Lecture 10: Tools for your deep
learning toolbox — Part |

Machine Learning and Imaging

BME 548L
Roarke Horstmeyer

Thanks to Kevin Zhou for helping with material preparation

deep imaging

Our very basic convolutional neural network

Output
*

y Model / Ex. [X4,y4] EX. [XK,yK]\
Training error ~ r ~N 1T]
Lin(Y1 f(W,X)) = <:: <: y* = f(W,X) <:
cross_entropy(y, f(W,x)) - _ V, - . :
Convolutional / /\ M X:
Neural Network I—in _ max Ws max W, max w
*
_ y

Forward pass: from x; and current W’s, find L,

e

deep imaging

Training
Data

Our very basic convolutional neural network *§

deep imaging

Output
o uyau Model /B Ex. [x1,y1] E_X-_[XK,VK]\
Training error ~ r ~
Training
Lin(y’ f(W,X)) — <: <: y* = f(W,X) <: vee Data
cross_entropy(y, f(W,x)) - _ y, -) a))
s —
LIn = max, Wj; max W, max W
Given a new L;,, !

update W’s to make M
L, smaller with / B
gradient descent K - /

Next Class: Effectively achieve this with automatic differentiation (backprop)

Important components of a CNN

Let’s
view
some
code!

Other specifics: Pre-processing, initialization, dropout, batch normalization, augmentation

CNN Architecture

CONV size, stride, pad, depth
RelLU & other nonlinearities

POOL methods

of layers, dimensions per layer

Fully connected layers

Loss function & optimization

» Type of loss function
* Regularization
* Gradient descent method

« SGD batch and step size

— P

deep imaging

— P

Important components of a CNN deep imaging

CNN Architecture Loss function & optimization
« CONV size, stride, pad, depth » Type of loss function
* RelLU & other nonlinearities * Regularization
« POOL methods » Gradient descent method
« # of layers, dimensions per layer « SGD batch and step size

* Fully connected layers

Other specifics: Pre-processing, initialization, dropout, batch normalization, augmentation

—tT >

—v >

Common loss functions used for CNN optimization deep imaging

Cross-entropy loss function
« Softmax cross-entropy — use with single-entry labels
« Weighted cross-entropy — use to bias towards true pos./false neg.
« Sigmoid cross-entropy
« KL Divergence

Pseudo-Huber loss function

L1 loss loss function

MSE (Euclidean error, L2 loss function)

Mixtures of the above functions

— P

Important components of a CNN deep imaging

CNN Architecture Loss function & optimization
« CONV size, stride, pad, depth » Type of loss function
* RelLU & other nonlinearities * Regularization
« POOL methods » Gradient descent method
« # of layers, dimensions per layer « SGD batch and step size

* Fully connected layers

Other specifics: Pre-processing, initialization, dropout, batch normalization, augmentation

—tT >

0
o
-

Regularization - the basics deep imaging

)\.= regularization strength
(hyperparameter)

N
1
L(W) = Z;Lz'(f(l‘i, W), i)
1=
\ e, w_/
Y

Data loss: Model predictions Regularization: Prevent the model
should match training data from doing too well on training data

Simple examples

L2 reqularization: R(W) = Y-, >, W2,

L1 regularization: R(W) =Y, Y, |[Wiy|

Elastic net (L1 + L2): R(W) =3, >, BW2, + Wiy

—v =
deep imaging

Regularization prefers less complex models & help avoids overfitting

L2 Regularization

i — :1,1717 1] R([’[’) — ZkZl M/kQ,l
wy = [1,0,0,0]
f ;
wy = [0.25,0.25,0.25, 0.25] y :

{ LT | ¢ S
wlaz—'wQa:—l

Regularization pushes against fitting the data
too well so we don't fit noise in the data

Important components of a CNN

CNN Architecture

« CONV size, stride, pad, depth

* RelLU & other nonlinearities

+ POOL methods

« # of layers, dimensions per layer

* Fully connected layers

Loss function & optimization

» Type of loss function

* Regularization

» (Gradient descent method

« SGD batch and step size

Very quick outline

Other specifics: Pre-processing, initialization, dropout, batch normalization, augmentation

— P

deep imaging

—TT >

—v

A variety of gradient descent solvers available in Tensorflow deep imaging

« Stochastic Gradient Descent (bread-and-butter, when in doubt...)

« Adam Optimizer (update learning rates with mean and variance)

* Nesterov/ Momentum (add a velocity term)

« AdaGrad (Adaptive Subgradients, change learning rates)

* Proximal AdaGrad (Proximal = solve second problem to stay close)
« Ftrl Proximal (Follow-the-regularized-leader)

« AdabDelta (Adaptive learning rate)

Implementation detail #1 — method for gradient descent

while
weights grad = evaluate gradient(loss fun, data, weights)
weights += - step size * weights grad

Stochastic Gradient Descent (SGD)

L(W) = % Z Li(z;,y:, W) + AR(W)

N
1
VwL(W) = ~ > VwLi(zi,yi, W) + AV R(W)

i=1

—TT >

—v

deep imaging

—tT >

—v >

Implementation detail #1 - method for gradient descent deep imaging

while
weights grad = evaluate gradient(loss fun, data, weights)
weights += - step size * weights grad

Stochastic Gradient Descent (SGD)

| N Full sum expensive
L(W) = N Z Li(xi,y;, W) + AR(W) when N is large!
i=1

Approximate sum

N
1 . -
VwL(W) =~ Y " VwLi(zi,y:, W) + AVw R(W) gig‘rg ;e';“"'batch of

- 32 /64 / 128 common

—tT >

—v >

Implementation detail #1 - method for gradient descent deep imaging

while
data batch = sample training data(data, 256)
weights grad = evaluate gradient(loss fun, data batch, weights)
weights += - step size * weights grad

Stochastic Gradient Descent (SGD)

| N Full sum expensive
L(W) = N Z Li(xi,y;, W) + AR(W) when N is large!
i=1

Approximate sum

N
1 | -
VwL(W) =~ Y " VwLi(zi,y:, W) + AVw R(W) gig‘rg ;e':'"'batch of

- 32 /64 / 128 common

—v =
deep imaging

Question: Why does gradient descent still work with mini-batches?

Answer: With stochastic gradient descent, random sub-set averaging of gradients still
allows one to find their way down the hill to global minimum, at least with convex and
guasi-convex functions [1].

— VL

Stochastic Gradient Descent (SGD)

N
LW) = 5 3 Li(ei, i, W) + AR(Y)

N
1
VwL(W) = > VwLi(zi,yi, W) + AVwR(W)

=1

[1] Bottou, Léon (1998). "Online Algorithms and Stochastic Approximatibhs”:
https://leon.bottou.org/publications/pdf/online-1998.pdf

e

Question: Why does gradient descent still work with mini-batches? eepmeane
Answer: With stochastic gradient descent, random sub-set averaging of gradients still
allows one to find their way down the hill to global minimum, at least with convex and
guasi-convex functions [1].
Random sub- , -V I—i
i i selection of T SR
Stochastic Gradient Descent (SGD) odonts e T 14 o (1/N)Z\V L,
N averagé—._ SO0,
= 2 L@y, W) + AROW) P ,» _ ../, AR -*, | 1/M)2\V L
N z o1
VwL(W) = in Li(zs,ys5, W) + AVw R(W) | =
%% N < W Lig\Lgy Yiy %% d 'T

T £ = B average, purple arrow
[1] Bottou, Léon (1998). "Online Algorithms and Stochastic Approximations”: points in same direction as
https://leon.bottou.org/publications/pdf/online-1998.pdf red arrow

—TT >

—v >

A variety of gradient descent solvers available in Tensorflow deep imaging

« Stochastic Gradient Descent (bread-and-butter, when in doubt...)

« Adam Optimizer (update learning rates with mean and variance)

* Nesterov/ Momentum (add a velocity term)

« AdaGrad (Adaptive Subgradients, change learning rates)

* Proximal AdaGrad (Proximal = solve second problem to stay close)
» Ftrl Proximal (Follow-the-regularized-leader)

« AdabDelta (Adaptive learning rate)

Next lecture: how Tensorflow actually solves gradient descent for you

Computational Graphs and the Chain Rule!

f=

Wz

o

—

D iy max(0,s; — sy, + 1)

\ s (scores)
S0=0—¢
R

R(W)

L

[IE=

deep imaging

Important components of a CNN

Let’s
view
some
code!

Other specifics: Pre-processing, initialization, dropout, batch normalization, augmentation

CNN Architecture

CONV size, stride, pad, depth
RelLU & other nonlinearities

POOL methods

of layers, dimensions per layer

Fully connected layers

Loss function & optimization

» Type of loss function
* Regularization
* Gradient descent method

« SGD batch and step size

— P

deep imaging

—v >

Important components of a CNN deep imaging

CNN Architecture Loss function & optimization

« CONV size, stride, pad, depth

Type of loss function

_ * RelLU & other nonlinearities Regularization o
Architecture __ Optimization

choices |« POOL methods choices

Gradient descent method

« # of layers, dimensions per layer SGD batch and step size

N

* Fully connected layers

Other specifics: Variable Initialization, augmentation, batch normalization, dropout, gradient descent params.

The rest of this lecture: final details about deep CNN implementation

Weights initialization

e

deep imaging

- Need to start somewhere — typically best to use an appropriate random guess

Convex
problem:
doesn’t really
matter where
you start

&

Non-convex problem: /),;o’,’o‘;‘““\“\“\\\\
certainly matters, but A
you don’t know where

is best...

0
grixx|
, ,,’g?f#‘gb‘\“

pasn

- Need to start somewhere — typically best to use an appropriate random guess
sampled from a Gaussian distribution:

layer1_weight = tf.Variable(tf.truncated_normal([5,5, 1, 32], stddev = 0.1)

—tT >

— P

WeightS initia|izati0n deep imaging

- Often it is helpful to take variance of weights into account
- Having very large and very small weights leads to instabilities

- Desire: variance of inputs (x) remain unchanged as they transfer through network

—tT >

—v >

WeightS initia|izati0n deep imaging

- Often it is helpful to take variance of weights into account
- Having very large and very small weights leads to instabilities

- Desire: variance of inputs (x) remain unchanged as they transfer through network
y = wix

var(y) = var(wTx) = var(w;X; + ... wyXy) = N var(w4x4) (ID)

var(wx) = E(w)?var(x) + E(x)2var(w) + var(w)var(x) = var(w)var(x)

—tT >

— P

WeightS initia|izati0n deep imaging

- Often it is helpful to take variance of weights into account
- Having very large and very small weights leads to instabilities

- Desire: variance of inputs (x) remain unchanged as they transfer through network
y = wix

var(y) = var(w'x) = var(wX; + ... wyXy) = N var(w;x4) (D)
var(wx) = E(w)?var(x) + E(x)2var(w) + var(w)var(x) = var(w)var(x)
var(y) = N var(w)var(x)

var(y) = var(x) when var(w) = 1/N

layer1_weight = tf.Variable(tf.truncated_normal([5,5, 1, 32], stddev = 1/N) Xavier Initialization

deep imaging

Data augmentation

* Machine learning is data-driven — the more data, the better!

* Nothing beats collecting more data, but that can be expensive
and/or time consuming

« Data augmentation is the next best thing, and it’s free!

=

deep imaging

Data augmentation one image at a time

=

Still a cat?

Flip left/right

=

Still a cat?

Flip up/down Random affine
transformation

Still a cat?

Change color scheme Add random noise

deep imaging

Data augmentation

» Basic idea: to simulate variation that you might actually see in
real life

* It’s a form of regularization
* Not an exact science, but try it out — it’s free!

deep imaging

Normalization: data preprocessing

* |If you use sigmoid activations, inputs that are too large could
saturate them at early layers (vanishing gradient problem)

« Good practice to normalize your inputs

* e.g. normalize to O mean, 1 variance; normalize to between 0 and 1 or -

1 and 1

X._
(0)

* Depending on the dataset, normalization can be done per
Instance or across entire dataset

» Datasets with instances that have inconsistent ranges, although
theoretically not a problem, in practice could speed up learning

Generalizing normalization to hidden layers

« Batch normalization

* Layer normalization

* Instance normalization
« Group normalization

 All of these normalize hidden layers to 0 mean and 1 variance,
but these means and variances are computed across different

dimensions
(0)

—tT >

—v >

deep imaging

e

deep imaging

Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift

Sergey loffe Christian Szegedy
Google Inc., sioffe[@google.com Google Inc., szegedy@google.com

Cited ~21,000 times! (as
of 2020)

Batch normalization (BN)

« Before BN, training very deep
networks was har

. If u_sin? sigmoid activations, large Batch normalization
weights could result in saturation update for inputs x:

» Updating earlier layers’ weights
causes the distribution of weights

l SRS

Fully connected IayerﬁC

==

eep imaging

!

Batch Normalization

!

in later layers to shift — the internal X'(I) = (x()) — E[x(i)]) / STD[x(i)]

Nonlinearity

l

covariate shift

* To address this covariate shift, . Mean subtract
BN .resets the Iayer 'J.[IS « Normalize by standard
applied to by normalizing to O deviation
mean, 1 variance
« Mean and variance are computed

over the batch at the curren
Iteration

Fully connected layer

i

Batch Normalization

Nonlinearity

'

—tT >

—v >

deep imaging

Problems

* Normalizing to O mean 1 variance reduces the expressivity of
the layer
* E.g., if using a sigmoid activation, you’re stuck in the linear regime

 Solution: reintroduce mean () and standard deviation (y)
parameterS'
. X; « Z7E #normalize

« X; « yX + f #new mean and standard deviations
« y and $ are trainable parameters

* Accuracy of u and o depends on the batch size being large

—v =
deep imaging

Other hidden layer normalizations (for CNNs)

Batch Norm Layer Norm Instance Norm Group Norm

H,W

[[[/

LSS S

H, W
[S S S/
[/

[L LSS
[S/

NAVAVAVAVA
NAVAVAVAVA

NAVAVAVAVA

[L LSS
NAVAVAVANA
NAVAVAVAVA
Z\ A\ N\ N\ N\

Figure 2. Normalization methods. Each subplot shows a feature map tensor, with /N as the batch axis, C as the channel axis, and (H, W)
as the spatial axes. The pixels in blue are normalized by the same mean and variance, computed by aggregating the values of these pixels.

https://nealjean.com/ml/neural-network-normalization/

Journal of Machine Learning Research 15 (2014) 1929-1958

Submitted 11/13; Published 6/14

Dropout: A Simple Way to Prevent Neural Networks from

Nitish Srivastava

Geoffrey Hinton

Alex Krizhevsky

Ilya Sutskever

Ruslan Salakhutdinov
Department of Computer Science

University of Toronto

10 Kings College Road, Rm 3302

Toronto, Ontario, M5S 3G/, Canada.

Editor: Yoshua Bengio

Overfitting

NITISHQCS. TORONTO.EDU
HINTONQCS.TORONTO.EDU
KRIZQCS. TORONTO.EDU
ILYAQCS. TORONTO.EDU
RSALAKHUQCS. TORONTO.EDU

Cited over 22,000 times!
(as of 2020)

25

1aging

—TT >

0
o
—_—

deep imaging

Dropout

* At each train iteration,
randomly delete a fraction
p of the nodes

* Prevents neurons from
being lazy

{)
S\
‘.
. A
®

\)

A

<
X
29,
NS
"’A’R
(X
<%
R
!

o
X
3
KX

o
A

X
l"

/A
@
¥
\"

. NI AP
* A form of model averaging \e;‘.;f:;;‘.f@’;:.
(HTERIN

* (related: DropConnect —
drop the connections (a) Standard Neural Net (b) After applying dropout.
instead of nodes)

https://medium.com/@amarbudhiraja/https-medium-com-amarbudhiraja-learning-less-to-learn-better-dropout-in-deep-machine-learning-74334da4bfc5

deep imaging

Dropout

* Only one hyperparameter “rate” = p, the expected fraction of
neurons to drop in a given layer

* [n TensorFlow:
« next_layer = tf.layers.dropout(previous_layer, rate=0.5)

« Common practices:
« Set p=0.5
« Make the layer wider (more units/neurons)

» Apply to fully connected layers, not convolutional layers (already
sparse)

—TT >

—v

deep imaging

Dropout training vs testing

* Training: at a given layer,
each node is dropped
with probability p

* Testing: multiply the
outgoing weights by 1-p
(weight scaling inference
rule)

)
%

\/
Q)
:'\)

V

(/x
N/
4‘01

‘l \J
X3

\/
DAL

»
ATA

%S
X

)

* As a model averaging

technique, other Training Testing
possibilities exist (each node dropped with (all weights multiplied
probability) by 1-p)

https://medium.com/@amarbudhiraja/https-medium-com-amarbudhiraja-learning-less-to-learn-better-dropout-in-deep-machine-learning-74334da4bfc5

=

deep imaging

Training dataset, test dataset and validation dataset

Train Validation Test

)])
|) Vo \

Use to evaluate while tuning hyperparameters Final test set is always separate!
» effect will creep into model as you continue to use it Don’t touch until the end!

