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deep imagingImportant components of a CNN

CNN Architecture Loss function & optimization

• CONV size, stride, pad, depth

• ReLU & other nonlinearities

• POOL methods

• Fully connected layers 

• # of layers, dimensions per layer

• Type of loss function

• Regularization

• Gradient descent method

• Gradient descent step size

Other specifics: Pre-processing, initialization, dropout, batch normalization, batch size
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deep imagingConvolutions: size, stride and padding

• 7x7 input image
• 3x3 filter

Slide one 
pixel at a 
time • 5x5 output
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deep imagingConvolutions: size, stride and padding

• 7x7 input image
• 3x3 filter

Slide two 
pixels at a 
time • 3x3 output!

This is called a “stride 2” convolution
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deep imagingConvolutions: size, stride and padding

Slide three 
pixels at a 
time?

This is called a “stride 3” convolution

NN

N

F

F

F

F
Output matrix width W:

W = (N-F)/stride + 1

Example right: N=7, F=3

When stride = 1: W = 5

When stride = 2: W = 3

When stride = 3: W = 2.33??? 

*Need to ensure integers work out!
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deep imagingConvolutions: size, stride and padding

Q: What if you really, really want to use a stride = 3 with N = 7 and F=3?
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deep imagingConvolutions: size, stride and padding

Padding: add zeros around edge of image

F

N

Q: What if you really, really want to use a stride = 3 with N = 7 and F=3?

A: Use padding

E.g., padding with 1 pixel around boarder makes N=9 
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deep imagingConvolutions: size, stride and padding

Padding: add zeros around edge of image

F

N

Q: What if you really, really want to use a stride = 3 with N = 7 and F=3?

A: Use padding

E.g., padding with 1 pixel around boarder makes N=9 

W = (N-F)/stride + 1

W = (9-3)/3 + 1 = 4 *Padding enables integer output! 
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deep imaging
Convolution layer: learn multiple filters

3 color channels
(R, G, B) 

3
64

64

1

60

60

Output = “activation map” channel

Multiply and sum 
all entries, slide 
to next entry

1 entry
Convolution filter: 5 x 5 x 3

64x64x3 image

It’s a cube!
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deep imaging
Convolution layer: learn multiple filters

3 color channels
(R, G, B) 

3
64

64

1

60

60

Second channel of activation map

1 entryRepeat with a new 
convolution filter
(5 x 5 x 3)

- Using more than one convolutional filter, with unknown weights that we will 
optimize for, creates more than one channel

64x64x3 image

Multiply and sum 
all entries, slide 
to next entry
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deep imaging
Convolution layer: learn multiple filters

3
64

64

6
60

60

6 channels

6 unique 
convolution filters
(5 x 5 x 3)

64x64x3 image

Multiply and sum 
all entries, slide 
to next entry
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deep imaging
Convolution layer: learn multiple filters

3
64

64

6
60

60

6 channels

6 unique 
convolution filters
(5 x 5 x 3)

64x64x3 image

Multiply and sum 
all entries, slide 
to next entry

3
64

64 CONV, 
RELU

CONV, 
RELU

5x5x3 filter 5x5x6 filter

6 Channels 10 Channels

CONV, 
RELU

What is the size of this data matrix?
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deep imaging
Convolution layer: learn multiple filters

3
64

64

6
60

60

6 channels

6 unique 
convolution filters
(5 x 5 x 3)

64x64x3 image

Multiply and sum 
all entries, slide 
to next entry

3
64

64

6
60

60CONV, 
RELU

CONV, 
RELU

5x5x3 filter 5x5x6 filter

6 Channels 10 Channels

CONV, 
RELU

How about this?
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deep imaging
Convolution layer: learn multiple filters

3
64

64

6
60

60

6 channels

6 unique 
convolution filters
(5 x 5 x 3)

64x64x3 image

Multiply and sum 
all entries, slide 
to next entry

3
64

64

6
60

60CONV, 
RELU

CONV, 
RELU

10
56

56

5x5x3 filter 5x5x6 filter

6 Channels 10 Channels

CONV, 
RELU
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deep imaging

W1

xi = input image
wa

0

0

xo = output image

=

Banded Toeplitz W

Summarize multiple filters with stacked matrices

wb

0

0

wc

0

0
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deep imaging
Convolution layer example mapping

10 5x5x3
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deep imaging
Convolution layer example mapping

A: (N-F)/stride + 1 = (32+4-5)/1 + 1 = 32x32 spatial extent

So, output is 32x32x10 

10 5x5x3
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deep imaging
Convolution layer example mapping

How many weights make up this transformation?

10 5x5x3
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deep imaging
Convolution layer example mapping

How many weights make up this transformation?
A: Each convolution filter: 5x5x3
 1 offset parameter b per filter (untied biases)
 Mapping to 10 output layers = 10 filters
 Total: (5x5x3+1)*10 = 760 

10 5x5x3
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deep imaging

What do these convolution filters look like after training? 
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deep imaging

What do these convolution filters look like after training? 
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deep imaging

What do these convolution filters look like after training? 

• ”Wavey” or wavelet like features are common in first layer
• Match how neurons within our eye map image data to our brain in an effective manner
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deep imaging

“Activation” map means the 
resulting image generated after 
convolution with each filter
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deep imaging
Convolution layer: learn multiple filters

3
64

64

6
60

60

6 channels

6 unique 
convolution filters
(5 x 5 x 3)

64x64x3 image

Multiply and sum 
all entries, slide 
to next entry

3
64

64

6
60

60CONV, 
RELU

CONV, 
RELU

10
56

56

5x5x3 filter 5x5x6 filter

6 Channels 10 Channels

CONV, 
RELU
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deep imagingImportant components of a CNN

CNN Architecture Loss function & optimization

• CONV size, stride, pad, depth

• ReLU & other nonlinearities

• POOL methods

• # of layers, dimensions per layer

• Fully connected layers 

• Type of loss function

• Regularization

• Gradient descent method

• Gradient descent step size

Other specifics: Pre-processing, initialization, dropout, batch normalization, batch size
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deep imagingNon-linear “activation” functions

From Stanford CS231
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deep imagingNon-linear “activation” functions

From Stanford CS231
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deep imagingImportant components of a CNN

CNN Architecture Loss function & optimization

• CONV size, stride, pad, depth

• ReLU & other nonlinearities

• POOL methods

• # of layers, dimensions per layer

• Fully connected layers 

• Type of loss function

• Regularization

• Gradient descent method

• SGD batch and step size

Other specifics: Pre-processing, initialization, dropout, batch normalization, augmentation
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deep imaging
Pooling operation – reduce the size of data cubes along space
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deep imaging
Pooling operation – reduce the size of data cubes along space

Common option #1:

Related options: Sum pooling, mean pooling
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deep imaging
Pooling operation – reduce the size of data cubes along space

Common option #2: just use bigger strides

STRIDE = 2

7x7 input -> 3x3 output

c1
c2

0

c1
c2 c1

c2 c1
c2

0

c1
c2

c1

c2 c1

c2 c1

(skip)

(skip)
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deep imagingImportant components of a CNN

CNN Architecture Loss function & optimization

• CONV size, stride, pad, depth

• ReLU & other nonlinearities

• POOL methods

• # of layers, dimensions per layer

• Fully connected layers 

• Type of loss function

• Regularization

• Gradient descent method

• SGD batch and step size

Other specifics: Pre-processing, initialization, dropout, batch normalization, augmentation

Let’s 
view 
some 
code!
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deep imagingImportant components of a CNN

CNN Architecture Loss function & optimization

• CONV size, stride, pad, depth

• ReLU & other nonlinearities

• POOL methods

• # of layers, dimensions per layer

• Fully connected layers 

• Type of loss function

• Regularization

• Gradient descent method

• SGD batch and step size

Other specifics: Pre-processing, initialization, dropout, batch normalization, augmentation
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deep imagingCommon loss functions used for CNN optimization

• Cross-entropy loss function
• Softmax cross-entropy – use with single-entry labels
• Weighted cross-entropy – use to bias towards true pos./false neg.
• Sigmoid cross-entropy
• KL Divergence

• Pseudo-Huber loss function

• L1 loss loss function

• MSE (Euclidean error, L2 loss function)

• Mixtures of the above functions
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deep imagingImportant components of a CNN

CNN Architecture Loss function & optimization

• CONV size, stride, pad, depth

• ReLU & other nonlinearities

• POOL methods

• # of layers, dimensions per layer

• Fully connected layers 

• Type of loss function

• Regularization

• Gradient descent method

• SGD batch and step size

Other specifics: Pre-processing, initialization, dropout, batch normalization, augmentation
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deep imagingRegularization – the basics
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deep imagingRegularization prefers less complex models & help avoids overfitting



Machine Learning and Imaging – Roarke Horstmeyer (2024)

deep imagingA two-layer neural network with regularization:

Q: How do we determine the best weights W1 and W2 to use from this model?
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deep imagingA two-layer neural network with regularization:

Q: How do we determine the best weights W1 and W2 to use from this model?

A: Gradient descent! 

Q: How does Tensorflow figure out the gradients for dL/dW1 and dL/dW2?
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deep imagingA two-layer neural network with regularization:

Q: How do we determine the best weights W1 and W2 to use from this model?

A: Gradient descent! 

Q: How does Tensorflow figure out the gradients for dL/dW1 and dL/dW2?

A: Chain rule! (next lecture or two)
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deep imagingA variety of gradient descent solvers available in Tensorflow

• Stochastic Gradient Descent (bread-and-butter, when in doubt…)
• Adam Optimizer (update learning rates with mean and variance)

• Nesterov / Momentum (add a velocity term)

• AdaGrad (Adaptive Subgradients, change learning rates)
• Proximal AdaGrad (Proximal = solve second problem to stay close)

• Ftrl Proximal (Follow-the-regularized-leader)
• AdaDelta (Adaptive learning rate)
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deep imagingImplementation detail #1 – method for gradient descent
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deep imagingImplementation detail #1 – method for gradient descent
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deep imagingImplementation detail #1 – method for gradient descent
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deep imagingQuestion: Why does gradient descent still work with mini-batches?
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deep imagingQuestion: Why does gradient descent still work with mini-batches?

Answer: With stochastic gradient descent, random sub-set averaging of gradients still 
allows one to find their way down the hill to global minimum, at least with convex and 
quasi-convex functions [1]. ∇ Li

(1/N)ΣN∇ Li
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deep imagingQuestion: Why does gradient descent still work with mini-batches?

Answer: With stochastic gradient descent, random sub-set averaging of gradients still 
allows one to find their way down the hill to global minimum, at least with convex and 
quasi-convex functions [1].

[1] Bottou, Léon (1998). "Online Algorithms and Stochastic Approximations”: 
https://leon.bottou.org/publications/pdf/online-1998.pdf

∇ Li

(1/M)ΣM∇ Li

Random sub-
selection of 
gradients to 
average

(1/N)ΣN∇ Li

On average, purple arrow 
points in same direction as 
red arrow 
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deep imagingA variety of gradient descent solvers available in Tensorflow

• Stochastic Gradient Descent (bread-and-butter, when in doubt…)
• Adam Optimizer (update learning rates with mean and variance)

• Nesterov / Momentum (add a velocity term)

• AdaGrad (Adaptive Subgradients, change learning rates)
• Proximal AdaGrad (Proximal = solve second problem to stay close)

• Ftrl Proximal (Follow-the-regularized-leader)
• AdaDelta (Adaptive learning rate)
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deep imagingNext lecture: how Tensorflow actually solves gradient descent for you

Computational Graphs and the Chain Rule!


