deep imaging

Lecture 14a: Beyond classification —
object detection and segmentation
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Which pixels matter: Saliency via Backprop

Forward pass: Compute probabilities

Compute gradient of (unnormalized) class
score with respect to image pixels, take
absolute value and max over RGB channels

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models
and Saliency Maps”, ICLR Workshop 2014.
Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.
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Saliency Maps: Segmentation without supervision ="

Use GrabCut on
saliency map

4

Simonyan, Vedaldi, and Zisserman, “Deep Inside Convolutional Networks: Visualising Image Classification Models
and Saliency Maps”, ICLR Workshop 2014.

Figures copyright Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman, 2014; reproduced with permission.
Rother et al. “Grabcut: Interactive forearound extraction usina iterated araoh cuts”. ACM TOG 2004
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Intermediate Features via (guided) backprop

J0ag \dense

Max
pooling pooling

Pick a single intermediate neuron, e.g. one
value in 128 x 13 x 13 conv5 feature map

Compute gradient of neuron value with respect
to image pixels

Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014
Springenberg et al, “Striving for Simplicity: The All Convolutional Net’, ICLR Workshop 2015

Stanford CS231n: http://cs231n.stanford.edu/
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Zeiler and Fergus, “Visualizing and Understanding Convolutional Networks”, ECCV 2014
Springenberg et al, “Striving for Simplicity: The All Convolutional Net”, ICLR Workshop 2015
Figure copyright Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, Martin Riedmiller, 2015; reproduced with permission.
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Last Layer: Dimensionality Reduction ———
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Visualize the “space” of FC7
feature vectors by reducing
dimensionality of vectors from
4096 to 2 dimensions

Simple algorithm: Principal
Component Analysis (PCA)

More complex: t-SNE

Van der Maaten and Hinton, “Visualizing Data using t-SNE”, JMLR 2008
Figure copyright Laurens van der Maaten and Geoff Hinton, 2008. Reproduced with permission.
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TSNE for data visualization

 Reduce data dimensions to enable visualization in 2D or 3D
e NnD->2D or3D

* Preserve local structure of data to highlight groups
« Unsupervised — clusters unlabeled data

Applied to MNIST digits
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Applied to movies of zebrafish behavior
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deep imaging

@ Fast swimming

@ Small angle turning
® Large angle tumning
@ Hunting

@ Phototaxis

® Spont. dark swim
@ Spont. light swim
© Slow avoidance

@ Fast avoidance

@ Social avoidance
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Aside about clustering data — why do we need deep learning at all? deep imaging
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Isn’t this good enough?

Stanford CS231n: http://cs231n.stanford.edu/




Unsupervised learning in a nutshull deep imaging

Definition of Unsupervised Learning:
Learning useful structure without labeled classes, optimization criterion,
feedback signal, or any other information beyond the raw data

Supervised learning Unsupervised learning
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Unsupervised learning in a nutshull

deep imaging

Mathematical tools for finding patterns in data:
« Eigenvector decomposition

* Principal component analysis

e Singular value decomposition

Dataset 1 Dataset 2 Dataset 3 Dataset 4
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https://stats.stackexchange.com/questions/183236/wh
at-is-the-relation-between-k-means-clustering-and-pca
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Iterative methods for unsupervised learning - Clustering deep imaging

Clustering techniques

@ Hierarchical algorithms find successive clusters using previously
Clustering established clusters. These algorithms can be either agglomerative
(“bottom-up”) or divisive (“top-down™):
@ Agglomerative algorithms begin with each element as a separate cluster
and merge them into successively larger clusters;
@ Divisive algorithms begin with the whole set and proceed to divide it
Hierarehical Bayosian into successively smaller clusters.

e Partitional algorithms typically determine all clusters at once, but
can also be used as divisive algorithms in the hierarchical clustering.
Divisive Agglomerative Decision Based Nonparametric . . . e g . .
1 e Bayesian algorithms try to generate a posteriori distribution over the
Partitional collection of all partitions of the data.

Model Based Graph Theoretic Spectral

K-Means



K-Means Clustering

* Given k, the k-means algorithm works as follows:

1.

Choose k (random) data points (seeds) to be the initial
centroids, cluster centers

Assign each data point to the closest centroid

Re-compute the centroids using the current cluster
memberships

If a convergence criterion is not met, repeat steps 2 and 3

JE=

deep imaging

Determine cluster membership for each

data point
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K-Means Clustering

* Given k, the k-means algorithm works as follows:

1.

Choose k (random) data points (seeds) to be the initial
centroids, cluster centers

Assign each data point to the closest centroid

Re-compute the centroids using the current cluster
memberships

If a convergence criterion is not met, repeat steps 2 and 3

JE=

deep imaging

Compute and update new cluster center
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JE=

K-Means Clustering deep imaging

* Given k, the k-means algorithm works as follows:

1. Choose k (random) data points (seeds) to be the initial
centroids, cluster centers

Assign each data point to the closest centroid

Re-compute the centroids using the current cluster

memberships Result of first iteration

4. If a convergence criterion is not met, repeat steps 2 and 3 5
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deep imaging

Next step: let’s consider other automated tasks
besides image classification!



Output
v Model (Ex D] Ex Ixoyd
Training error ! r ~ (] ]
Lin(y, fW)x)) = (= (| y* = f(W,x) K=
cross_entropy(y, f(W,x)) I';’:s';‘:g!’ - 1 Y, L | )
o L\
{ N e . 7

Dimensional analysis for classification:

Input x: ~R1000
Output y*: ~R2- R10

This class - let’s make y* bigger!
- Object detection
- Segmentation
- Creating 3D volumes
- Betterresolution

JE=

deep imaging

Training
Data
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deep imaging

Other Computer Vision Tasks

Semantic Classification Object Instance Super-
Segmentation + Localization Detection Segmentation resolution

4x SRGAN (proposed) original

=

: LA O TE NN - = / Figure 1: Super-resolved image (left) is almost indistin-
’ = 8 . == = guishable from original (right). [4x upscaling]
GRASS, CAT, CAT DOG, DOG, CAT ~ DOG, DOG, CAT
. TREE,SKY N )
Y Y Y
No objects, just pixels Single Object Multiple Object Tis v .00 bl omaie
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Over-determined, under-determined and balanced inverse equations

W X

Over-determined equation

Unique solution can exist

If not, it’s easy to get close
Good place — more
measurements than unknowns

Under-determined equation

y W

No unique solution for x!
Hard to invert
Not a good place to be

deep imaging

Balanced equation
- Invertible if W is “nice”
- Hard to invert otherwise

x=W-1y




Other Computer Vision Tasks

Semantic
Segmentation

Classification
+ Localization

GRASS, : CAT
S TREE, SKY
Y Y
No objects, just pixels Single Object
Balanced Over-
equation determined

Object
Detection

1T =

JE=

deep imaging

Super-
resolution

Instance
Segmentation

4x SRGAN (proposed) original

= . / ; Figure 1: Super-resolved image (left) is almost indistin-
- ] = W guishable from original (right). [4x upscaling]
DOG, DOG, CAT DOG, DOG, CAT
- J
Y
Multiple Object This image is CCO publc domain
Over- Over- Under-
determined determined determined
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Approach #1: Sliding window + occlusion map

098 )y imaging
(last lecture)
Problem: Inefficient — not sharing information between
different sliding window positions (even w/ lots of overlap)
Boat image is CCO public domain -
Zeiler and Fergus, “Visualizing and Understanding Convolutional Elephant image is CCO public domain e -
Networks”, ECCV 2014 Go-Karts image is_CCO public domain 55 4 -

Stanford CS231n - http://cs231n.stanford.edu
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maging

Classification + Localization Correct label:
Class Scores l
Fully Cat: 0.9 .. Softmax
Connected: Dog: 0.05 Loss

4096 to 1000 Car: 0.01 l
I Multitask LossS 4 —»Loss
. Fully
Vz(():;%r. Connected: I
4096 to 4 Box
Coordinates —» |2 Loss
_ _ (X, y,w,h)
Treat localization as a f
regression problem! Correct box:
(X’, yl’ W’, h’)

Stanford CS231n - http://cs231n.stanford.edu




Other Computer Vision Tasks

Classification
+ Localization

Semantic
Segmentation

Object
Detection

1T =

JE=

deep imaging

Super-
resolution

Instance
Segmentation

4x SRGAN (proposed) original

Figure 1: Super-resolved image (left) is almost indistin-
guishable from original (right). [4x upscaling]

DOG, DOG, CAT
Y,

=

GRASS, CAT, CAT DOG, DOG, CAT
u TREE, SKY i Y BN
No objects, just pixels Single Object Multipl
Balanced Over- Over-
equation determined determined

Object .

s image is CCO public domain

Under-
determined

Over-
determined
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Solution: First apply a fixed ROl scheme to pull out “blobs” of interest deep imaging

(Image source: van de Sande et al. ICCV"11)

Stanford CS231n - http://cs231n.stanford.edu
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Region Proposals / Selective Search

e Find “blobby” image regions that are likely to contain objects

e Relatively fast to run; e.g. Selective Search gives 2000 region
proposals in a few seconds on CPU

Alexe et al, “Measuring the objectness of image windows”, TPAMI 2012

Uijlings et al, “Selective Search for Object Recognition”, IJCV 2013

Cheng et al, “BING: Binarized normed gradients for objectness estimation at 300fps”, CVPR 2014
Zitnick and Dollar, “Edge boxes: Locating object proposals from edges”, ECCV 2014

Note: Training dataset has marked boxes, so don’t

necessarily need to do selective search for training,
just evaluation/testing

Stanford CS231n - http://cs231n.stanford.edu




R-CNN

Bbox reg || SVMs

et

Bbox reg || SVMs
Bbox reg SVMs ‘
ConvN
et
ConvN

ConvN
et

LE=

Linear Regression for bounding box offsets ep imaging

Classify regions with
SVMs

Forward each
region through
ConvNet

ﬁ Warped image regions

Regions of Interest
(Rol) from a proposal
method (~2k)

Girshick et al, “Rich feature hierarchies for accurate object detection and
semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.

Stanford CS231n - http://cs231n.stanford.edu




Fast R-CNN: Rol Pooling

Divide projected

JE=

deep imaging

Fully-connected
layers

Project proposal proposal into 7x7
onto features / grid, max-pool
within each cell
CNN
Hi-res input image: Hi-res conv features: Rol conv features:
3x_640x.480 512 x 20 x 15: 512 x 7 x7
with region for region proposal
proposal Projected region
proposal is e.g.
512x18x 8

(varies per proposal)

H

Fully-connected layers expect
low-res conv features:
512 x7 x7

Girshick, “Fast R-CNN”, ICCV 2015.

Stanford CS231n - http://cs231n.stanford.edu




Faster R-CNN:

Make CNN do proposals!

Insert Region Proposal Classification Bounding-box
Network (RPN) to predict regression loss
proposals from features kX 1 p Y

\\ \\‘ /'//
. ¥ proposals e il
R-CNN Test-Time Speed -
R-CNN Region Proposal Network ;5
SPP-Net
feature map

Fast R-CNN 2.3 2

Faster R-CNN| 0.2

0 15 30 45 NN

) V4

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015 —lrrr 77—
Figure copyright 2015, Ross Girshick; reproduced with permission

maging
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Detection without Proposals: YOLO / SSD

Go from input image to tensor of scores with one big convolutional network! .

Within each grid cell:

- Regress from each of the B
base boxes to a final box with
5 numbers:
(dx, dy, dh, dw, confidence)

- Predict scores for each of C
classes (including
background as a class)

Input image Divide image into grid Output:

3XHxW 7x7 7x7x(5*B+CQC)
Image a set of base boxes
Redmon et al, “You Only Look Once: centered at each grid cell
Unified, Real-Time Object Detection”, CVPR 2016 H ere B - 3

Liu et al, “SSD: Single-Shot MultiBox Detector”, ECCV 2016

Stanford CS231n - http://cs231n.stanford.edu
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Object Detection: Impact of Deep Learning

mean Average Precision (mAP)

80%

70%

60%

50%

40%

30%

20%

10%

0%

Figure copyright Ross Girshick, 2015.

Reproduced with permission.
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