FULLY CONNECTED SOFTMAX

CLASSIFICATION

FLATTEN

Experimental

measurements

Example: CNN-Optimized illumination for classification of malaria:

deep imaging

R. Horstmeyer et al., "Convolutional neural networks that teach microscopes how to image," arXiv (2017)

Example: CNN-Optimized illumination for classification of malaria:

Data set for physical layer optimization:

Turn on LED 1, capture image 1:

Example: CNN-Optimized illumination for classification of malaria:

Data set for physical layer optimization:

Turn on LED 1, capture image 1:

Turn on LED 1, capture image 2:

Example: CNN-Optimized illumination for classification of malaria:

Data set for physical layer optimization:

Turn on LED 1, capture image 1:

Turn on LED 1, capture image 2:

:

0

Turn on LED 32, capture image 32:

Save all 32 images (96 with 3 colors)

deep imaging

Situation #2: Experimentally-driven physical layers

Example: CNN-Optimized illumination for classification of malaria:

Infected

Example: CNN-Optimized illumination for classification of malaria:

Uninfected

Optimized color LED patterns to classify malaria

deep imaging

<u>Pro's of experimental measurements</u>: Don't need to worry about making your simulations match the setup! (HUGE WIN)

Con's of experimental measurements: You'll need to label them, limited access to desired sample information, often need to exploit some fundamental physical property

Without any constraints, weights can be any real (or complex) number What if you physically can't realize any real or physical number?

Example: Constrain weights to be non-negative values less than one

Without any constraints, weights can be any real (or complex) number What if you physically can't realize any real or physical number?

Example: Constrain weights to be non-negative values less than one

Solution: add constraint as an extra "differentiable" layer (operation)

Without any constraints, weights can be any real (or complex) number What if you physically can't realize any real or physical number?

Example: Constrain weights to be non-negative values less than one

Solution: add constraint as an extra "differentiable" layer (operation)

Pros:

- Easy to implement
- Constraints are obvious

Cons:

Not always a well-behaved derivative

Without any constraints, weights can be any real (or complex) number What if you physically can't realize any real or physical number?

Example: Constrain weights to be either 0 or 1

Solution: Perform annealing with a temperature parameter

Without any constraints, weights can be any real (or complex) number What if you physically can't realize any real or physical number?

Example: Constrain weights to be either 0 or 1

Solution: Perform annealing with a temperature parameter

Soft-max(x) =
$$\exp(-x)/\Sigma \exp(-x)$$

Without any constraints, weights can be any real (or complex) number What if you physically can't realize any real or physical number?

Example: Constrain weights to be either 0 or 1

Solution: Perform annealing with a temperature parameter

Without any constraints, weights can be any real (or complex) number What if you physically can't realize any real or physical number?

Example: Constrain weights to be either 0 or 1

Solution: Perform annealing with a temperature parameter

Pros:

- Works pretty well
- Flexibly address convergence issues

Cons:

• A bit sensitive

Weights W
$$I(n) = ext{Soft-max}\left[lpha_t w(n)
ight]$$

Increase α with iteration number

Soft-max(x) = exp(-x)/
$$\Sigma$$
 exp(-x)

- Most common issue you have a bug in your CNN!
 - Solution: "Disable " physical layer (set to constant), and get network to work!
 - Good practice: always compare performance with and without physical layer
- Another common challenge vanishing gradients

- Most common issue you have a bug in your CNN!
 - Solution: "Disable " physical layer (set to constant), and get network to work!
- Another common challenge vanishing gradients

- Most common issue you have a bug in your CNN!
 - Solution: "Disable " physical layer (set to constant), and get network to work!
- Another common challenge vanishing gradients

- Most common issue you have a bug in your CNN!
 - Solution: "Disable " physical layer (set to constant), and get network to work!
- Another common challenge vanishing gradients

- Most common issue you have a bug in your CNN!
 - Solution: "Disable " physical layer (set to constant), and get network to work!
- Another common challenge vanishing gradients

Solution: Introduce skipped connections

- Most common issue you have a bug in your CNN!
 - Solution: "Disable " physical layer (set to constant), and get network to work!
- Another common challenge vanishing gradients
- Third issue physical layer results are not very repeatable...

- Most common issue you have a bug in your CNN!
 - Solution: "Disable " physical layer (set to constant), and get network to work!
- Another common challenge vanishing gradients
- Third issue physical layer results are not very repeatable...

Effective Solution: Add a small amount of noise to the physical layer output:

$$I_s = \Sigma w_j I_j + n$$

(tf.keras.layers.GaussianNoise)

Forward problem: Start with the causes (objects in the real world) and compute the results (captured data)

Inverse problem: Start with the results (captured data) and infer about the causes (objects in the real world)

Forward problem: Start with the causes (objects in the real world) and compute the results (captured data)

(Typically easy)

Inverse problem: Start with the results (captured data) and infer about the causes (objects in the real world) (Typically hard)

Forward problem: Start with the causes (objects in the real world) and compute the results (captured data)

(Typically easy)

Inverse problem: Start with the results (captured data) and infer about the causes (objects in the real world) (Typically hard)

What I did in grad school to get ready for an experiment:

Forward problem: Start with the causes (objects in the real world) and compute the results (captured data)

(Typically easy)

Inverse problem: Start with the results (captured data) and infer about the causes (objects in the real world) (Typically hard)

What I did in grad school to get ready for an experiment:

Forward problem: Start with the causes (objects in the real world) and compute the results (captured data)

(Typically easy)

Inverse problem: Start with the results (captured data) and infer about the causes (objects in the real world) (Typically hard)

What I did in grad school to get ready for an experiment:

Classic examples: Inverse Radon Transform, US image reconstruction, image deblurring/denoising, diffraction tomography, phase retrieval, super-resolution (structured illumination, STORM/PALM), etc.

Forward problem: Start with the causes (objects in the real world) and compute the results (captured data)

(Typically easy)

Inverse problem: Start with the results (captured data) and infer about the causes (objects in the real world) (Typically hard)

What you can do now with CNN's:

Forward problem: Start with the causes (objects in the real world) and compute the results (captured data)

(Typically easy)

Inverse problem: Start with the results (captured data) and infer about the causes (objects in the real world) (Typically hard)

What you can do now with CNN's:

