deep imaging

Lecture 18: Physical Layer
Implementations and Troubleshooting

Machine Learning and Imaging

BME 590L
Roarke Horstmeyer

Summary of two models for image formation

JE=

deep imaging

Interpretation #1: Radiation (Incoherent)
Model: Rays

Real, non-negative

L= HB'S,

Sample absorption S
[llumination brightness B
Blurin H

Interpretation #2: Electromagnetic wave (Coherent)
Model: Waves

double slit

screen

Complex field
IC - | H C SC |2

Sample abs./phase S
lllumination wave B
Blur in H

Questions to address in this lecture deep imaging

« Where and how should | implement my physical layer?
« Simulation data
 Experimental data
« How can | add some constraints to the physical weights that I’m optimizing?

« What are some common issues and pitfalls?

data |,

Physical Layers

‘\ /

CONVOLUTION + RELU

Digital Layers

— CAR
— TRUCK
— VAN
0 [] — sicyeLe
POOLING CONVOLUTION + RELU POOLING FLATTEN FULLY SOFTMAX
CONNECTED

Some Examples:

* Optimized illumination

« Optimized sensor specifications

« Number of measurements and locations
« Radiation dosage, biomarkers

%

FEATURE LEARNING CLASSIFICATION

JE=

deep imaging

data |,

Physical Layers Digital Layers

JE=

deep imaging

Task

— CAR
— TRUCK
— VAN

D — BICYCLE

1 1
1 1
1 1
1 1
1
1 1 2 2
1 1 i i D
1 1
1 1
I | FULLY
Is — f[I 0] : CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATTEN CONNECTED SOFTMAX
1
1
: 1 Y

Q: Where and how should | implement my physical layer?

data |,

Physical Layers Digital Layers
| i Task
! E E
E D [j — BICYCLE
E I — f[l] E CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATTEN COLUNLEZTED SOFTMAX
s ol \ iy $ 2% o J
: ! FEATURE LEARNING CLASSIFICATION

Q: Where and how should | implement my physical layer?

A: It depends on your data and implementation

« Situation #1: Fully simulated physical layers

« Situation #2: Experimentally-driven physical layers

JE=

deep imaging

deep imaging

Situation #1: Fully simulated physical layers

Option (a): Simulate the input images and the labels from scratch

L:' PhySIcaILayers Digital Layers
wesESSS T E '

Full simulation of Digitized
different samples L, f[] . I, . H
and their labels ’ '

\ 4

Simulated labels

JE=

Situation #1: Fully simulated physical layers deep imaging

Option (a): Simulate the input images and the labels from scratch

L:' PhySIcaILayers Digital Layers
TS ¥ ' |

Full simulation of Digitized
different samples [] e I
and their labels i

Examples: 5

» [Ultrasound scatterers, | Is — f[lo] i '
segmentation boundary] -

« [Simulated cell body
types, location]

\ 4

Simulated labels
 [CT phantom, 3D
mesh surfaces]

Situation #1: Fully simulated physical layers

Option (b): Augment an existing dataset that you download

-

JE=

deep imaging

Existing labels

Existing annotated |

dataset |,

Physical Layers

fl] |

Digitized

IS

Digital Layers

Situation #1: Fully simulated physical layers

Option (b): Augment an existing dataset that you download

JE=

deep imaging

Existing labels

Physical Layers

= :
| e T :
— ' Digitized
Existing annotated | | Pre- B I e el
dataset |, processing |

Digital Layers

JE=

Situation #1: Fully simulated physical layers deep imaging

Option (b): Augment an existing dataset that you download

Existing labels

Physical Layers Digital Layers

- @l | "
|— i N >
— | Digitized sl
Existing annotated || Pre- : fIll1| +— & — | |
dataset I, processing el =
Examples: (ONVOLTON KL FOOUN COMVOUTION + L Fo0UNG A oY sormmax J

AAAAAAAAAAAAAAAAAAAAAAAAAAAAA

« MNIST Image set * Thickness map

« Segmented cells * Multispectral
from Celltracker image stack

« Segmented CT » Stitch together in
dataset from lab a 3D composite

deep imaging

Situation #1: Fully simulated physical layers

Option (a) or Option (b): Choice on where and how to simulate/pre-process

Simulation and/or o
pre-processing ML Optimization

Python/Matlab/other

P Big ,
4\ — 7 dataset TensorFlow

4 4

v

TensorFlow TensorFlow

Situation #1: Fully simulated physical layers deep imaging

Option (a) or Option (b): Choice on where and how to simulate/pre-process

Simulation and/or

pre-processing ML Optlmlzatlon
Pros: Utilize old code, easier

Python/Matlab/other to archive, troubleshoot

7 Big
dataset TensorFlow Cons: Large datasets are slow
to load, hard to fit in GPU
memory, code in 2 places
Pros: batch processing, all in
one place, easily incorporate
TensorFlow TensorFlow additional physical layers

Cons: Harder to bug-check
/compare to prior work if
closely integrated

Situation #2: Experimentally-driven physical layers

Experimental
measurements

Generated Labels

JE=

deep imaging

“Expert’!
annotation

Physical Layers

L fI1)

; Digitized

. ——
S

Digital Layers

JE=

Situation #2: Experimentally-driven physical layers deep maging

. Bright-field FPM Learned
CNN —— Classifier: (1image) (29images) (1-2images)
(0) Not

infected

e, o
(1) Infected ‘
with malaria
i |
- i

‘ ——
omms 1 il

LED
Pattern:

Center LED Scanned Learned

Example: CNN-Optimized
illumination for
classification of malaria: =

-

ubisep uoneulwn|||

0.5

R. Horstmeyer et al., "Convolutional neural networks

i . . o o [¢)
that teach microscopes how to image," arXiv (2017) Classification Accuracy: 75% 98.5% 7%

deep imaging

Situation #2: Experimentally-driven physical layers

Data set for physical layer optimization:
Example: CNN-Optimized
illumination for

classification of malaria: - Turn on LED 1, captureimage 1: 6\

R. Horstmeyer et al., "Convolutional neural networks
that teach microscopes how to image," arXiv (2017)

B
—p
deep imaging

Situation #2: Experimentally-driven physical layers

Data set for physical layer optimization:
Example: CNN-Optimized
illumination for
classification of malaria: - Turn on LED 1, captureimage 1: @
i

Turn on LED 1, captureimage 2: c

R. Horstmeyer et al., "Convolutional neural networks
that teach microscopes how to image," arXiv (2017)

B
—p
deep imaging

Situation #2: Experimentally-driven physical layers

Data set for physical layer optimization:
Example: CNN-Optimized
illumination for
classification of malaria: - Turn on LED 1, captureimage 1: @
o

Turn on LED 1, captureimage 2: c

Turn on LED 32, captureimage 32:

' ' lor
R. Horstmeyer et al., "Convolutional neural networks Save all 32 images (96 with 3 colors)

that teach microscopes how to image," arXiv (2017)

JE=

Situation #2: Experimentally-driven physical layers

deep imaging
u)\L h Dlabs()2] | —O
Example: CNN-Optimized | | —
illumination for 9 — . — Classification
classification of malaria: 5 i .
Physical model CNN post-
oo processing

1024

Physical layer: (O — » __, -—>i—> I‘ 0
i r 1x1xm

IS _z WJIJ i Conv (5x5) Conv (5x5) FCL+ Readout
LED-iluminated LED Detected | ReLU + +ReLU+ RelLU

images weights image MaxPooling MaxPooling (1024)

LED illumination model

__

Situation #2: Experimentally-driven physical layers %
(e) DPC (f) Optimized (g) FP (29 im.) 9eep imaging

a) Center (b) All c) Off-axis (d) Random
Q ¥ Q |
Example: CNN-Optimized
illumination for e e o
classification of malaria: o
oy
<
ﬂ w® "
(o)
: ' 70- ?O /o | — ﬁ
© z .
o . ,
2000
£
[
-
[. [[. [.

o
-
o
-
o
=
o
—

Situation #2: Experimentally-driven physical layers

Optimized color LED patterns to classify malaria

Pattern 1, red

Pattern 1, green

Pattern 1, blue

|
033 O

Pattern 2, red

0.38

Pattern 2, green

0

|
0.31

Pattern 2, blue

0.70 O

0.56

Pattern 1, RGB

Pattern 2, RGB

8€'0 :XeiN

0L£°0 :XeiN

deep imaging

deep imaging

Situation #2: Experimentally-driven physical layers

Generated Labels

Physical Layers

Digital Layers

_ Digitized -
Experimental “Expert” f[]| —— 1, —- | |
measurements annotation 7
NN S SSo P cohuuy sormmax ¥

AAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Pro’s of experimental measurements: Don’t need to worry about making your simulations match
the setup! (HUGE WIN)

Con’s of experimental measurements: You’ll need to label them, limited access to desired sample
information, often need to exploit some fundamental physical property

How can | add some constraints to my physical weights? deep imaging

Without any constraints, weights can be any real (or complex) number What if you
physically can’trealize any real or physical number?

Example: Constrain weights to be non-negative values less than one

JE=

How can | add some constraints to my physical weights? deep imaging

Without any constraints, weights can be any real (or complex) number What if you
physically can’trealize any real or physical number?

Example: Constrain weights to be non-negative values less than one

Solution: add constraint as an extra “differentiable” layer (operation)

(rest of the
neural
network)

How can | add some constraints to my physical weights? deep imaging

Without any constraints, weights can be any real (or complex) number What if you
physically can’trealize any real or physical number?

Example: Constrain weights to be non-negative values less than one

Solution: add constraint as an extra “differentiable” layer (operation)

Pros:
(rest of the « Easy to implement
neural « (Constraints are obvious
network)

Cons:

* Not always a well-behaved derivative

How can | add some constraints to my physical weights? deep imaging

Without any constraints, weights can be any real (or complex) number What if you
physically can’trealize any real or physical number?

Example: Constrain weights to be either 0 or 1

Solution: Perform annealing with a temperature parameter

JE=

How can | add some constraints to my physical weights? deep imaging

Without any constraints, weights can be any real (or complex) number What if you
physically can’trealize any real or physical number?

Example: Constrain weights to be either 0 or 1

Solution: Perform annealing with a temperature parameter

(rest of the
neural
network)

Weights W I(n) = Soft-max [a;w(n)]

Soft-max(x) = exp(-x)/ Z exp(-x)
Increase a with iteration number

JE=

How can | add some constraints to my physical weights? deep imaging

Without any constraints, weights can be any real (or complex) number What if you
physically can’trealize any real or physical number?

Example: Constrain weights to be either 0 or 1

Solution: Perform annealing with a temperature parameter

Drive w to be large, so softmax(w) ->0 or 1

(rest of the
neural
network)

A

v

A
v

Weight w
Weights W I(n) = Soft-max [a;w(n)]

Soft-max(x) = exp(-x)/ Z exp(-x)
Increase a with iteration number

How can | add some constraints to my physical weights? deep imaging

Without any constraints, weights can be any real (or complex) number What if you
physically can’trealize any real or physical number?

Example: Constrain weights to be either 0 or 1

Solution: Perform annealing with a temperature parameter

Pros:
(rest of the * Works pretty well
neural * Flexibly address convergence issues
network)

Cons:
* A bit sensitive

Weights W I(n) = Soft-max [a;w(n)]
Soft-max(x) = exp(-x)/ Z exp(-x)
Increase a with iteration number

deep imaging

What are some common issues and pitfalls with physical layers?

« Most common issue — you have a bug in your CNN!

« Solution: “Disable “ physical layer (set to constant), and get network to work!
» Good practice: always compare performance with and without physical layer

* Another common challenge - vanishing gradients

%
—_—
deep imaging

What are some common issues and pitfalls with physical layers?

Most common issue — you have a bug in your CNN!

Solution: “Disable “ physical layer (set to constant), and get network to work!

Another common challenge - vanishing gradients

64 64
128 64 64 2
input
i output
image (| '
Y 1% || segmentation
tile NEEE
558 NEREE
il gl el 28
| of =
I R
’ 128 128
Physical Layers
o BN
S ”NI S S 5.5
S K |
' 256 256 S0 osg t
S E &[I? > = conv 3x3, ReLU
SH S 3 3 Al &
I = = copy and crop
512 512 1024 512
-l — - ¥ max pool 2x2
6 O¥ 10m &0 4 up-conv 2x2
2 > N > S
o

® =» conv 1x1
o (3

%
—_—
deep imaging

What are some common issues and pitfalls with physical layers?

Most common issue — you have a bug in your CNN!

Solution: “Disable “ physical layer (set to constant), and get network to work!

* Another common challenge - vanishing gradients
input

image
tile

v
v

output
segmentation
map

300x390 ¥
asgxass ¥
388x388 ¥

392 x 392

572 x 572
570 x 570
568 x 568

Physical Layers

25

Backprop L all the)
Way baCk here conv 3x3, ReLU
copy and crop
¥ max pool 2x2
4 up-conv 2x2
=» conv 1x1

%
—_—
deep imaging

What are some common issues and pitfalls with physical layers?

Most common issue — you have a bug in your CNN!

Solution: “Disable “ physical layer (set to constant), and get network to work!

Another common challenge - vanishing gradients

64 64

e e What if this is 0?
Back-prop gradients disappear!

output
segmentation
map
“local gradient”
&

input
image
tile

v
v

300x390 ¥
asgxass ¥
388x388 ¥

392 x 392

572 x 572
570 x 570
568 x 568

. z
Physical Layers , .
Ll R oL

Backprop L all the %IE; t 3
Way ba Ck here I > ;[I':I':I conv 3x3, ReLU .

- A S S copy and crop grad|ents

¥ max pool 2x2
& 4 up-conv 2x2

=» conv 1x1

From Stanford CS231n

%
—_—
deep imaging

What are some common issues and pitfalls with physical layers?

Most common issue — you have a bug in your CNN!

Solution: “Disable “ physical layer (set to constant), and get network to work!

* Another common challenge - vanishing gradients
input

image
tile

v
v

output
segmentation
map

<
al

300x390 ¥
asgxass ¥
388x388 ¥

392 x 392

Solution: Introduce skipped connections

572 x 572
570 x 570
568 x 568

_ t..... Backprop here too
Physical Layers

& o ol
~ o - SH S
o 1|
3 = <l
|

' 256 256 512 256 t

284
2822 ¥
200

Backprop L all the
way back here

conv 3x3, ReLU
copy and crop
¥ max pool 2x2

4 up-conv 2x2
=» conv 1x1

deep imaging

What are some common issues and pitfalls with physical layers?

« Most common issue — you have a bug in your CNN!
« Solution: “Disable “ physical layer (set to constant), and get network to work!
* Another common challenge - vanishing gradients

* Third issue - physical layer results are not very repeatable...

Solution 1

Solution 3

Solution 2

deep imaging

What are some common issues and pitfalls with physical layers?

« Most common issue — you have a bug in your CNN!
« Solution: “Disable “ physical layer (set to constant), and get network to work!
* Another common challenge - vanishing gradients

* Third issue - physical layer results are not very repeatable...

Effective Solution: Add a small
amount of noise to the physical layer
output:

IS =Z lej + N

Solution 1 . . :
Solution 3 (tf.keras.layers.GaussianNoise)

Solution 2

deep imaging

Aside on simulated data: Combining forward and inverse solvers

Forward problem: Start with the causes (objects in the real world) and compute the results (captured data)

Inverse problem: Start with the results (captured data) and infer about the causes (objects in the real world)

deep imaging

Aside on simulated data: Combining forward and inverse solvers

Forward problem: Start with the causes (objects in the real world) and compute the results (captured data)

(Typically easy)

Inverse problem: Start with the results (captured data) and infer about the causes (objects in the real world)

(Typically hard)

Aside on simulated data: Combining forward and inverse solvers

deep imaging

Forward problem: Start with the causes (objects in the real world) and compute the results (captured data)

(Typically easy)

Inverse problem: Start with the results (captured data) and infer about the causes (objects in the real world)

(Typically hard)

What | did in grad school to get ready for an experiment:

Simulated
“Real-world”
objects

Forward model

Noise,
perturbations, etc.

data

Inverse problem
solver

Simulated
“Real-world”
objects

deep imaging

Aside on simulated data: Combining forward and inverse solvers

Forward problem: Start with the causes (objects in the real world) and compute the results (captured data)

(Typically easy)

Inverse problem: Start with the results (captured data) and infer about the causes (objects in the real world)

(Typically hard)

What | did in grad school to get ready for an experiment:

Hard to get working...

Known, easy

Simulated | ol Simulated
“Real-world” Forward model data sr(])\ll\?(:je probiem “Real-world”
objects objects

But you have insights

Noise, and guarantees!

perturbations, etc.

deep imaging

Aside on simulated data: Combining forward and inverse solvers

Forward problem: Start with the causes (objects in the real world) and compute the results (captured data)

(Typically easy)

Inverse problem: Start with the results (captured data) and infer about the causes (objects in the real world)

(Typically hard)

What | did in grad school to get ready for an experiment:

Hard to get working...

Known, easy

Simulated | ol Simulated
“Real-world” Forward model data Sr:)\ll\?:e probiem “Real-world”
objects objects

Classic examples: Inverse Radon Transform, US image reconstruction, image deblurring/denoising,
diffraction tomography, phase retrieval, super-resolution (structured illumination, STORM/PALM), etc.

deep imaging

Aside on simulated data: Combining forward and inverse solvers

Forward problem: Start with the causes (objects in the real world) and compute the results (captured data)

(Typically easy)

Inverse problem: Start with the results (captured data) and infer about the causes (objects in the real world)

(Typically hard)

What you can do now with CNN’s:

Simulated CNN Simulated

“Real-world” Forward model data inversaesrr?g del “Real-world”

objects objects
Noise,

perturbations, etc.

deep imaging

Aside on simulated data: Combining forward and inverse solvers

Forward problem: Start with the causes (objects in the real world) and compute the results (captured data)

(Typically easy)

Inverse problem: Start with the results (captured data) and infer about the causes (objects in the real world)

(Typically hard)

What you can do now with CNN’s:

Also easy....
Simulated Known, easy CNN Simulated
“Real-world” Forward model data inversaesrr?g del “Real-world”
objects objects
Noise, But it’s a black box!

perturbations, etc.

