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Review: how do coherent EM waves propagate?

Maxwell’s equations . a,’:{
without any charge VXE = —”L}Tt_
V X 7-:( —— e_c?é
ot
V-e£ =0
V- p/fi = 0.

1. Take the curl of both sides of first equation
2. Substitute 2" and 3 equation

3. Arrive at the wave equation:
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Review: how do coherent EM waves propagate? deep imaging

Considering light that isn’t pulsed over time, we can use the following solution:

u(P,t) = A(P) cos[2mvt + ¢(P)]
u(P,t) = Re{U(P) exp(— j2mvr)},

With this particular solution, we get the following important time-independent equation:

Helmholtz [ 4 27T
Equation (V2 + kZ)U = 0. k = 277”; = N

This is an important equation in physics. We won’t go into the details, but it leads to the Huygen-Fresnel principle:
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Plane-to-plane light propagation via the ”paraxial approximation” deep imaging

We are usually concerned about propagation between two planes (almost always in an optical system):

Paraxial approximation:

dU
V U+ 2’&]‘3@ 0 Substitute in U(P) - E(x,y, z)eikz and crank the wheel,

dE
V E +2ik— +2k*’E =0 Paraxial Helmholtz Equation. This has an exact integral solution:

dz

+00
z',y',0)e> s

)2+(y—y')2] / 7 1| Fresnel diffraction
dx dy integral

E(z,y,z

z)\z

This is how light propagates from one plane to the next. It’s a convolution!
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From the Fresnel approximation to the Fraunhofer approximation deep imaging

Fresnel Approximation:

-+oo k[ 1\2 I\2
2 — |(z—2') +(y—y)] I 3.1
E(z,y,z z',y,0)e2 dx dy
z)\z
2D?
Lets assume that the second plane is “pretty far away” from the first plane. Then, > _/\_

1. Expand the squaring

Blz,y,2 z)\z // 2y, 0)es Ty ) e (0P 4y o5 (w2’ +uy") gt g

2. Front term comes out, assume second term goes away, then,

eikz
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This is the aperture This is what you see far away

deep imaging

Two-dimensional rectangle d) Magnitude of Fourier spectrum
function as an image of the 2-D rectangle




—

deep imaging




—_——

deep imaging

magnitude of cheetah

magnitude of zebra phase of zebra
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Summary of two models for image formation deep imaging

* Interpretation #1: Radiation (Incoherent)

« Model: Rays * Real, non-negative

.  Models absorption
\/ and brightness

] b hot = |1 + 1




Mathematical model of for incoherent image formation —§

deep imaging

« All quantities are real, and non-negative

Object absorption:
So(X,y)

[llumination brightness:
B(x,y)




Mathematical model of for incoherent image formation —'%

deep imaging

» All quantities B, S,, H are real and and non-negative

Object absorption:
. : So(X, Photons (intensity) hits\
lllumination brightness: (%) detector( y)
B(x,y) /
=
L= HB S,
multiplication

convolution
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Summary of two models for image formation deep imaging

* Interpretation #1: Radiation (Incoherent)

« Model: Rays * Real, non-negative

1 * Models absorption
\/ and brightness

zﬂl —= liot = 14 + I
iﬁ—ﬁ 7 | ;= HBS,




Summary of two models for image formation
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Interpretation #1: Radiation (Incoherent)
Model: Rays

* Real, non-negative
* Models absorption
and brightness

liot = 11 + 12

L= HB S,

Interpretation #2: Electromagnetic wave (Coherent)

Model: Waves

double slit

screen

« Complex field
 Models Interference

Ewot = E1 + E
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Mathematical model of for coherent image formation

Pretty much the same thing, but now we have an amplitude and a complex phase

Point #1: Amplitudes behave just like before

Sample absorption = S(x,y)

Aixy) = Ailx,y) S(x,y)

(Laser light
or - :
Ultrasound) 60

Transmitted field:

Incident field:

C(X’y) = Ai(X,y) U(X’y) = At(X,y) =7




deep imaging

Mathematical model of for coherent image formation

Pretty much the same thing, but now we have an amplitude and a complex phase

Point #1: Amplitudes behave just like before

Sample absorption = S(x,y)

100
photons

Aixy) = Ailx,y) S(x,y)

(Laser light
or
Ultrasound)

Incident field: Transmitted field:

C(x,y) = Ai(x,y) U(x,y) = AdXx,y) = Ai(x,y) S(X,y)




Mathematical model of for coherent image formation

Pretty much the same thing, but now we have an amplitude and a complex phase

New: complex phase delay

Sample absorption = S(x,y)
 Neededto represent wave
Represents wave delay across space

Sample phase delay = expl[iko(x,y)]

(Laser light
or
Ultrasound)

Incident field: Transmitted field:

C(x,y) = Ai(x,y) explikei(x,y)]  UXy) = Ai(x,y) S(X,y) exp[ike(x,y)]

JE=
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Mathematical model of for coherent image formation

Pretty much the same thing, but now we have an amplitude and a complex phase

New: complex phase delay

Sample absorption = S(x,y)

Sample phase delay = expl[iko(x,y)]

(Laser light
or
Ultrasound)

Phase delay
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Mathematical model of for coherent image formation

Pretty much the same thing, but now we have an amplitude and a complex phase

New: complex phase delay

Sample absorption = S(x,y)

Sample phase delay = exp[ike(X,y)]
Incident light

AN

Transmitted light

VAVAVAV

Total lag = pi/6 rad

(Laser light
or
Ultrasound)

Phase delay




B
—p
deep imaging

Mathematical model of for coherent image formation

Pretty much the same thing, but now we have an amplitude and a complex phase

Sample absorption = S(x,y)
Output phase is sum of phase delays, product of phasors

Sample phase delay = exp[ikg(X,Y)]

(Pt(x,y) =(P(X,y) + (pi(X,Y)

(Laser light
explikei(x,y)] = explikei(x,y)] explike(x,y)]

or
Ultrasound)

Incident field: Transmitted field:

C(x,y) = Ailx,y) explikei(x,y)]  U(x,y) = Ai(x,y) S(X,y) explikei(x,y)] explikeo(x,y)]



deep imaging

Mathematical model of for coherent image formation

« Summary: coherent light hitting a thin object also modeled as a multiplication, but
now with complex-valued matrices C(x,y) and S(x,y)

Sample absorption = S(x,y)
Conclusion:

Sample phase delay = expl[ike(X,Y)]
Transmitted field = incident field x complex sample :

(Laser light
Ulxy) = Cx.y) S (X,y) explike(x,y)]

or
Ultrasound)

Incident field: Transmitted field:

C(x,y) = Ailx,y) explikei(x,y)]  U(x,y) = Ai(x,y) S(X,y) explikei(x,y)] exp[ikeo(x,y)]



JE=

Model of image formation for wave optics (coherent light): deep imaging

Discrete sample
function s(x,y)
(complex)

<

N

lllumination 1. Transmitted field
field C(x,y) sq(X,y) = G(x,y) s(x,y)
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Model of image formation for wave optics (coherent light): deep imaging
Discrete sample 2. Compute its 2D
function s(x,y) Fourier transform
(complex) S(fy, fy)

<

N

- 1. Transmitted field
sq(X,y) = C(x,y) s(X,y)

\ “Fourier plane”




General rules for applying the Fourier transform in optics deep imaging

Situation 1: From an object to a plane “really far away”

U1(x1)
U,(x2) ~ F[U1(x1/My)]
Situation 2: From an object to the back focal plane of U1(x4) e
the microscope objective lens U (X5) ~ F[U4(X1/M,)]

12.2mm

Situation 3: From an object to a plane 1 focal length away from a lens (1f-1f system)

U1 (x1)

Ki‘ Uy (xz) ~ F[U1(x1/M3)]
R R
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Model of image formation for wave optics (coherent light): deep imaging
Discrete sample 2. Compute its 2D 3 MU"fiP'),/, by
function s(x,y) Fourier transform aperture
(complex) 5(f,, f,) . function A(f,, 1)

<

1. Transmitted field
sq(X,y) = C(x,y) s(X,y)

N

“Fourier plane”
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Model of image formation for wave optics (coherent light): deep imaging
Discrete sample 2. Compute its2D  3- Multiply by 4. Compute

function s(x,y) Fourier transform aperture inverse Fourier

(complex) 8(f,, f,) . function A(f,, f,)  transform s’(x’,y’)

(complex) /

1. Transmitted field
sq(X,y) = C(x,y) s(X,y)

N

image”

“Fourier plane”
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Model of image formation for wave optics (coherent light): deep imaging
Discrete sample 2. Compute its2D  3- Multiply by 4. Compute 5. Detector
function s(x,y) Fourier transform aperture inverse Fourier m,ea,su,res
(complex) §(f,, f,) . function A(f, ;) transform s’(x,y) IS’ (XWY)P

(complex) /

‘1 . Transmitted field
sq(X,y) = C(x,y) s(X,y)

-

image”

“Fourier plane”



Model of image formation for wave optics (coherent light):

Discrete sample
function s(x,y)
(complex)

‘1 . Transmitted field
sq(X,y) = C(x,y) s(X,y)

2. Compute its2D  3- Multiply by
Fourier transform aperture
8(f,, 1) . function A(fy, f,)

“Fourier plane”

(complex) /

Model #1: I(x,y) = [F-"1TAFCs|?

JE=

deep imaging
4. Compute 5. Detector
inverse Fourier measures
transform s'(x’,y’)  1S'(XLY)P

-

image”



Model of image formation for wave optics (coherent light): deep imaging

Discrete sample 2. "aperture”
function s(x,y) function A(fy, f,)
(complex)

‘1 . Transmitted field
sq(X,y) = C(x,y) s(X,y)

3. Compute complex
blur function
h(x,y) = F[A(fx f,)]



Model of image formation for wave optics (coherent light): deep imaging

Discrete sample 2. "aperture”
function s(x.y) function At ) 4. Blur image:
(complex) s'=s(X",y") * h(X',y")

‘1 . Transmitted field
sq(X,y) = C(x,y) s(X,y)

3. Compute complex
blur function
h(x,y) = F[A(fx f,)]



Model of image formation for wave optics (coherent light):

Discrete sample
function s(x,y)
(complex)

‘1 . Transmitted field
sq(X,y) = C(x,y) s(X,y)

2. “aperture”

function A(f, f,) 4. Blur image:

§8'=8,X",y’) " h(X,y’)

P

deep imaging

5. Detectol
measures

[s°(¢,y)I?

-

3. Compute complex

Model #2: 1.(x,y) = |h » Cs|?

blur function
h(x,y) = F[A(f,, f,)]



You typically go between 4 functions to describe one imaging system:

Coherent point-
spread function

h(x)

F[.]

Coherent
transfer function

H(f)

.12

H*H

v

v

Incoherent point-
spread function

hi(x)

F[.]

Incoherent
transfer function

Hi(fx)

JE=
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Summary of two models for image formation
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Interpretation #1: Radiation (Incoherent)
Model: Rays

Real, non-negative

L= HB S,

Sample absorption S
[llumination brightness B
Blurin H

Interpretation #2: Electromagnetic wave (Coherent)
Model: Waves

double slit

screen

Complex-valued

IC: |HCSC|2

Sample abs./phase S
[llumination wave B
Blurin H




Coherent image formation equation as CNN operations

lc= D|HCS¢]?

Step 1: Multiply with weights
Step 2: Convolution
Step 3: Absolute value square (non-linearity)

Step 4: Down-sampling by detector

CNN layer

(Step 1: Normalization)
Step 2: Convolution
Step 3: Non-linearity

Step 4: Down-sampling by max pooling

deep imaging



Example #1: Optimizing coherent illumination pattern for improved classification

deep imaging

Example future situation: Hacking has brought online banking to a halt. We now rely on a special
form of physical check that is made of visibly transparent plastic. To write the amount in, you press
down with a pen-like instrument, and then the check is read out by shining a particular pattern of
laser light onto it, and then imaging it with a lens.

Question: What type of illumination should you use to maximize the classification accuracy of the
numbers on the check?

Step 1: Transform MNIST image data set into transparent plastic sheets with varying thickness

Values [0, 255] at(x,y)

to thickness map

1(x,y)




Values [0, 255] t(x,y)

deep imaging

1(X,y) to thickness map

[
»

1. Normalize intensity map to 1

2. Define thickness map at some reasonable amount (100 um max change)



Values [0, 255] t(x,y) Id(X,y)

deep imaging
to sample

1(X,y) to thickness map phase delay

[
»

[
»

1. Normalize intensity map to 1

2. Define thickness map at some reasonable amount (100 um max change)

3. Convert thickness map into optical phase delay:

Fm_/l I dd(x,y) = exp[j n t(x,y) /A ]

T I /

nt = Optical pathlength




Values [0, 255] t(x,y) od(X,Y) _.%

deep imaging

to sample
to thickness map phase delay

[ [
» »

1(X,y)

1. Normalize intensity map to 1
2. Define thickness map at some reasonable amount (100 um max change)

3. Convert thickness map into optical phase delay:

n 1

wavelength = 0.5e-3

mnist_raw_images tf.placeholder(tf.float32, [image_size, None])
thickness_map = mnist_raw_images/np.amax(mnist_raw_images)

mnist_phase_delay_real = cos(thickness_map n/wavelength)
mnist_phase_delay_imag sin(thickness_map * n/wavelength)
mnist_phase_delay = tf.complex(mnist_phase_delay_real,mnist_phase_delay_imag)




Example #1: Optimizing coherent illumination pattern for improved classification

Coherent image Model: I.(Xx,y) =

lh + Cs|?

Jﬁ_

s(X,y) = dd(X,y)

—

/

\

N

JE=

deep imaging



B
—p
deep imaging

Example #1: Optimizing coherent illumination pattern for improved classification

Coherent image Model: I (x,y) = |h = Cs|?

s(X,y) = dd(X,y)

Unknown

\

lllumination c(x,y)
(complex <

weight variable)

/

Camera blur h

N
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Example #1: Optimizing coherent illumination pattern for improved classification

Coherent image Model: I (x,y) = |h = Cs|?

s(X,y) = dd(X,y)

Unknown

lllumination c(x,y)
(complex <

weight variable)

e
— | CNN
//

Camera blur h




Example #1: Optimizing coherent illumination pattern for improved classification

Coherent image Model: I (x,y) = |h = Cs|?

s(X,y) = dd(X,y)

Unknown

lllumination c(x,y)
(complex <:::::::

weight variable)

/'

e
e

mnist_phase_delay = tf.reshape(mnist_phase_delay, [-1, image_size, image_size])

CO_real - tf.Variable([image_size, image_size])
Co_imag = tf.Variable([image_size, image_size])

Co_complex = tf.complex(CO_real, CO_imag)
x_C_complex = tf.mul(mnist_phase_delay, CO_complex)
image_complex = conv2d(x_C_complex, camera_blur)
detected_image - tf.complex_abs(image_complex)

detected_image then enters standard CNN classification pipeline

CNN

JE=

deep imaging



Example #2: Optimizing aperture shape for improved digit classification

deep imaging

Example future situation: Hacking has brought online banking to a halt. We now rely on a special
form of physical check that is made of visibly transparent plastic. To write the amount in, you press
down with a pen-like instrument, and then the check is read out by shining a particular pattern of
laser light onto it, and then imaging it with a lens.

Question #2: What type of aperture shape should you use to maximize classification accuracy?




Example #2: Optimizing aperture shape for improved digit classification

deep imaging

Example future situation: Hacking has brought online banking to a halt. We now rely on a special
form of physical check that is made of visibly transparent plastic. To write the amount in, you press
down with a pen-like instrument, and then the check is read out by shining a particular pattern of
laser light onto it, and then imaging it with a lens.

Question #2: What type of aperture shape should you use to maximize classification accuracy?

Alfx.fy)

s(X,y) = 9d(X,y)

Fixed plane-wave

lllumination c(x,y) <

e
——[CNN
/

|

Let’s make A(fy,fy) any shape -
it becomes a weight variable



Example #2: Optimizing aperture shape for improved digit classification

Fixed plane-wave

lllumination c(x,y) ‘ ‘

s(X,y) = 9d(X,y)

—

2D FT

Alfx.fy)

2D IFT

CNN

e
/

JE=
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Example #2: Optimizing aperture shape for improved digit classification _'

deep imaging

Alfx.fy)

s(X,y) = 9d(X,y)

Fixed plane-wave
lllumination c(x,y)

—

e
~——[cNN
/

2D FT 2D IFT

mnist_phase_delay = tf.reshape(mnist_phase_delay, [-1, image_size, image_size])
CO0 = np.ones(image_size, image_size)

Co - tf.constant(CO)

Xx_C_complex = tf.mul(mnist_phase_delay, C0)

fx_C_complex = tf.fft2d(x_C_complex)

ap_filter = tf.Variable([image_size, image_size])
filtered_x_C tf.mul(fx_C_complex, ap_filter)
image_complex = tf.ifft2d(filtered_x_C)
detected_image - tf.complex_abs(image_complex)
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Remaining questions to address about physical layers:

« Where and how should | implement my physical layer?
« Simulation data
 Experimental data
« How can | add some constraints to the physical weights that I’m optimizing?

« What are some common issues and pitfalls?



