
Machine Learning and Imaging – Roarke Horstmeyer (2020)

deep imaging

Thanks to Kevin Zhou for preparing much of this material

Machine Learning and Imaging

BME 548L
Roarke Horstmeyer

Lecture 11: Tools for your deep
learning toolbox

Machine Learning and Imaging – Roarke Horstmeyer (2020)

deep imaging

Model
Output

y* Ex. [x1,y1] Ex. [xK,yK]

… Training
Data

Training error

Lin(y, f(W,x)) = y* = f(W,x)
cross_entropy(y, f(W,x))

Our very basic convolutional neural network

Forward pass: from xi and current W’s, find Lin

y*

xi
= W3 W2 W1

maxmaxmaxLin
Convolutional
Neural Network

Machine Learning and Imaging – Roarke Horstmeyer (2020)

deep imaging

Model
Output

y* Ex. [x1,y1] Ex. [xK,yK]

… Training
Data

Training error

Lin(y, f(W,x)) = y* = f(W,x)
cross_entropy(y, f(W,x))

Our very basic convolutional neural network

Last Class: Effectively achieve this with automatic differentiation (backprop)

y*

xi
= W3 W2 W1

maxmaxmax

Given a new Lin,
update W’s to make
Lin smaller with
gradient descent

Lin

Machine Learning and Imaging – Roarke Horstmeyer (2020)

deep imagingImportant components of a CNN

CNN Architecture Loss function & optimization

• CONV size, stride, pad, depth

• ReLU & other nonlinearities

• POOL methods

• # of layers, dimensions per layer

• Fully connected layers

• Type of loss function

• Regularization

• Gradient descent method

• SGD batch and step size

Other specifics: Variable Initialization, augmentation, batch normalization, dropout, gradient descent params.

Architecture
choices

Optimization
choices

Machine Learning and Imaging – Roarke Horstmeyer (2020)

deep imagingImportant components of a CNN

CNN Architecture Loss function & optimization

• CONV size, stride, pad, depth

• ReLU & other nonlinearities

• POOL methods

• # of layers, dimensions per layer

• Fully connected layers

• Type of loss function

• Regularization

• Gradient descent method

• SGD batch and step size

Other specifics: Variable Initialization, augmentation, batch normalization, dropout, gradient descent params.

Architecture
choices

Optimization
choices

This class: final details about deep CNN implementation

Machine Learning and Imaging – Roarke Horstmeyer (2020)

deep imagingWeights initialization

- Need to start somewhere – typically best to use an appropriate random guess

Convex	
problem:	
doesn’t	really	
matter	where	
you	start

Non-convex	problem:	
certainly	matters,	but	
you	don’t	know	where	
is	best...

- Need to start somewhere – typically best to use an appropriate random guess
sampled from a Gaussian distribution:

layer1_weight = tf.Variable(tf.truncated_normal([5,5, 1, 32], stddev = 0.1)

Machine Learning and Imaging – Roarke Horstmeyer (2020)

deep imagingWeights initialization

- Often it is helpful to take variance of weights into account
- Having very large and very small weights leads to instabilities

- Desire: variance of inputs (x) remain unchanged as they transfer through network

Machine Learning and Imaging – Roarke Horstmeyer (2020)

deep imagingWeights initialization

- Often it is helpful to take variance of weights into account
- Having very large and very small weights leads to instabilities

- Desire: variance of inputs (x) remain unchanged as they transfer through network

y = wTx
var(y) = var(wTx) = var(w1x1 + ... wNxN) = N var(w1x1) (IID)

var(wx) = E(w)2var(x) + E(x)2var(w) + var(w)var(x) = var(w)var(x)

Machine Learning and Imaging – Roarke Horstmeyer (2020)

deep imagingWeights initialization

- Often it is helpful to take variance of weights into account
- Having very large and very small weights leads to instabilities

- Desire: variance of inputs (x) remain unchanged as they transfer through network

y = wTx
var(y) = var(wTx) = var(w1x1 + ... wNxN) = N var(w1x1) (IID)

var(wx) = E(w)2var(x) + E(x)2var(w) + var(w)var(x) = var(w)var(x)

var(y) = N var(w)var(x)

var(y) = var(x) when var(w) = 1/N
layer1_weight = tf.Variable(tf.truncated_normal([5,5, 1, 32], stddev = 1/N) Xavier Initialization

Machine Learning and Imaging – Roarke Horstmeyer (2020)

deep imagingData augmentation
• Machine learning is data-driven – the more data, the better!
• Nothing beats collecting more data, but that can be expensive

and/or time consuming
• Data augmentation is the next best thing, and it’s free!

Machine Learning and Imaging – Roarke Horstmeyer (2020)

deep imagingData augmentation one image at a time

Machine Learning and Imaging – Roarke Horstmeyer (2020)

deep imagingStill a cat?

Flip left/right

Machine Learning and Imaging – Roarke Horstmeyer (2020)

deep imagingStill a cat?

Flip up/down Random affine
transformation

Machine Learning and Imaging – Roarke Horstmeyer (2020)

deep imagingStill a cat?

Change color scheme Add random noise

Machine Learning and Imaging – Roarke Horstmeyer (2020)

deep imagingData augmentation
• Basic idea: to simulate variation that you might actually see in

real life
• It’s a form of regularization
• Not an exact science, but try it out – it’s free!

Machine Learning and Imaging – Roarke Horstmeyer (2020)

deep imagingNormalization: data preprocessing
• If you use sigmoid activations, inputs that are too large could

saturate them at early layers (vanishing gradient problem)
• Good practice to normalize your inputs
• e.g. normalize to 0 mean, 1 variance; normalize to between 0 and 1 or -

1 and 1
• 𝑋" ←

$%&'
(

• Depending on the dataset, normalization can be done per
instance or across entire dataset
• Datasets with instances that have inconsistent ranges, although

theoretically not a problem, in practice could speed up learning

Machine Learning and Imaging – Roarke Horstmeyer (2020)

deep imagingGeneralizing normalization to hidden layers
• Batch normalization
• Layer normalization
• Instance normalization
• Group normalization

• All of these normalize hidden layers to 0 mean and 1 variance,
but these means and variances are computed across different
dimensions
• 𝑋" ←

$%&'
(

Machine Learning and Imaging – Roarke Horstmeyer (2020)

deep imaging

Cited	~21,000	times!	(as	
of	Sept	2020)

Machine Learning and Imaging – Roarke Horstmeyer (2020)

deep imagingBatch	normalization	(BN)

• Before BN, training very deep
networks was hard
• If using sigmoid activations, large

weights could result in saturation
• Updating earlier layers’ weights

causes the distribution of weights
in later layers to shift – the internal
covariate shift

• To address this covariate shift,
BN “resets” the layer it is
applied to by normalizing to 0
mean, 1 variance
• Mean and variance are computed

over the batch at the current
iteration

Fully	connected	layer

Batch	Normalization	

Nonlinearity

Fully	connected	layer

Batch	Normalization	

Nonlinearity

x’(i) = (x(i) – E[x(i)]) / STD[x(i)]

Batch normalization
update for inputs x:

• Mean subtract
• Normalize by standard

deviation

Machine Learning and Imaging – Roarke Horstmeyer (2020)

deep imagingProblems
• Normalizing to 0 mean 1 variance reduces the expressivity of

the layer
• E.g., if using a sigmoid activation, you’re stuck in the linear regime

• Solution: reintroduce mean (𝛽) and standard deviation (𝛾)
parameters:
• 𝑋" ←

$%&'
(#normalize

• 𝑋" ← 𝛾𝑋" + 𝛽 #new mean and standard deviations
• 𝛾 and 𝛽 are trainable parameters

• Accuracy of 𝜇 and 𝜎 depends on the batch size being large

Machine Learning and Imaging – Roarke Horstmeyer (2020)

deep imagingOther	hidden	layer	normalizations	(for	CNNs)

https://nealjean.com/ml/neural-network-normalization/

Machine Learning and Imaging – Roarke Horstmeyer (2020)

deep imaging

Cited	over	22,000	times!	
(as	of	Sept.	2020)

Machine Learning and Imaging – Roarke Horstmeyer (2020)

deep imagingDropout
• At each train iteration,

randomly delete a fraction
p of the nodes
• Prevents neurons from

being lazy
• A form of model averaging
• (related: DropConnect –

drop the connections
instead of nodes)

https://medium.com/@amarbudhiraja/https-medium-com-amarbudhiraja-learning-less-to-learn-better-dropout-in-deep-machine-learning-74334da4bfc5

Machine Learning and Imaging – Roarke Horstmeyer (2020)

deep imagingDropout
• Only one hyperparameter “rate” = p, the expected fraction of

neurons to drop in a given layer
• In TensorFlow:
• next_layer = tf.layers.dropout(previous_layer, rate=0.5)

• Common practices:
• Set p=0.5
• Make the layer wider (more units/neurons)
• Apply to fully connected layers, not convolutional layers (already

sparse)

Machine Learning and Imaging – Roarke Horstmeyer (2020)

deep imagingDropout	training	vs	testing

• Training:	at	a	given	layer,	
each	node	is	dropped	
with	probability	p
• Testing:	multiply	the	
outgoing	weights	by	1-p	
(weight	scaling	inference	
rule)
• As	a	model	averaging	
technique,	other	
possibilities	exist

Testing
(all	weights	multiplied	

by	1-p)

Training
(each	node	dropped	with	

probability)
https://medium.com/@amarbudhiraja/https-medium-com-amarbudhiraja-learning-less-to-learn-better-dropout-in-deep-machine-learning-74334da4bfc5

Machine Learning and Imaging – Roarke Horstmeyer (2020)

deep imaging

Training dataset, test dataset and validation dataset

Use to evaluate while tuning hyperparameters
• effect will creep into model as you continue to use it

Train Validation Test

Final test set is always separate!
Don’t touch until the end!

