

Lecture 15: Introduction to Physical Layers in Machine Learning

Machine Learning and Imaging

BME 548L Roarke Horstmeyer

Other Computer Vision Tasks - We'll pick this back up next class

Semantic Segmentation

Object Detection Instance Segmentation

Superresolution

Stanford CS231n - http://cs231n.stanford.edu

Bringing together physical and digital image representations

 $Task = W_n \dots ReLU[W_1 ReLU[W_0 I_s] \dots]$

Simple model of image formation

What does the Sampling Theorem mean for us?

Discretize vectors (and matrices)

Simple model of image formation

Bringing together physical and digital image representations

Bringing together physical and digital image representations

Physical Layers

Digital Layers

Required properties of physical mapping f[] for DNN optimization?

- Finite
- Non-zero gradients
- Differentiable*
- Known structure (for now...)
- Anything else?

What physical parameters effect image formation?

What physical parameters effect image formation?

- Illumination
 - Spatial pattern
 - Angle of incidence
 - Color, polarization
- Lens and optics
 - Position/orientation
 - Shape
 - Focus
 - Transparency
- Detector
 - Pixel size
 - Pixel shape & fill factor
 - Color filters
 - Other filters
- Digitization
 - E to P curves
 - Digitization schemes/thresholds
 - Data transmission, multiplexing
- Physical object

Digitization

deep imaging

deep imaging

First - what is light and how can we model it?

- Interpretation #1: Radiation (*Incoherent*)
- Model: Rays

- Real, non-negative
- Models absorption and brightness
 - $\mathbf{I}_{tot} = \mathbf{I}_1 + \mathbf{I}_2$

First - what is light and how can we model it?

- Interpretation #1: Radiation (Incoherent)
- Model: Rays

- Interpretation #2: Electromagnetic wave (Coherent)
- Model: Waves

- Real, non-negative
- Models absorption and brightness
 - $\mathbf{I}_{tot} = \mathbf{I}_1 + \mathbf{I}_2$

- Complex field
- Models Interference

```
\mathsf{E}_{\mathrm{tot}} = \mathsf{E}_1 + \mathsf{E}_2
```

- Interpretation #3: Particle
- Model: Photons

- Assume incoherent illumination
- Assume thin 2D object
- Object is real, non-negative map of absorption/reflectivity

- Assume incoherent illumination
- Assume thin 2D object
- Object is real, non-negative map of absorption/reflectivity

•

٠

•

٠

•

Light exiting object surface: $\mathbf{I}_{e}(x,y) = \mathbf{I}_{0}(x,y) \circ \mathbf{s}(x,y)$

٠

•

- Assume incoherent illumination
- Assume thin 2D object
- Object is real, non-negative map of absorption/reflectivity

Modeling incoherent illumination

$$I_{e}(x,y) = I_{0}(x,y) \circ s(x,y)$$
$$I_{e} = S I_{0}$$

First, assume perfect camera: intensity at image plane $I_p = I_e = S I_0$

Training data: $[I_0(x, y), y]$ $I_0:100 \times 100$ Label y: 1x2

Option 1: tf.linalg.matmul

1.0 code

deep imaging

#Output of train/test will be CNN weights, classification performance AND illumination_pattern!

Option 2: tf.linalg.multiply (will show in CoLab Notebook)

Real case: intensity at image plane $I_p = blurred$

Assuming we've resized by M,

Lenses blur and rescale images: (We'll learn how exactly next few weeks)

 $I_p = I_e * h = H I_e$

Output intensity

deep imaging

Machine Learning and Imaging – Roarke Horstmeyer (2020)

deep imaging

deep imaging

Can also add in detector-dependent noise N = k * np.random.randn(dx, dy)

(zero-mean Gaussian noise, for example)

Pause to take a look at:

physical_layers_example.ipynb

"Ground truth" object: $I_0(x, y, \lambda)$ 100 x 100 pix. x 30 spectral channels

Monochromatic camera sensor

"Ground truth" object: $I_0(x, y, \lambda)$ 100 x 100 pix. x 30 spectral channels

Monochromatic camera sensor

"Ground truth" object: $I_0(x, y, \lambda)$ 100 x 100 pix. x 30 spectral channels

$$I_{s}(x, y) = \sum_{\lambda} I_{0}(x, y, \lambda)$$

"Ground truth" object: $I_0(x, y, \lambda)$ 100 x 100 pix. x 30 spectral channels

"Ground truth" object: $I_0(x, y, \lambda)$ 100 x 100 pix. x 30 spectral channels

$$I_{s}(x, y) = \sum_{\lambda} T(\lambda) I_{0}(x, y, \lambda)$$

Training data: $[I_0(x, y, \lambda), y]$ $I_0:100 \times 100 \text{ pix. x } 30$ Label y: 1x3 - pepper, broccoli, green beans

$$I_{s}(x, y) = \sum_{\lambda} W_{0}(\lambda) I_{0}(x, y, \lambda)$$

Physical Layer

Training data: $[I_0(x, y, \lambda), y]$ $I_0:100 \times 100 \times 30$ Label y: 1x3

multispectral_data = tf.placeholder(tf.float32, [None, num_colors, image_size])
veg_labels = tf.placeholder(tf.float32, [None, 3])
filter_weights = tf.truncated_normal([num_colors, 1], stddev = 0.1)
filtered_images = tf.einsum('aij,jk->aik', multispectral_data, filter_weights)

#Now, train CNN of your choice using [filtered_images, veg_labels]
#Output of training/testing will be CNN weights, classification performance AND filter_weights!

Example implementation with Tensorflow 1.0 code

Tensorflow: operations to sum along 3rd (or higher) dimension

Option 1: Einsum (shown as Tensorflow 1.0 code, and also applicable in Tensorflow 2.0)

filtered_images = tf.einsum('aij,jk->aik', multispectral_data, filter_weights)

Option 3: Locally connected conv2D with a 1x1 filter size

https://github.com/keras-team/keras/blob/master/keras/layers/local.py#L183

Pause to take a look at:

weighted_image_sum_example.ipynb

Summary: simple physical layers for incoherent imaging

- Deal with sample/image intensities I, real and non-negative
- Effect of illumination is element-wise multiplication λ
- Imaging systems blur the object via point-spread function matrix H

- Discrete pixels down-sample the object via
- Add noise into measurement $I_N(x,y) = D I_0(x,y) + N$
- Different colors add linearly

$$I_{s}(x, y) = \sum I_{0}(x, y, \lambda)$$

$$\mathbf{I_d}(\mathbf{x},\mathbf{y}) = \mathbf{D} \mathbf{I_0}(\mathbf{x},\mathbf{y})$$

 $\mathbf{h}(\mathbf{x},\mathbf{y}) = \mathbf{H} \mathbf{h}(\mathbf{x},\mathbf{y})$

What is light and how can we model it?

- Interpretation #1: Radiation (Incoherent)
- Model: Rays

- Real, non-negative
- Models absorption and brightness
 - $\mathbf{I}_{tot} = \mathbf{I}_1 + \mathbf{I}_2$
- Interpretation #2: Electromagnetic wave (Coherent)
 Model: Waves
 Image: Complex field of the stress of

Next class: Modeling coherent radiation as a wave

