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deep imagingAnnouncements:

Welcome to BME590 Online! Things shouldn’t change much, but here’s a summary:

0. I hope that everyone is safe and is doing ok!

1. See summary of all changes to transition things online here
a. Lectures are now held on Zoom (live, at same class time) and will be recorded and posted online
b. Lab session are now held on Zoom (live at same lab time) and will be recorded
c. Office hours are now held on Zoom
*My Zoom ID: 417-271-8775

2. Homework #3 is due today – please submit via class website

3. Homework #4 will be posted online today – it is due it 

4. I have sent some of you feedback about your project proposal via email. If so, please send me an 
updated project proposal by this Thursday 3/26 at midnight. For the rest of the received proposals, I 
have input your grade on Sakai. If you didn’t get an email or grade on Sakai, I didn’t get your proposal. 
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Questions from class survey:

Q: Are we maintaining original final project presentation dates or if these are getting shifted by 1 
week to account for the extension of spring break?
A: I would prefer to maintain the original presentation dates. It may be possible to shift it back a few 
days into finals week, but it depends on what I hear about regarding the format of other finals

Q: Would the recorded video of lectures be uploaded right after the class? Or it would be upload 
several days after the class?
A: Right after the class (i.e., as soon as I can after the class)

Homework #4 assigned: March 24
Homework #4 due: April 7
Homework #5 assigned: April 7
Homework #5 due: April 21
Final projects due: (original) Thurs 4/23, Friday 4/24, or Monday 4/27
Final project presentations: (original) Thurs 4/23, Friday 4/24, or Monday 4/27
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deep imagingFirst - what is light and how can we model it?

• Interpretation #1: Radiation  (Incoherent)
• Model: Rays

• Interpretation #2: Electromagnetic wave (Coherent)
• Model: Waves

• Interpretation #3: Particle
• Model: Photons

• Complex field
• Models Interference

• Real, non-negative
• Models absorption 

and brightness
Itot = I1 + I2

Etot = E1 + E2
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n x m image IsPhysical world

Simple mathematical model of incoherent image formation

Object absorption: I0(x,y)
Illumination pattern: s(x,y)
Light exiting object surface: Ie(x,y) = I0(x,y) s(x,y)

• Assume incoherent illumination
• Assume thin 2D object
• Object is real, non-negative map of absorption/reflectivity
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Intensity at image plane Ip = ?

Simple mathematical model of image formation

S
I0

Ie = S I0

Ip = H Ie = H S I0

Convolution filter h
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λ
• Effect of illumination is element-wise multiplication

• Deal with sample/image intensities I, real and non-negative

• Imaging systems blur the object via point-spread function matrix H

Ie(x,y)= S I0(x,y)

Ib(x,y)= H I0(x,y)

• Discrete pixels down-sample the object via Id(x,y)= D I0(x,y)

• Different colors add linearly Is(x, y) = Σ I0(x, y, λ)

• Add noise into measurement IN(x,y)= D I0(x,y) + N
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deep imagingWhat is light and how can we model it?

• Interpretation #1: Radiation  (Incoherent)
• Model: Rays

• Interpretation #2: Electromagnetic wave (Coherent)
• Model: Waves

• Complex field
• Models Interference

• Real, non-negative
• Models absorption 

and brightness
Itot = I1 + I2

Etot = E1 + E2

This class: Modeling coherent radiation as a wave
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without	any	charge
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deep imagingLet’s	take	a	step	back:	how	does	light	propagate?

Maxwell’s	equations	
without	any	charge

1. Take	the	curl	of	both	sides	of	 first	equation
2. Substitute	2nd and	3rd equation
3. Arrive	at	the	wave	equation:
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Considering	 light	that	isn’t	pulsed	over	time,	we	can	use	the	following	solution:
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Considering	 light	that	isn’t	pulsed	over	time,	we	can	use	the	following	solution:

With	this	particular	solution,	 we	get	the	following	 important	 time-independent	 equation:

Helmholtz	
Equation
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deep imagingLet’s	take	a	step	back:	how	does	light	propagate?

Considering	 light	that	isn’t	pulsed	over	time,	we	can	use	the	following	solution:

With	this	particular	solution,	 we	get	the	following	 important	 time-independent	 equation:

This	is	an	important	equation	in	physics.	We	won’t	go	into	the	details,	but	it	leads	to	the	Huygen-Fresnel	principle:

Helmholtz	
Equation

2
2

2
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The	Huygens-Fresnel	Equation	
2

2

2

Aperture

P2
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The	Huygens-Fresnel	Equation	
2

2

2

P2
Generally	connects	two	points	 in	3D:
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We	are	usually	concerned	about	propagation	between	two	planes	(almost	always	in	an	optical	system):
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We	are	usually	concerned	about	propagation	between	two	planes	(almost	always	in	an	optical	system):

Paraxial	approximation:
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deep imagingPlane-to-plane	light	propagation	via	the	”paraxial	approximation”

We	are	usually	concerned	about	propagation	between	two	planes	(almost	always	in	an	optical	system):

Paraxial	approximation:

Substitute	 in	 and	crank	the	wheel,

Paraxial	Helmholtz	Equation.	This	has	an	exact	integral	solution:
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deep imagingPlane-to-plane	light	propagation	via	the	”paraxial	approximation”

We	are	usually	concerned	about	propagation	between	two	planes	(almost	always	in	an	optical	system):

Paraxial	approximation:

Substitute	 in	 and	crank	the	wheel,

Paraxial	Helmholtz	Equation.	This	has	an	exact	integral	solution:

Fresnel	diffraction	
integral	

This	is	how	light	propagates	from	one	plane	to	the	next.	It’s	a	convolution!
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Fresnel	Approximation:

Lets	assume	that	the	second	plane	is	“pretty	far	away”	from	the	first	plane.	Then,



Machine Learning and Imaging – Roarke Horstmeyer (2020)

deep imagingFrom	the	Fresnel	approximation	to	the	Fraunhofer approximation

Fresnel	Approximation:

Lets	assume	that	the	second	plane	is	“pretty	far	away”	from	the	first	plane.	Then,

1.	Expand	the	squaring	
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deep imagingFrom	the	Fresnel	approximation	to	the	Fraunhofer approximation

Fresnel	Approximation:

Lets	assume	that	the	second	plane	is	“pretty	far	away”	from	the	first	plane.	Then,

1.	Expand	the	squaring	

2.	Front	term	comes	out,	assume	second	term	goes	away,	then,

Fraunhofer diffraction	 is	a	Fourier	 transform!!!!!!!
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2D	Fourier	Transform
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deep imagingModel	of	a	microscope	(or	camera)	using	Fourier	transforms:

2D	Fourier	Transform

Effect	of	the	lens	is	to	block	light.

Use	thin	object	approximation	 to	
determine	distribution	 of	light	on	the	
immediate	other	side	of	the	lens	stop:

1’s	in	here

0’s	out	here
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deep imagingModel	of	a	microscope	(or	camera)	using	Fourier	transforms:

2D	Fourier	Transform

Last	piece	of	the	puzzle:	what	happens	from	 lens	to	sensor?
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deep imagingModel	of	a	microscope	(or	camera)	using	Fourier	transforms:

2D	Fourier	Transform

Last	piece	of	the	puzzle:	what	happens	from	 lens	to	sensor?
inverse	Fourier	 transform!

2D	inverse	Fourier	Transform
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This process should sound familiar….

U1(x,y) U2(x,y)=
Input image Output image

Convolution filter h

F [U1]
F [h]

Û1(fx,fy)

Input 
spectrum 

• =

F -1[HÛ1]
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1. Discrete sample 
function s(x,y) 
(complex)
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deep imagingModel	of	image	formation	for	wave	optics	(coherent	light):

1. Discrete sample 
function s(x,y) 
(complex)

2. Compute its 2D 
Fourier transform

“Fourier plane”

ŝ(fx, fy)

2D FT
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deep imagingModel	of	image	formation	for	wave	optics	(coherent	light):

1. Discrete sample 
function s(x,y) 
(complex)

2. Compute its 2D 
Fourier transform

3. Multiply by 
“aperture” 
function A(fx, fy)

“Fourier plane”

ŝ(fx, fy)

2D FT
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deep imagingModel	of	image	formation	for	wave	optics	(coherent	light):

1. Discrete sample 
function s(x,y) 
(complex)

2. Compute its 2D 
Fourier transform

3. Multiply by 
“aperture” 
function A(fx, fy)

“Fourier plane”

ŝ(fx, fy)

4. Compute 
inverse Fourier 
transform s’(x’,y’) 
(complex)

“Blurred image”

2D FT 2D IFT
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deep imagingModel	of	image	formation	for	wave	optics	(coherent	light):

1. Discrete sample 
function s(x,y) 
(complex)

2. Compute its 2D 
Fourier transform

3. Multiply by 
“aperture” 
function A(fx, fy)

“Fourier plane”

ŝ(fx, fy)

4. Compute 
inverse Fourier 
transform s’(x’,y’) 
(complex)

“Blurred image”

5. Detector 
measures 
|s’(x’,y’)|2

2D FT 2D IFT
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A(fx, fy)
h(x, y)

2D IFT

Aperture function (lens shape) Camera blur function (IFT of lens shape) 
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A (fx,fy)ŝ1(fxi,fyi) ŝ2(fxo,fyo)

MultiplySpatial	Frequency	Domain

h (x,y)

s1(xi,yi) s2(xo,yo)

Convolve	=	blurSpatial	Domain

Two	modeling	choices	for	the	camera:
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The	optical	black	box	system	and	the	point-spread	function:

Linear	systems	and	the	black	box

Light	g1(xi,yi) entering “black box” optical system modified by system point-spread function

h (x2,y2)

Assume shift 
invariance: 
This is the system 
point-spread function

g1(x1,y1) g2(x2,y2)
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• Interpretation #1: Radiation  (Incoherent)
• Model: Rays • Real, non-negative

• Models absorption 
and brightness

Itot = I1 + I2
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Mathematical model of for incoherent image formation 

Illumination brightness: S0(x,y)
Object absorption:

• All quantities are real, and non-negative 

B(x,y)
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Mathematical model of for incoherent image formation 

Illumination brightness: S0(x,y)
Object absorption:

• All quantities are real, and non-negative 

B(x,y)

100 
photons

60% 
transmission

60 
photons
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Mathematical model of for incoherent image formation 

Illumination brightness: S0(x,y)
Object absorption:

• All quantities are real, and non-negative 

B(x,y)

80 
photons

10% 
transmission

8 
photons
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Mathematical model of for incoherent image formation 

Illumination brightness: S0(x,y)

B S0

Object absorption:

multiplication

• All quantities are real, and non-negative 

B(x,y)
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deep imagingSummary of two models for image formation

• Interpretation #1: Radiation  (Incoherent)
• Model: Rays • Real, non-negative

• Models absorption 
and brightness

Itot = I1 + I2

• Complex field
• Models Interference

Etot = E1 + E2

• Interpretation #2: Electromagnetic wave (Coherent)
• Model: Waves

Is = B S0
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Sample absorption = S(x,y)

Incident field:

C(x,y) = Ai(x,y) 

Mathematical model of for coherent image formation 

• Pretty much the same thing, but now we have an amplitude and a complex phase

Point #1: Amplitudes behave just like before

Transmitted field:

U(x,y) = At(x,y) = ?

(Laser	light
or

Ultrasound)

At(x,y) = Ai(x,y) S(x,y) 100 
photons

60% 
transmission

60 
photons



Machine Learning and Imaging – Roarke Horstmeyer (2020)

deep imaging

Sample absorption = S(x,y)

Incident field:

C(x,y) = Ai(x,y) 

Mathematical model of for coherent image formation 

• Pretty much the same thing, but now we have an amplitude and a complex phase

Point #1: Amplitudes behave just like before

Transmitted field:

U(x,y) = At(x,y) = ?

(Laser	light
or

Ultrasound)

At(x,y) = Ai(x,y) S(x,y) 

100 
photons

20% 
transmission

20 
photons
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Sample absorption = S(x,y)

Incident field:

C(x,y) = Ai(x,y) 

Mathematical model of for coherent image formation 

• Pretty much the same thing, but now we have an amplitude and a complex phase

Point #1: Amplitudes behave just like before

Transmitted field:

U(x,y) = At(x,y) = Ai(x,y) S(x,y)

(Laser	light
or

Ultrasound)

At(x,y) = Ai(x,y) S(x,y) 

100 
photons

20% 
transmission

20 
photons
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Sample absorption = S(x,y)

Sample phase delay = exp[ikϕ(x,y)]

Incident field:

C(x,y) = Ai(x,y) exp[ikϕi(x,y)]

Mathematical model of for coherent image formation 

• Pretty much the same thing, but now we have an amplitude and a complex phase

New: complex phase delay 
• Needed to represent wave
• Represents wave delay across space

Transmitted field:

U(x,y) = Ai(x,y) S(x,y) exp[ikϕt(x,y)]

(Laser	light
or

Ultrasound)
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Sample absorption = S(x,y)

Sample phase delay = exp[ikϕ(x,y)]

Mathematical model of for coherent image formation 

• Pretty much the same thing, but now we have an amplitude and a complex phase

New: complex phase delay 

(Laser	light
or

Ultrasound)

ϕi(x,y) = 0

π/6 deg. 
Phase delay
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Sample absorption = S(x,y)

Sample phase delay = exp[ikϕ(x,y)]

Mathematical model of for coherent image formation 

• Pretty much the same thing, but now we have an amplitude and a complex phase

New: complex phase delay 

(Laser	light
or

Ultrasound)

ϕi(x,y) = 0

π/6 deg. 
Phase delay

Incident	light

Transmitted	light

Total	lag	=	pi/6	rad
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Sample absorption = S(x,y)

Sample phase delay = exp[ikϕ(x,y)]

Mathematical model of for coherent image formation 

• Pretty much the same thing, but now we have an amplitude and a complex phase

New: complex phase delay 

(Laser	light
or

Ultrasound)

ϕi(x,y) = 
π/8 rad.

Incident	light:	pi/8	behind

Transmitted	light
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Sample absorption = S(x,y)

Sample phase delay = exp[ikϕ(x,y)]

Mathematical model of for coherent image formation 

• Pretty much the same thing, but now we have an amplitude and a complex phase

New: complex phase delay 

(Laser	light
or

Ultrasound)

ϕi(x,y) = 
π/8 rad.

π/4 rad 
Phase delay

Incident	light:	pi/8	behind

Transmitted	light

Total	lag	=	π/8+ π/4= 3π/8	rad



Machine Learning and Imaging – Roarke Horstmeyer (2020)

deep imaging

Sample absorption = S(x,y)

Sample phase delay = exp[ikϕ(x,y)]

Incident field:

C(x,y) = Ai(x,y) exp[ikϕi(x,y)]

Mathematical model of for coherent image formation 

• Pretty much the same thing, but now we have an amplitude and a complex phase

Output phase is sum of phase delays, product of phasors

Transmitted field:

U(x,y) = Ai(x,y) S(x,y) exp[ikϕi(x,y)] exp[ikϕ(x,y)]

(Laser	light
or

Ultrasound)

ϕt(x,y) =ϕ(x,y) + ϕi(x,y)

exp[ikϕt(x,y)] = exp[ikϕi(x,y)] exp[ikϕ(x,y)]
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Sample absorption = S(x,y)

Sample phase delay = exp[ikϕ(x,y)]

Incident field:

C(x,y) = Ai(x,y) exp[ikϕi(x,y)]

Mathematical model of for coherent image formation 

• Pretty much the same thing, but now we have an amplitude and a complex phase

Conclusion:

Transmitted field:

U(x,y) = Ai(x,y) S(x,y) exp[ikϕi(x,y)] exp[ikϕ(x,y)]

(Laser	light
or

Ultrasound)

Transmitted field = incident field x complex sample :

U(x,y) = C(x,y) S (x,y) exp[ikϕ(x,y)]
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• Interpretation #1: Radiation  (Incoherent)
• Model: Rays • Real, non-negative

• Models absorption 
and brightness

Itot = I1 + I2

• Complex field
• Models Interference

Etot = E1 + E2

• Interpretation #2: Electromagnetic wave (Coherent)
• Model: Waves

Is = B S0

U = C S0
U, C and S are complex!
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Additional Information about sample index of 
refraction, spatial frequency and Fourier optics
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So	far:	illuminate	the	sample	and	create	a	field	 that	is	equivalent	
to	the	sample’s	absorption	 and	phase
– why	is	this	true???
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deep imagingMicroscope	illumination	and	sample	index	of	refraction

So	far:	illuminate	the	sample	and	create	a	field	 that	is	equivalent	
to	the	sample’s	absorption	 and	phase
– why	is	this	true???

*For	more	information,	 see	D.	Paganin,	Coherent	X-Ray	Optics,	Section	2.2

Sample	index	of	refraction	n(x,y,z)	=	1	+	ia(x)	+	ϕ (x)

a(x=1)	=	.2	
ϕ(x=1)	=	.1	
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*For	more	information,	 see	D.	Paganin,	Coherent	X-Ray	Optics,	Section	2.2

Sample	index	of	refraction	n(x,y,z)	=	1	+	ia(x)	+	ϕ (x)

Thin	sample	approximation:

Sample’s	effect	on	 light	is	multiplication	with	exp[-ik *	n(x,y)]

a(x=1)	=	.2	
ϕ(x=1)	=	.1	

So	far:	illuminate	the	sample	and	create	a	field	 that	is	equivalent	
to	the	sample’s	absorption	 and	phase
– why	is	this	true???
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deep imagingMicroscope	illumination	and	sample	index	of	refraction

Sample	index	of	refraction	n(x,y,z)	=	1	+	ia(x)	+	ϕ (x)

Thin	sample	approximation:

Sample’s	effect	on	 light	is	multiplication	with	exp[-ik *	n(x,y)]

a(x=1)	=	.2	
ϕ(x=1)	=	.1	

So	far:	illuminate	the	sample	and	create	a	field	 that	is	equivalent	
to	the	sample’s	absorption	 and	phase
– why	is	this	true???

Emerging	 field	U(x)	=	incident	field	Ui(x)	*	sample	function	 s(x)		In	1D:
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deep imagingMicroscope	illumination	and	sample	index	of	refraction

Sample	index	of	refraction	n(x,y,z)	=	1	+	ia(x)	+	ϕ (x)

Thin	sample	approximation:

Sample’s	effect	on	 light	is	multiplication	with	exp[-ik *	n(x,y)]

a(x=1)	=	.2	
ϕ(x=1)	=	.1	

U(x)	=	Ui(x)	*exp[-ik n(x)]	=	Ui(x)	A(x)	exp[ikϕ(x)] A(x)	=	exp[k	a(x)]

So	far:	illuminate	the	sample	and	create	a	field	 that	is	equivalent	
to	the	sample’s	absorption	 and	phase
– why	is	this	true???

Emerging	 field	U(x)	=	incident	field	Ui(x)	*	sample	function	 s(x)=exp[-ik n(x)]		

absorption phase shift: new term for laser

In	1D:
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Sample	absorption	=	A(x)
Sample	phase	=	exp[ikϕ(x)]

Incident	field	Ui

Emerging	 field	U	=	incident	field	Ui(x)	*	sample	function	s(x)		
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Q: When	is	the	emerging	 field	equal	to	the	absorption	and	phase?

Sample	absorption	=	A(x)
Sample	phase	=	exp[ikϕ(x)]

Incident	field	Ui Emerging	 field	U

Emerging	 field	U	=	incident	field	Ui(x)	*	sample	function	s(x)		
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deep imagingMicroscope	illumination	and	sample	index	of	refraction

Q: When	is	the	emerging	 field	equal	to	the	absorption	and	phase?

Sample	absorption	=	A(x)
Sample	phase	=	exp[ikϕ(x)]

Incident	field	Ui Emerging	 field	U

A:When	the	incident	wave	=	1,	means	uniform	 in	amplitude	and	phase:

Ui(x)	=	1 U(x)=A(x)	exp[ikϕ(x)]	

Emerging	 field	U	=	incident	field	Ui(x)	*	sample	function	s(x)		
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deep imagingMicroscope	illumination	and	sample	index	of	refraction

Q: When	is	the	emerging	 field	equal	to	the	absorption	and	phase?

Sample	absorption	=	A(x)
Sample	phase	=	exp[ikϕ(x)]

Incident	field	Ui Emerging	 field	U

Ui(x)	=	1 U(x)=A(x)	exp[ikϕ(x)]	

Plane	wave	Ui(x)	=	1	*	exp(ik•x)

Ui(x)	=	exp(ikx sin(θ))

This	is	when	incident	wave	hits	the	sample	with	θ=0!

θ=0 θ=30

A:When	the	incident	wave	=	1,	means	uniform	 in	amplitude	and	phase:

1	everywhere Not	1	
everywhere
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deep imagingModel	of	image	formation	for	wave	optics	(coherent	light):

1. Discrete sample 
function s(x,y) 
(complex)

“Blurred image”

2. Compute its 2D 
Fourier transform

ŝ(fx, fy)

What does fx represent, really?
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deep imaging

U(x,y) Fourier	
Transform

fxx

y fy

2π/Ty

Ty

Û(fx, fy)

From	before:	Spatial	frequencies	=	“stripes”	within	each	image

U(x,y) Fourier	
Transform

fxx

y fy

Û(fx, fy)2π/Tx

Tx
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deep imaging
Ray	angle	and	spatial	frequency

Plane	of	interest

x

Incident	plane	wave
Stripes	are	for	complex	fields!	

Proportional	 to	distance	between	
subsequent	peaks	of	wave	along	plane	
of	interest
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deep imaging
Ray	angle	and	spatial	frequency

θ

θ

λ

Sin(θ)	=	λ/d

d	=	λ/	Sin(θ)	
d

Distance	to	two	crests	=	spatial	period	

Plane	of	interest

x



Machine Learning and Imaging – Roarke Horstmeyer (2020)

deep imaging
Ray	angle	and	spatial	frequency

θ

θ

λ

Sin(θ)	=	λ/d

d	=	λ/	Sin(θ)	
d

Distance	to	two	crests	=	spatial	period	

Plane	of	interest

x

Spatial	frequency	=	1/spatial	period
(number	 of	periods	per	unit	length)

fx =	1/d	=	Sin(θ)/ λ
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deep imaging

Image	plane	ray	angle	θ

Equivalent	coordinates	in	the	Fourier	domain	and	at	the	Fourier	plane

Image	plane	spatial	frequency	 fx

fx =	Sin(θ)/ λ

Image	plane	wavevectors kx

kx =	2πfx =	2π/ λ	Sin(θ)	
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deep imagingGeneral	rules	for	applying	the	Fourier	transform	in	optics

Situation	1:	From	an	object	to	a	plane	“really	far	away”

U1(x1)

U2(x2)	~	F[U1(x1/M1)]
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deep imagingGeneral	rules	for	applying	the	Fourier	transform	in	optics

Situation	1:	From	an	object	to	a	plane	“really	far	away”

Situation	2:	From	an	object	to	the	back	focal	plane	of	
the	microscope	objective	lens

U1(x1)

U2(x2)	~	F[U1(x1/M1)]

U1(x1)
U2(x2)	~	F[U1(x1/M2)]
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deep imagingGeneral	rules	for	applying	the	Fourier	transform	in	optics

Situation	1:	From	an	object	to	a	plane	“really	far	away”

Situation	2:	From	an	object	to	the	back	focal	plane	of	
the	microscope	objective	lens

Situation	3:	From	an	object	to	a	plane	1	focal	length	away	from	a	lens	(1f-1f	system)

U1(x1)

U2(x2)	~	F[U1(x1/M1)]

U1(x1)
U2(x2)	~	F[U1(x1/M2)]

U1(x1)

U2(x2)	~	F[U1(x1/M3)]

f f
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deep imagingA	more	exact	model:	the	4f	optical	system

2D	Fourier	Transform 2D	inverse	Fourier	Transform

f f ff
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deep imagingA	more	exact	model:	the	4f	optical	system

2D	Fourier	Transform

f f

The	Fourier	plane	provides	
a	measure	of	 the	ray	angles	
at	the	image	plane

Image	plane	ray	angle	θ
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deep imagingA	more	exact	model:	the	4f	optical	system

2D	Fourier	Transform

f f

The	Fourier	plane	provides	
a	measure	of	 the	ray	angles	
at	the	image	plane

Image	plane	ray	angle	θ

Shift	point	
source

Doesn’t	 contain	info	about	spatial	distribution	 light
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deep imagingA	more	exact	model:	the	4f	optical	system

2D	Fourier	Transform

f f

The	Fourier	plane	provides	
a	measure	of	 the	ray	angles	
at	the	image	plane

Image	plane	ray	angle	θ

Shift	point	
source

Rays	are	leaving	image	plane	at	+20	degrees

20	degrees
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deep imagingA	more	exact	model:	the	4f	optical	system

2D	Fourier	Transform

f f

The	Fourier	plane	provides	
a	measure	of	 the	ray	angles	
at	the	image	plane

Image	plane	ray	angle	θ

Shift	point	
source

Rays	are	coming	 in	at	+20	degrees	and	-15	degrees

20	degrees

-15	degrees
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deep imaging

You	typically	go	between	4	functions	to	describe	one	imaging	system:	

Coherent	point-
spread	function

h(x)

Incoherent	point-
spread	function

hi(x)
|.|2

Coherent	
transfer	function

H(fx)

F[.] F[.]

H*H Incoherent	
transfer	function

Hi(fx)


