deep imaging

Lecture 13: CNN visualization and
example applications

Machine Learning and Imaging

BME 548L
Roarke Horstmeyer



deep imaging

Announcements

« Homework 1 should be graded soon

« Homework 3 assigned last Thursday 3/11 and is due Thursday 3/25

« Homework 4 assigned Thursday 3/25, will be due Thursday 4/8

« Homework 5 assigned Thursday 4/8, will be due Thursday 4/22 (last day of class)

« We’ll also start to prepare for the final project....



Class project details

deep imaging

* Full details are here: https://deepimaging.github.io/proj-info/

« Can work alone or in a group (up to 4 people), required effort will scale with # of people
« Select a “base” dataset (online, or from a list I’ll make)

« Simulate parameters of a physical (imaging) system with base dataset

« Train deep neural net with simulated dataset

* Report results

What you’ll need to submit:
1) The project’s source code

2) A short research-style paper (3 pages minimum, 5 pages maximum) that includes an
introduction, results, a discussion section, references and at least 2 figures

3) A completed web template containing the main results from the research paper

4) A 7-10 minute presentation that each student will deliver to the class


https://deepimaging.github.io/proj-info/

Class project — what are the first steps?

1. Think about it! deep imaging
2. Discuss with your friends/others in the class (feel free to use Slack!) to form group

3. Schedule a short 15 meeting with me: https://calendly.com/rwh4/15min

« Monday March 22, 3pm - 5pm
« Tuesday March 23, 9:30am - 11:30am
4. Start to write-up a proposal
 General aim: 1 paragraph, specifying physical layer or hardware analysis component
» Discussion: (a) data source(s), (b) expected simulations, (c) expected CNN, (d)
quantitative analysis of physical layer/physical component (comparison, plot, etc).
* Project proposal due date: Friday March 26, revisions after if needed
* Final project will be presented during final exam slot: Thursday April 29, 9am-noon

* (note: due to large class size, this may go a bit over 3 hours, can maybe split in 2 sessions)


https://calendly.com/rwh4/15min

Projects from prior semester of BME 548:

deep imaging

Finding Ultrasound Sub-apertures for Liver Vessel Segmentation

Single-Pixel, Single-Frequency Hand Gesture Recognition with a Dynamic Metasurfaces
Going Deeper: Depth Image Classification via simulated SPAD array images
Trained Blur Kernel for histology slide segmentation using a Deep Neural Network
Classification of Tuberculosis Bacilli With and Without Staining

A deep learning approach to improving ultrasonic plane wave imaging

Automated Image Focus Detecting Algorithm for Low-Cost Handheld Microscope
Optimal shift-variant point-spread function for improved classification

Deep Learning for Motion Tracking on the Micron Scale with Ultrasound

Sensor Multiplexing and Reconstruction for Color Images

Noise Reduction in Optical Coherence Tomography using a Deep Image Prior
Optimization of illumination for Unet-Base Cervix Segmentation

HDR image reconstruction with filters over pixels — What is the optimal design?
Detection of Lesions in Variably Noisy Ultrasound Images Using Machine Learning
Methods for Segmentation of Fine Structure in Rodent Histological Specimens
Direct reconstruction network for photoacoustic imaging with fewer measurements
Machine Learning for Ultrasound Lesion Mapping with Apodization Optimization
Resolution versus Precision in X-ray detection of Pneumonia

Optimizing illumination for overlapped image classification



Example project topics:

deep imaging

Can we design a new lens/transducer/antenna shape to improve classification of X?

What is the tradeoff between image resolution and accuracy for X (classification, segmentation, etc.)? What if we had access to n
low-resolution cameras — how might we position them to get the best performance?

Can we determine an optimal set of colors to improve fluorophore distinguishability?

How does classification accuracy change with sensor bit depth, down to the 1-bit level for single-photon detectors?

If we just had a few sensors, how should be arrange them e.g. a mask to be able to predict the position of X?

Is there some optimal shift-variant blur that we can to use for a particular task?

Or, given a shift-variant blurry image, can we establish a good deconvolution using locally connected layers?
What is the optimal way to layout filters on a sensor to capture a color image for classification? Or an HDR image?
HDR image generation with filters over pixels — what is optimal design?

What if we could make a sensor with different sized pixels — how should they be laid out to achieve the best X?



How does classification accuracy change with sensor bit depth, down to the 1-bit level for
single-photon detectors? deep imaging

n x m pixel sensor

Input: Cell sample

. . Saved image Classification
discretization:
: 8 bits, 7 bits, ....1 bit .
_ Malaria
F ; a parasite or
none?

Physical layer test: per-pixel discretization (max. # bits/image)

~

| propose to test the classification performance of a microscope as a function of sensor bit depth (i.e., image
discretization). | will plot average classification test accuracy as a function of number of sensor bits from 1 bit to 8 bits.
| will additionally test whether the pixel discretization value can be optimized as a physical layer parameter. | will
simulate a pixel discretization value, at each pixel, by multiplying the associated raw intensity value at each pixel by a
weight, and will then using the max() operator to set a threshold. | will examine how classification accuracy varies with
this additional constraint, and will attempt to draw insights into where the network prefers to have more bits/pixel.

Dataset: 12,500 images of 4 types of blood cell https://www.kaggle.com/paultimothymooney/blood-cells

(Specify more details about simulation network, physical layer implementation and quantitative analysis)


https://www.kaggle.com/paultimothymooney/blood-cells

Our very basic convolutional neural network

Output
*

y Model / Ex. [X4,y4] EX. [XK,yK]\
Training error ~ r ~N 1T ]
Lin(Y1 f(W,X)) = <:: <: y* = f(W,X) <:
cross_entropy(y, f(W,x)) - _ y, - . :
Convolutional / /\ M X:
Neural Network I—in _ max Ws max W, max w
*
\_ y

Forward pass: from x; and current W’s, find L,
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Training
Data



deep imaging

How to examine and present your results: a few options at different stages

Options to examine your test data after processing:
* ROC curve, Precision-Recall

« Confusion matrix

 Sliding window visualization
» Layer visualizations

« Saliency maps etc.

 tSNE visualization



Estimated label

ROC curve and confusion matrix f(x, W) deep imaging
+1 -1 Missed an event
« (Can set threshold for f(x,W) Actual label +1 | True positive [False negative
wherever

y
« Leads to sliding window between -1 |(False positive| True negative
FN and FP rate

Predict event when
there isn’t one

 Need to summarize both statistics
as a function of sliding window
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ROC curve and confusion matrix f(x, W) e

deep imaging

+1 -1 Missed an event

TP Rate =
Sensitivity = TP / (TP + FN) = TP / Actual positives ~ Actual label 1| True positive @@
y
-1 |(False positive| True negative
False Positive Rate = FP / (TN + FP) = FP/ Actual negatives

Predict t wh
Specificity = TN / (TN + FP) = TN / Actual negatives tggrécisﬁytegngv .
= 1 - False Positive Rate
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ROC curve and confusion matrix f(x, W) S

deep imaging

+1 -1 Missed an event

TP Rate =
Sensitivity = TP / (TP + FN) = TP / Actual positives Actual label +1 | True positive (False negative

y
-1 |(False positive| True negative
False Positive Rate = FP / (TN + FP) = FP/ Actual negatives

Predict t wh
Specificity = TN / (TN + FP) = TN / Actual negatives t;grécisre]ytegngv .
= 1 - False Positive Rate

Receiver-Operator Curve

14t .~ Guessing
True
Positive
rate

0 #

O False Negativerate 1



Estimated label
ROC curve and confusion matrix f(x, W) R

+1 -1 Missed an event

TP Rate =
Sensitivity = TP / (TP + FN) = TP / Actual positives ~ Actual label 1| True positive @@
y
-1 |(False positive| True negative
False Positive Rate = FP / (TN + FP) = FP/ Actual negatives

Predict t wh
Specificity = TN / (TN + FP) = TN / Actual negatives tggrécisﬁytegngv .
= 1 - False Positive Rate

Receiver-Operator Curve

1t Guessing

True
Positive
rate

Area under the curve (AUQC): Integral of ROC curve

0 .
O False Negativerate 1



Estimated label

ROC curve and confusion matrix f(x, W) oo o
+1 -1 Missed an event

Recall =

N True positive |False negative
Sensitivity = TP / (TP + FN) = TP / Actual positives ~ ‘ctual label +1

y
-1 @p@ True negative

Predict event when
there isn’t one I

Precision = TP / (TP + FP) = TP / Estimated positives

« Sometimes, you don’t care about true negatives
(just want to find events)

* In this case, use Precision and Recall
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deep imaging

+1 -1 Missed an event

Recall =

N True positive |False negative
Sensitivity = TP / (TP + FN) = TP / Actual positives ~ ‘ctual label +1

y
-1 @p@ True negative

Predict event when
there isn’t one I

Precision-Recall curve Precision = TP / (TP + FP) = TP / Estimated positives

Precision

F1 Metric: (1/precision + 1/recall)

Guessing .

Recall



ROC curve and confusion matrix

Just 2 categories

Estimated label
f(x, W)

+1

-1
+1 | True positive @@
-1 @p@ True negative

Confusion Matrix: 2+ categories

Estimated label
f(x, W)

Statel State2 State3 Stated State5 State6 State7

gctualy (Predicted) (Predicted) (Predicted) (Predicted) (Predicted) (Predicted) (Predicted)

Statel (Actual) 0.00 % 0.00

State2 (Actual) 0.00 % 0.00 %
State3 (Actual) 734 % 0.00 %
Stated (Actual) 0.00 % 0.00 %

State8
(Predicted)

0.00 %

0.00 %

0.00 %

0.00 %

[IE=
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Other performance metrics H%

deep imaging

« Overlap between segmented areas: Jaccard similarity coefficient
J=|R1 nR2|/|R1UR2|

« MSE, PSNR

(210 py + €1)(202y + C2)
(B2 + py + 1) (o7 + o + ¢2)

« Structural Similarity (SSIM) SSIM(z,y) =

with:

e u, the average of z;

e u, the average of y;

e o2 the variance of z;

* o2 the variance of y;

e o,y the covariance of z and y;

e c;=(k1L)?, co=(koL)? two variables to stabilize the division with weak denominator;
« L the dynamic range of the pixel-values (typically this is 2#bits per pizel _7);

e k;=0.01 and k,=0.03 by default.



deep imaging

Examples of CNN’s for biomedical image analysis



Convolutional neural
networks for automated
annotation of cellular
cryo-electron tomograms

Muyuan Chen!2, Wei Dai?4, Stella Y Sun?,
Darius Jonasch?, Cynthia Y He3, Michael F Schmid?,
Wah Chiu? & Steven J Ludtke2®

b Positive examples

2D patches
from
tomogram

Corresponding
manual
annotation

Neural
network
output

RN

Neural
network

Trained
neural
network

— AW,

— T

deep imaging

Output



P. Eulenberg et al., “Reconstructing cell cycle and disease progression using deep learning” é%
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Initial Image Contrast Enhancement Human Labeled ROls ROI Centroids

Automatic Neuron Detection in Calcium Imaging
Data Using Convolutional Networks V1 Dataset

Noah J. Apthorpe'*  Alexander J. Riordan®>* Rob E. Aguilar’  Jan Homann?

Yi Gu?> David W. Tank®> H. Sebastian Seung'?
!Computer Science Department  ?Princeton Neuroscience Institute
Princeton University

MEC Dataset
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Dermatologist-level classification of skin cancer
with deep neural networks

Andre Esteva'*, Brett Kuprel'*, Roberto A. Novoa??, Justin Ko?, Susan M. Swetter?>*, Helen M. Blau® & Sebastian Thrun®

Skin lesion image Deep convolutional neural network (Inception v3) Training classes (757) Inference classes (varies by task)

/@ Acral-lentiginous melanoma ] ) ]
/@ Amelanotic melanoma >€B ® 92% malignant melanocytic lesion
///@ Lentigo melanoma

Y &/
) - - - - \ d, \ Blue nevus ) ) )
J \\@ Halo nevus >€BO 8% benign melanocytic lesion

= Convolution \\\. Mongolian spot
= AvgPool \;\\O

MaxPool \©
= Concat ©
= Dropout .
= Fully connected .
= Softmax " d. Benign Melanocytic Lesion

a Carcinoma: 135 images Melanoma: 130 images Melanoma: 111 dermoscopy images B
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Sensitivity Sensitivity Sensitivity



Prospective identification
of hematopoietic lineage
choice by deep learning

Felix Buggenthin!-, Florian Buettner!->9,

Philipp S Hoppe**, Max Endele?, Manuel Kroiss!>,
Michael Strasser!, Michael Schwarzfischer!,

Dirk Loeffler3#, Konstantinos D Kokkaliaris34,
Oliver Hilsenbeck?#, Timm Schroeder3*,

Fabian J Theis!»> & Carsten Marr!

a
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stem cell
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Beyond statistics, how can we visualize performance for classification?

Training dataset

Machine Learning and Imaging — xoarke morstmeyer (£uz 1

Trained CNN

[IE=
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Beyond statistics, how can we visualize performance for classification? ][%

deep imaging

Training dataset

.| Trained CNN

»
»

— Use sliding window!

Machine Learning and Imaging — xoarke morstmeyer (£uz 1



Beyond statistics, how can we visualize performance for classification? %
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.| Trained CNN

— Use sliding window




How can we visualize what’s in the network? 4,%

deep imaging

This image is CCO public domain

2
.... ( 192 192 128 2098 \/ 204 \dense .
o W\ T - - AT Class Scores:
T3 |l i 1000 numbers
U o O\ A | =
Q [ X 1000
192 192 128 Max o) -
Max 128 Max pooling 204 2048
pooling pooling

Input Image:
3 X224 x 224

What are the intermediate features looking for?

Stanford CS231n: http://cs231n.stanford.edu/



http://cs231n.stanford.edu/
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First Layer: Visualize Filters
-

13
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m 3}]\
192
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192

ResNet-18: ResNet-101: DenseNet-121:
64 X3 X7XxX7 64 xXx3xX7Xx7 64 X3 xX7XxX7

B e ‘T. - w
AlexNet:

I. ook,
A\ " 3 X
192

Max
pooling

27 128

64 x3x 11 x 11

Krizhevsky, “One weird trick for parallelizing convolutional neural networks”, arXiv 2014
He et al, “Deep Residual Learning for Image Recognition”, CVPR 2016
Huang et al, “Densely Connected Convolutional Networks”, CVPR 2017

Stanford CS231n: http://cs231n.stanford.edu/



http://cs231n.stanford.edu/

Visualize the
filters/kernels
(raw weights)

We can visualize
filters at higher
layers, but not
that interesting

(these are taken
from ConvNetJS
CIFAR-10

demo)

~Aaan imaging

Weights: :
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Stanford CS231n: http://cs231n.stanford.edu/



http://cs231n.stanford.edu/
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Last Layer FC7 layer |

4096-dimensional feature vector for an image
(layer immediately before the classifier)

Run the network on many images, collect the
feature vectors

Stanford CS231n: http://cs231n.stanford.edu/



http://cs231n.stanford.edu/
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Last Layer

FC7 layer

ng Hense
5 Mq

1000
2048

idef

Nearest Neighbors/

|
><§
dense L
2

Recall: Nearest neighbors 2 L 8
in pixel space I
=4~ X1 AT
3 - 11 0 I Be o
- SEEED LT
grdag &€» L

i - 23 N sl I

Krizhevsky et al, “ImageNet Classification with Deep Convolutional Neural Networks”, NIPS 2012.
Figures reproduced with permission.

Stanford CS231n: http://cs231n.stanford.edu/



http://cs231n.stanford.edu/

Which pixels matter: ﬂ%
Saliency vs Occlusion

Mask part of the image before feeding to CNN,
check how much predicted probabilities change

P(elephant) = 0.95

P(elephant) = 0.75

oat image is CCO public domain
ephant image is CCO public domain
)-Karts image is_CCO public domain

o0

M |0

Zeiler and Fergus, “Visualizing and Understanding Convolutional
Networks”, ECCV 2014

Stanford CS231n: http://cs231n.stanford.edu/



http://cs231n.stanford.edu/
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Which pixels matter:

©

Saliency vs Occlusion
Mask part of the image before feeding to CNN,
check how much predicted probabilities change '

Boat image is CCO public domain

- e
L ]
' L] ]
] - ;
- - . 0.4
Zeiler and Fergus, “Visualizing and Understanding Convolutional Elephant image is CCO public domain l os
R

Networks", ECCV 2014 Go-Karts image is_CCO public domain : 4 o

Stanford CS231n: http://cs231n.stanford.edu/



http://cs231n.stanford.edu/

[IE=

deep imaging

True Label: Ag’h‘an Houn

T

'
1

Stanford CS231n: http://cs231n.stanford.edu/



http://cs231n.stanford.edu/

