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deep imaging
Other Computer Vision Tasks - We'll pick this back up next class
Semantic Classification Object Instance Super-
Segmentation + Localization Detection Segmentation resolution
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Bringing together physical and digital image representations

Image I
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Simple model of image formation deep imaging

n X m pixel array

3

Continuous ly(Xg,Yo)

Discrete signal l

< Digitazation < Photons to
I(x x,y) € ™™
s( 7?/)7 ( 7y) electrons
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What does the Sampling Theorem mean for us? deep imaging

Discretize vectors
Continuous functions (and matrices)
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Simple model of image formation deep imaging

n X m pixel array

3

Discrete 1,(Xy,Yo)

Discrete signal l

< Digitazation < Photons to
I(x x,y) € ™™
s( 7?/)7 ( 7y) electrons




Bringing together physical and digital image representations
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deep imaging
Physical Layers Digital Layers

Physical world Pzglt?l Image Task
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FEATURE LEARNING CLASSIFICATION

Digital layers Physical layers
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Task = W,, ...ReLU[W, ReLU[W, f[l.]]...]



Bringing together physical and digital image representations %

deep imaging
Physical Layers Digital Layers

1 Task
| o AN T7H [ = e
Physical ] D'g'lt'zed sANV4= I = R

Function I, S 02 E
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FEATURE LEARNING CLASSIFICATION
Digital layers Physical layers

/ /

Task = W,, ...ReLU[W, ReLU[W, f[l.]]...]



Required properties of physical mapping f[ ] for DNN optimization?

deep imaging

* Finite

 Non-zero gradients

« Differentiable*

« Known structure (for now...)

* Anything else?
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What physical parameters effect image formation? deep imaging

n x m pixel array

3

Input: physical object

|

Output: Detected image |« Digitazation < Photons to
electrons




What physical parameters effect image formation?

lllumination

« Spatial pattern

* Angle of incidence

» Color, polarization
Lens and optics

» Position/orientation

« Shape

 Focus

« Transparency
Detector

* Pixel size

» Pixel shape & fill factor

» Color filters

» Other filters

« Eto P curves

» Digitization schemes/thresholds

« Data transmission, multiplexing
Physical object

Input: physical object

[llumination

Output:
Detected image

Lens and optics
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deep imaging

n x m pixel array

3

!

< Digitazation®  Phkotons to
eléctrons

Detector
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Simple mathematical model of image formation deep imaging

Physical world ﬁ n X mimage lg




First - what is light and how can we model it? deep imaging

» Interpretation #1: Radiation (/ncoherent)
 Model: Rays

* Real, non-negative
« Models absorption

E}K£‘J = N1 . and brightness

- liot = 11 + 1>




First - what is light and how can we model it? deep imaging

Interpretation #1: Radiation (Incoherent)
Model: Rays

* Real, non-negative
« Models absorption

§}§£§A = N1 . and brightness

- liot = 11 + 1>

» Interpretation #2: Electromagnetic wave (Coherent)
* Model: Waves

double slit screen
d T >>>  Complex field
[ s )>>  Models Interference
zZ Ewt = E1 + E>

* Interpretation #3: Particle
Model: Photons
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Simple mathematical model of image formation deep imaging

Physical world ﬁ n x mimage |

» Assume incoherent illumination
« Assume thin 2D object
* Obiject is real, non-negative map of absorption/reflectivity
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Simple mathematical model of image formation deep imaging

Physical world % n x m image |

» Assume incoherent illumination
« Assume thin 2D object
* Obiject is real, non-negative map of absorption/reflectivity
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Simple mathematical model of image formation deep imaging

Physical world % n x m image |

» Assume incoherent illumination
« Assume thin 2D object
* Obiject is real, non-negative map of absorption/reflectivity
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Simple mathematical model of image formation deep imaging

Physical world % n X mimage lg

e\ R RN

» Assume incoherent illumination
« Assume thin 2D object
* Obiject is real, non-negative map of absorption/reflectivity

Object transmission: ly(x,y)
lllumination pattern: s(x,y)
Light exiting object surface: ls(X,y) = lp(X,y)o s(X,y)



Simple mathematical model of image formation

Physical world % n X mimage lg

e\ R RN

» Assume incoherent illumination
« Assume thin 2D object
* Obiject is real, non-negative map of absorption/reflectivity

Obiject reflectivity: lo(X,y)
lllumination pattern: s(x,y)
Light exiting object surface: ls(X,y) = lp(X,y)o s(X,y)

s
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deep imaging



Simple mathematical model of image formation

Physical world %

 Assume incoherent illumination

e\ R RN

« Assume thin 2D object
* Obiject is real, non-negative map of absorption/reflectivity

Modeling
incoherent
iHlumination

Ie(X,y) = IO(X,y) © S(X’y)
=S,

n X mimage lg

diag(S) =s

[IE=

deep imaging
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Example #1: Optimized illumination pattern (one color) deep imaging

First, assume perfect camera:
intensity at image planel, =1 =S |
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Example #1: Optimized illumination pattern (one color) deep imaging

Training data:

[lo(X, y), vl
,;100 x 100

Label y: 1x2



Example #1: Optimized illumination pattern (one color)

[Ie(X, Y), y]
Training data:
lh(X, V),
|(Eq|(00y))( d?/él)o - le(x,y)= S ly(x,y) —

Label yv: 1x2 Physical Layer

[IE=

deep imaging
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Example #1: Optimized illumination pattern (one color) deep imaging

IO S& [le(X, y)1 y] ZJF
- T LJ -
Training data:
[lo(X, y), V]
0 x — lxy)=S | _ Task=W,...ReLUW; ReLUW, ] ...]
1,:100 x 100 e(X.y)= 8 lo(x.y) . .

Label yv: 1x2 Physical Layer
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Example #1: Optimized illumination pattern (one color)

[le(X, y), V]
Training data:
I[I-O1()c()by>)<, 13’(1)0 L0y)= S 1Y) Task = W, ...ReLUW, ReLUW, I] ...]
O.
Label yv: 1x2 Physical Layer

Tensorflow training_images = tf.placeholder(tf.float32, [image_size, None])
training_labels = tf.placeholder(tf.float32, [None, 31)

1.0 code illumination_pattern = tf.truncated_normal([image_size, 1], stddev = 0.1)
illumination_matrix = tf.linalg.diag(illumination_pattern)

illumianted_images = tf.matmul(illumination_matrix, training_images)

(Will show ColLab Notebook for implementation in Tensorflow 2.0)
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Option 1: tf.linalg.matmul %%

deep imaging

training_images - tf.placeholder(tf.float32, [image_size, Nonel)
training_labels = tf.placeholder(tf.float32, [None, 3])
illumination_pattern = tf.truncated_normal([image_size, 1], stddev = 0.1)
illumination_matrix = tf.linalg.diag(illumination_pattern)

illumianted_images = tf.matmul(illumination_matrix, training_images)

1.0 code

llluminated images lllumination Matrix Training images

[llumination
attern

llluminated Image 1 Image 1

Option 2: tf.linalg.multiply (will show in CoLab Notebook)



[IE=

Simple mathematical model of image formation deep imaging

S ﬁ Real case: intensity at image plane I, = blurred
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deep imaging

Simple mathematical model of image formation

Lenses blur and rescale images:
(We’ll learn how exactly next few weeks)

Convolution filter h

Input Output intensity

intensity

=
X

=
]

IL=l,* h=HlI,

Assuming we’ve resized by M,



Simple mathematical model of image formation deep imaging

S . :
: ) % Intensity at image plane I, = ?
0

1




Simple mathematical model of image formation deep imaging

S
X ﬁ Discretization by detector ?

A

Use downsampling matrix D 0.50.5000...
(sum-pooling) - 0.50.5 000 ...

0.50.5 000 ...
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Simple mathematical model of image formation deep imaging

S
Iy ﬁ lp Discretization by detector ?

A
A

I;=DIl, =DHS I,

Use downsampling matrix D 0.50.5000...
(sum-pooling) - 0.50.5 000 ...

0.50.5 000 ...




Simple mathematical model of image formation

wlw2000....
w3w4d 000....
w5 eb 0_0 0...
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deep imaging

Discretization by detector ?

A
A

A
//
A

I;=DIl, =DHS I,

*Can make these learnable weights



Simple mathematical model of image formation deep imaging

S
Iy ﬁ o Noise caused by detector ?

A

Can also add in detector-dependent noise N = k * np.random.randn(dx, dy)

(zero-mean Gaussian noise, for example)



deep imaging

Pause to take a look at:

physical_layers_example.ipynb



Physical Layers
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Digital Layers

deep imaging
Physical world :Dglt?l Image Task
lo(X0,Yo0) V%Y 1 E——
a ] & ETCRACJRCK
'\ #* ] — BICYCLE
CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATTEN FULLY SOFTMAX
FE CONNECTED y
Y &
FEATURE LEARNING CLASSIFICATION
Digital layers Physical layers

/ /

Task = W,, ...ReLUW, ReLU[W, f[l.]]...]

ask = W. ...ReLU[W, ReLUW, D H S 1]...]
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Example #2: Optimized color filter for a grayscale camera deep imaging

“Ground truth” object:

IO(X’ Y }\)
100 x 100 pix. x 30 spectral channels
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Example #2: Optimized color filter for a grayscale camera deep imaging

Monochromatic
camera sensor

“Ground truth” object:

IO(X’ Y }\)
100 x 100 pix. x 30 spectral channels
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Example #2: Optimized color filter for a grayscale camera deep imaging

Monochromatic
camera sensor

“Ground truth” object:

1.(X, ) = 2 15(X, y, A
|0(X, Y, )\) s( Y) " O( y )
100 x 100 pix. x 30 spectral channels
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Example #2: Optimized color filter for a grayscale camera deep imaging

“Ground truth” object:

IO(X’ Y }\)
100 x 100 pix. x 30 spectral channels

A

1 Color transmission vs. A

Let’s put a T(N)
color filter to
put here! 0 >

\ 400 nm A 700 nm

Monochromatic
camera sensor
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Example #2: Optimized color filter for a grayscale camera deep imaging

“Ground truth” object:

IO(X’ Y }\)
100 x 100 pix. x 30 spectral channels

A

1 Color transmission vs. A

Let’s put a T(N)
color filter to
put here! 0 >

\ 400 nm A 700 nm

Monochromatic
camera sensor

IS(X’ Y) = % T()\) IO(X’ Y; }\)
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Example #2: Optimized color filter for a grayscale camera deep imaging
14 Color transmission vs. A
Design optimal  W,(A)
color filter for 207
classification: 0 >
400 nm A 700 nm

Monochromatic
camera sensor

Training data: B
[lo(X, v, N), V] ls(X, y) = % Wo(A) lo(X, Y, N)

1o:100 x 100 pix. x 30
Label y: 1x3 - pepper, broccoli, green beans Physical Layer
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Example #2: Optimized color filter for a grayscale camera deep imaging

Training data:
[IO(X’ y’ }\)! y]
15::100 x 100 x 30
Label y: 1x3
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Example #2: Optimized color filter for a grayscale camera deep imaging

Training data:
[lo(X, v, A), V] 156 ¥) =2 WoA) lofx, v, A
;100 x100x 30 ~— ~
Label y: 1x3 Physical Layer
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Example #2: Optimized color filter for a grayscale camera deep imaging

[Is(x, ¥), V]
Training data:
I[I-O1()C()b y)’(};)(’)é’]x 0 % ¥} = 2 Wol) ol . N Task = W,, ...ReLU[W, ReLU[W, |] ...]
O-

Label y: 1x3 Physical Layer



Example #2: Optimized color filter for a g
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rayscale camera deep imaging

[ls(x, y), V]
Training data:
I[I-%()Sbyi);)(,)())/]x 20 00 ¥) =2 ol b v, ) Task = W,, ...ReLU[W; ReLUW, ] ...]
O.
Label y: 1x3 Physical Layer

multispectral_data = tf.placeholder(tf.float32, [None, num_colors, image_size])

veg_labels = tf.placeholder(tf.float32, [None, 3])

filter_weights = tf.truncated_normal([num_colors, 1], stddev = 0.1)
filtered_images = tf.einsum('aij,jk->aik', multispectral_data, filter_weights)

Example implementation with Tensorflow 1.0 code
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Tensorflow: operations to sum along 3™ (or higher) dimension deep imaging

Option 1: Einsum (shown as Tensorflow 1.0 code, and also applicable in Tensorflow 2.0)

filtered_images = tf.einsum('aij,jk->aik', multispectral_data, filter_weights)

Option 2: tf.reduce_sum

filtered images = tf.reduce sum(multispectral data * filter weights, axis=2)

Each JIEEac.h.
training raining k=1
example
example
[ i
Spatial dimension Spatial dimension

Option 3: Locally connected conv2D with a 1x1 filter size

https://github.com/keras-team/keras/blob/master/keras/layers/local.py#L183



https://github.com/keras-team/keras/blob/master/keras/layers/local.py

deep imaging

Pause to take a look at:

weighted_image_sum_example.ipynb



Summary: simple physical layers for incoherent imaging

Deal with sample/image intensities |, real and non-negative

Effect of illumination is element-wise multiplication

A

l(X,y)= S lp(x,y)

Imaging systems blur the object via point-spread function matrix H

Discrete pixels down-sample the object via

Add noise into measurement

Different colors add linearly

Ib(x’y)=

H IO(X,y)

Id(X,Y)=

D IO(X,y)

IN(X!y)=

D l,(x,y) + N

(X,

y) =

z IO(X’ Y; )\)

deep imaging
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What is light and how can we model it? deep imaging

Interpretation #1: Radiation (Incoherent)
Model: Rays

* Real, non-negative
« Models absorption

%}i ] = | and brightness

- liot = 14 + I

Interpretation #2: Electromagnetic wave (Coherent)
Model: Waves

double slit screen

i

Complex field
Models Interference

- jo!
N
\_/
[ )

Eiot = E1 + E

Next class: Modeling coherent radiation as a wave




