deep imaging

Lecture 10: Ingredients for a
convolutional neural network

Machine Learning and Imaging

BME 548L
Roarke Horstmeyer

Note: Much material borrowed from Stanford CS231n, Lectures 4 - 10

deep imaging

Today we’ll get into neural networks...

Weighted “synapse”

v

Input “axon” Output (axon)

Neuron
cell body

v

[
»

Activation function f()
(Non-linearity)

é\

Today we’ll get into neural networks... deep imaging

Weighted “synapse”

Wo
Input X, WoXo
Input “axon” Output (axon) |
Neuron ISlngle ”n(ejurotn”f:
W1X cell body v Inner proauct o
Input x; i ‘ f(Z wix; + b)‘ inputs x with learned
@— 2 WX+ Db

weights w & non-

Activation function f() linearity afterwards

(Non-linearity)

Input X»
WoXo

« Multiple weighted inputs: x -> y = w'x is “dendrites into cell body”
* Non-linearity f () after sum = “neuron’s activation function” (loose interp.)

¥
i | W
deep imaging

Today we’ll get into neural networks...

X W, W,

Output layer

Input layer
Hidden layer

* For multiple cells (units), use matrix W to connect inputs to outputs
 These cascade in layers

[IE=

deep imaging

Today we’ll get into neural networks...

Output layer

Input layer
Hidden layer

« Let’s consider the first step — from input layer to hidden layer -

Can you write a matrix expression that maps the input to hidden layer?

E—

0
o
—

deep imaging

Today we’ll get into neural networks...

X W, z W,
X
y
X1
X2
X3
Output layer
Input layer
Hidden layer

« Let’s consider the first step — from input layer to hidden layer -

Can you write a matrix expression that maps the input to hidden layer?

E—

0
o
—

deep imaging

Today we’ll get into neural networks...

X W, z W, ,

X
y

Zq X1
Zy —_ Xy

Z4

Output layer
Input layer
Hidden layer

« Let’s consider the first step — from input layer to hidden layer -

Can you write a matrix expression that maps the input to hidden layer?

E—

0
o
—

Today we’ll get into neural networks... deep imaging
X W, Z W,
y z W, X
Z1 Wiy | Wy | w,, X1
Z, = NLe | Wiz | W2z | Wo, X
Z3 Wiz | Wag | Wo3 %
Z4 Wig | Wag | Woq

Output layer

Input layer
Hidden layer

« Let’s consider the first step — from input layer to hidden layer -

Can you write a matrix expression that maps the input to hidden layer?

deep imaging

Today we’ll get into neural networks...

X W, W,

Output layer

Input layer
Hidden layer

« Next, let’s write out the full chain from input x to output y!

Today we’ll get into neural networks...

Input layer

W,

W,

Hidden layer

Output layer

Y1

Y2

NL-

W,
Wiq | Wi2 | W3 | Wy
Woq | Woo | Wog | Woy

[IE=

deep imaging
W, X
Wiq | War | Way || X1
Wio | Waz | Woo
X2
Wig | Wag | Wa3
X3
Wig | Wog | Woy

[IE=

Neural networks = cascaded set of matrix multiplies and non-linearities desp imaging
2-layer network: 3-layer network:
X W, W, X W W W

Output layer

Input layer Input layer

Hidden layer 1 Hidden layer 2

Hidden layer

or 3-layer Neural Network

f = W3 max (0, W max (0, Wix))

[IE=

Our very basic convolutional neural network deep imaging
Output
y* Model (Ex. [yl Ex. [xeyd
Training error il r ~ BER]
Training
Lin(y, fW,x)) = |¢==) y* = f(W,x) K== Data
cross_entropy(y, f(W,x)) - _ Y, u i Y.
4)
This is a /N | %
3-layer L, = Relu| W; [Relu W, Relu w,
Neural |
Network!
y* L
_ /

Forward pass: from x; and current W’s, find L,

Insight: Do we really need to mix every image pixel with every other image pixel to start? I[%

deep imaging

Machine Learning and Imaging — Roarke Horstmeyer (2024)

Insight: Do we really need to mix every image pixel with every other image pixel to start?][%

deep imaging

We probably don’t need to mix these two pixels to figure out that this is a cat

Machine Learning and Imaging — Roarke Horstmeyer (2024)

Insight: Do we really need to mix every image pixel with every other image pixel to start? —»§

deep imaging

But understanding the stripes in these 3
pixels right near each other is going to be
pretty helpful...

[IE=

deep imaging

X = cat image

Eye pixel is here

Simultaneously having values in
these two rows means the eye and
the background are “mixing”

A

Background pixel is here

Machine Learning and Imaging — Roarke Horstmeyer (2024)

[IE=

deep imaging

X = cat image

A A

3 fur pixels

A

Simultaneously having values in
these three rows mixes the fur
pixels

Machine Learning and Imaging — Roarke Horstmeyer (2024)

Insight from last lecture:

S Banded W

 Full matrix: O(n?)
« Banded matrix: k-O(n)

 Banded Toeplitz matrix: k

X = cat image

3=

deep imaging

Insight from last lecture: H%

deep imaging

S Banded W X = cat image

Image interpretation
Sart(k)

(k) pixels

X Sgrt

 Full matrix: O(n?)

« Banded matrix: k-O(n)

Mix all the pixels in the
red box, with associated
weights, to form this entry
of S

 Banded Toeplitz matrix: k

Simplification #2: Have each band be the same weights deep imaging

S Banded Toeplitz W X = cat image
W,

This type of matrix can dramatically reduce
the number of weights that are used while still
allowing local regions to mix:

Full matrix: O(n2)
Banded matrix: k-O(n)
Banded Toeplitz matrix: k

This is the definition of a convolution

Weights “savings” via convolution deep imaging

N
Zln(l 4 e—yimax(O,ngax(O,Wgmax(O,Wlmi))))
1=1

1

L(w) = ~

Having “fully connected” weight matrices can produce quite a lot of weights...let’s
consider a binary classification task:

CIFAR10 dataset: each image is 32x32 pixels
Let’s say W1 has 500 rows

Let’s say W2 has 100 rows
Recall that W3 must have 2 rows

What is the total number of weights that we must optimize?

deep imaging

Weights “savings” via convolution

N
1
L(w) Z ln(l + e—yimaX(O,ngax(O,Wgmax(O,Wlmi))))

1=1

« Having “fully connected” weight matrices can produce quite a lot of weights...let’s
consider a binary classification task:

CIFAR10: 32x32 images = 1024 pixels
W1 =1024x500

W2 =500x100

W3: 100x2

Total number of weights: 562,200

Weights “savings” via convolution deep imaging

N
1
L(w) Z ln(l + e—yimaX(O,ngax(O,Wgmax(O,Wlmi))))

1=1

« Having “fully connected” weight matrices can produce quite a lot of weights...let’s
consider a binary classification task:

Total number of weights: 562,200

 What if we instead used a convolutional neural network, where W4 and W, are now
convolution operations with a 10x10 pixel convolution kernel?

Weights “savings” via convolution deep imaging

N
1
L(w) Z ln(l + e—yimaX(O,ngax(O,Wgmax(O,Wlmi))))

1=1

« Having “fully connected” weight matrices can produce quite a lot of weights...let’s
consider a binary classification task:

Total number of weights: 562,200

 What if we instead used a convolutional neural network, where W4 and W, are now
convolution operations with a 10x10 pixel convolution kernel?

W1 =10x10
W2 =10x10
W3:1024x2

Total number of weights: 2248

[IE=

Our very basic convolutional neural network deep imaging
Output
v Model (Ex. Doyl EX. Dy
Training error 7 - ~ uin min
Training
Lin(y, fW,x)) = |¢== | y* = f(W,X) K= Data
cross_entropy(y, f(W,x)) - _ y, - a)
(AT x)
. . |
Thisis a L W
3-layer in = max Y3
Neural |
Network! N |
N y

Forward pass: from x, and current W’s, find L,

Our very basic convolutional neural network deep imaging

O
U;I?_Ut Model /EX- [x1,y41] EX. [XK,yK]\
Training error 7 - ~ uin min
Training
Lin(Y1 f(W!X)) = <: <: y* = f(W,X) <:: cee Data
cross_entro , f(W,x - v, a : a)
py(y, f(W,x)) AL/dW ; N Y
1 N
_ —y;max(0,Wzmax(0,Wamax(0,Wix;)))
L(w)_N;In(1+e y ;)

W, and W, are banded Toeplitz matrices, W is a full matrix

3-layer network

[IE=

Our very basic convolutional neural network deep imaging
Output
y* Model (Ex. [yl Ex. [xeyd
Training error il r ~ BER]
Training
Lin(y, fW,x)) = |¢==) y* = f(W,x) K== Data
cross_entropy(y, f(W,x)) - _ Y, u i Y.
AN\ %
I—in = max, W;j; max W, max W
Given a new L;,, | '
want to update W'’s

to make L., smaller! y* -
in . \ /

Next class: Gradient descent via L, to update many W’s

Our very basic convolutional neural network

Training error

Lin(Y1 f(W,X)) —

cross_entropy(y, f(W,x)) N

Output
y* Model

— 4)
(T) y* = f(W,x) K==

G J

/ y* \
Y G CONY, CONY, /

RelLU RelLU, ReLU,

3-layer network for 2D images

[IE=

deep imaging

Training
Data

deep imaging

A standard CNN pipeline:

RELU RELU

=
=
L
4
-
ot
iy
4

RELU RELU

CONV

—> (A0 RN W U VL R)

CONV

coiwl

._:.g ALY

— O EEE,W ,22

miniAlexNet, 2014

Complex networks are just an extension of this...

A\ |

2 l)', S'A'Vd("“. Max
Vara \ pooling
3 48

VGG (2014)

AlexNet (2012)

ResNet (2015)

¢ 192 92
e
X' /A4 \".‘.1 3 \u3
: "?“ ;‘ .:
.\‘\,%‘ 3
" 192 B 192 T Max
Max pooling aan 2048
pooling
ConvNet Configuration
A A-LRN B C D E
11 weight | 11 weight 13 weight 16 weight 16 weight 19 weight
layers layers layers layers layers layers
input (224 x 224 RGB image)
conv3-64 conv3-64 conv3-64 conv3-64 conv3-64 conv3-64
| LRN conv3-64 | conv3-64 | conv3-64 | conv3-64
maxpool
conv3-128 | conv3-128 | conv3-128 | conv3-128 | conv3-128 | conv3-128
| conv3-128 | conv3-128 | conv3-128 | conv3-128
maxpool
conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256
conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256
convl-256 | conv3-256 | conv3-256
conv3-256
maxpool
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
convl-512 | conv3-512 | conv3-512
conv3-512
maxpool
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
convl-512 | conv3-512 | conv3-512
conv3-512
maxpool
FC-4096
FC-4096
FC-1000
soft-max

VGG-19 34-layer plain 34-layer residual
image image image
heays [3Bconv6s |
Sk 3x3 conv, 64
pool, /2
output
Bk 412
[33conv,128 | [7x7conv,64,/2 | [7x7conv,64,/2 |
pool, /2 pool, /2 pool, /2
output
size:56 M 3aconv, 256 | [3come | [3x3conv,64
[33conv,256 | [33conv,64 | [33conv, 64
¥ 2
[33conv,256 | [33conv,64 | [3x3conv, 64
v
[33conv, 256 | [33conv,64 | [33conv, 64
[3a3conve4 | [33conv 64
¥ v
[3a3conv,64 | [3x3conv, 64
¥
pool, /2 [[3x3conv, 28,2 | [
output v 7
sze:28 Mag o512 | [38128 | [
v ¥
[33cony, 512 | [3x3conv,128 | [
[33conv512 | [33conv, 128 | [
[33conv,512 | [33conv,128 | [
[33conv, 128 | [
[33conv,128 | [
[33conv,128 | [
output ¥ -
Cier] pool, /2 [3a can;ZSS, 2| | . g
[33@conv,512 | [33conv, 256 | [33com2s6]| _..°
L2 e S o
[33conv,512 | [33conv,256 | [33conv,256 |
v L2 L2
[3a3conv,512 | [3a3conv,256 | [3a3conv,256 |
v A2 ¥
[33conv,512 | [33conv,256 | [33conv,256 |
A2 ¥
[33conv,256 | [33conv,256 |
¥
[33conv,256 | [33conv,256 |
¥ v
[33conv,256 | [33conv,256 |
[33conv,256 | [33conv,256 |
2 2
[33conv,256 | [33conv,256 |
2
[33conv,256 | [33conv,256 |
[33conv,256 | [3aconv,256 |
o v Yy N
i pool, /2 [3a3cony, 512,72 | [(38conv512,2] ™,
i ¥ 2 Y
[33conv,512 | [33comvsz] .7
[33conv,512 | [33conv,512 |
v L2
[33conv,512 | [33conv,512 |
L
[33comv,512| [3a3comv,512 |
[33conv,512 | [33conv,512 |
output
proice fc 4096 avg pool avg pool
[fc 4096 | [fc 1000] [fc 1000 |

—tT >

—v >

deep imaging

Comparing complexity...

’ ResNet-34

ResNet-18

[E=

ip imaging

Inception-v4

Inception-v3‘ ResNet-152

‘ : ? VGG-16 VGG-19
ResNet-101 ;

5M 35M - 65M - 95M - 125M - 155M

N-AlexNet

10 15 20 25 30 35 40
Operations [G-Ops]

80 1 80 -
ResNet-50
75 1 75
é 70 § 70
@ @ O97;0gLenet
o 3 ENet
S 65 S 65 1
'é‘ 'é‘ ° BN-NIN
I = = B E B E BE B B R B " 60
B L
55 1 55 AlexNet
20 Y WOWC o 0 0 s
\! 2 et N AN N2 N
"&\0‘& $$ \\\ ‘\\e‘ C: GOet \~\"’ Se A v 3\00 N
ne e 2 e “ \‘\ e®
Y ?\ ?\ x

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

Figures copyright Alfredo Canziani, Adam Paszke, Eugenio Culurciello, 2017. Reproduced with permission.

From Stanford CS231n: http://cs231n.stanford.edu/

L basic_tensorflow_eager_example.ipynb
File Edit View

Break here + Code + Text
to give brief

Insert Runtime Tools Help

° fimport numpy as np

ir]tr()(jlj(:ti()r] import tensorflow as tf

tf.enable_eager_ execution()

—tT >

— O B

aging

if we're using tf version 1.14, then we need to c?ll this command; if using 2.0, then

to ColLab

[1 optimizer
x = tf.vVariable(2.0)

for i in range(10):
with tf.GradientTape() as tape:
define our very simple minimization problem:

loss

X **% 2

tf.train.GradientDescentOptimizer(learning rate=.2) # choose our optimizer and learning rate

compute and apply gradients:
gradient = tape.gradient(loss, X)

optimizer.apply gradients([(gradient, x)])

print out current iteration and loss value:

print(i, 'loss = + str(loss.numpy()),

loss
loss
loss
loss
loss
loss
loss
loss
loss
loss

WO WNhEHO

O OO OO OO O K b

.0 x = 1.2

.44 x = 0.72

.5184 x = 0.432

.186624 x = 0.2592

.06718464 x = 0.15552
.024186473 x = 0.093312
.008707129 x = 0.0559872
.0031345668 x = 0.03359232
.001128444 x = 0.020155393
.00040623985 x = 0.012093236

define a variable to optimize, with an initial value of

iterative optimization loop
gradient tape keeps track of the gradients

we're going to minimize x"2, which occurs at x=0

' + str(x.numpy()))

2

associated with all the operations

