Lecture 10: Ingredients for a convolutional neural network

Machine Learning and Imaging

BME 548L
Roarke Horstmeyer

Note: Much material borrowed from Stanford CS231n, Lectures 4-10

Today we'll get into neural networks...

Weighted "synapse"

Today we'll get into neural networks...

- Multiple weighted inputs: $\mathbf{x}->\mathbf{y}=\mathbf{w}^{\top} \mathbf{x}$ is "dendrites into cell body"
- Non-linearity f() after sum = "neuron's activation function" (loose interp.)

Today we'll get into neural networks...

- For multiple cells (units), use matrix \mathbf{W} to connect inputs to outputs
- These cascade in layers

Today we'll get into neural networks...

- Let's consider the first step - from input layer to hidden layer -

Can you write a matrix expression that maps the input to hidden layer?

Today we'll get into neural networks...

- Let's consider the first step - from input layer to hidden layer -

Can you write a matrix expression that maps the input to hidden layer?

Today we'll get into neural networks...

- Let's consider the first step - from input layer to hidden layer -

Can you write a matrix expression that maps the input to hidden layer?

Today we'll get into neural networks...

- Let's consider the first step - from input layer to hidden layer -

Can you write a matrix expression that maps the input to hidden layer?

Today we'll get into neural networks...

- Next, let's write out the full chain from input x to output y !

Today we'll get into neural networks...

Neural networks $\boldsymbol{=}$ cascaded set of matrix multiplies and non-linearities

2-layer network:

3-layer network:

or 3-layer Neural Network

$$
f=W_{3} \max \left(0, W_{2} \max \left(0, W_{1} x\right)\right)
$$

Our very basic convolutional neural network

his is a
3-layer
Neural
Network!

Forward pass: from \mathbf{x}_{i} and current W's, find $\mathrm{L}_{\text {in }}$

Insight: Do we really need to mix every image pixel with every other image pixel to start?

Insight: Do we really need to mix every image pixel with every other image pixel to start?

But understanding the stripes in these 3 pixels right near each other is going to be pretty helpful...

$x=$ cat image

3 fur pixels

Insight from last lecture:

- Full matrix: $\mathrm{O}\left(\mathrm{n}^{2}\right)$
- Banded matrix: $\mathrm{k} \cdot \mathrm{O}(\mathrm{n})$
- Banded Toeplitz matrix: \mathbf{k}

Insight from last lecture:

- Full matrix: $\mathrm{O}\left(\mathrm{n}^{2}\right)$
- Banded matrix: $\mathrm{k} \cdot \mathrm{O}(\mathrm{n})$
- Banded Toeplitz matrix: \mathbf{k}

Simplification \#2: Have each band be the same weights

This type of matrix can dramatically reduce the number of weights that are used while still allowing local regions to mix:

Full matrix: $\mathrm{O}\left(\mathrm{n}^{2}\right)$
Banded matrix: $k \cdot O(n)$
Banded Toeplitz matrix: k
This is the definition of a convolution

Weights "savings" via convolution

$$
L(w)=\frac{1}{N} \sum_{i=1}^{N} \ln \left(1+e^{-y_{i} \max \left(0, \mathbf{W}_{3} \max \left(0, \mathbf{W}_{2} \max \left(0, \mathbf{W}_{1} x_{i}\right)\right)\right)}\right)
$$

- Having "fully connected" weight matrices can produce quite a lot of weights...let's consider a binary classification task:

CIFAR10 dataset: each image is 32×32 pixels
Let's say W1 has 500 rows
Let's say W2 has 100 rows
Recall that W3 must have 2 rows
What is the total number of weights that we must optimize?

Weights "savings" via convolution

$$
L(w)=\frac{1}{N} \sum_{i=1}^{N} \ln \left(1+e^{-y_{i} \max \left(0, \mathbf{W}_{3} \max \left(0, \mathbf{W}_{2} \max \left(0, \mathbf{W}_{1} x_{i}\right)\right)\right)}\right)
$$

- Having "fully connected" weight matrices can produce quite a lot of weights...let's consider a binary classification task:

$$
\begin{aligned}
& \text { CIFAR10: } 32 \times 32 \text { images }=1024 \text { pixels } \\
& \text { W1 }=1024 \times 500 \\
& \text { W2 }=500 \times 100 \\
& \text { W3: } 100 \times 2 \\
& \text { Total number of weights: } 562,200
\end{aligned}
$$

Weights "savings" via convolution

$$
L(w)=\frac{1}{N} \sum_{i=1}^{N} \ln \left(1+e^{-y_{i} \max \left(0, \mathbf{W}_{3} \max \left(0, \mathbf{W}_{2} \max \left(0, \mathbf{W}_{1} x_{i}\right)\right)\right)}\right)
$$

- Having "fully connected" weight matrices can produce quite a lot of weights...let's consider a binary classification task:

Total number of weights: 562,200

- What if we instead used a convolutional neural network, where \mathbf{W}_{1} and \mathbf{W}_{2} are now convolution operations with a 10×10 pixel convolution kernel?

Weights "savings" via convolution

$$
L(w)=\frac{1}{N} \sum_{i=1}^{N} \ln \left(1+e^{-y_{i} \max \left(0, \mathbf{W}_{3} \max \left(0, \mathbf{W}_{2} \max \left(0, \mathbf{W}_{1} x_{i}\right)\right)\right)}\right)
$$

- Having "fully connected" weight matrices can produce quite a lot of weights...let's consider a binary classification task:

Total number of weights: 562,200

- What if we instead used a convolutional neural network, where \mathbf{W}_{1} and \mathbf{W}_{2} are now convolution operations with a 10×10 pixel convolution kernel?

$$
\begin{aligned}
& W 1=10 \times 10 \\
& W 2=10 \times 10 \\
& W 3: 1024 \times 2
\end{aligned}
$$

Total number of weights: 2248

Our very basic convolutional neural network

his is a
3-layer
Neural
Network!

Forward pass: from \mathbf{x}_{i} and current W's, find $\mathrm{L}_{\text {in }}$

Our very basic convolutional neural network

$$
L(w)=\frac{1}{N} \sum_{i=1}^{N} \ln \left(1+e^{-y_{i} \max \left(0, \mathbf{W}_{3} \max \left(0, \mathbf{W}_{2} \max \left(0, \mathbf{W}_{1} x_{i}\right)\right)\right)}\right)
$$

W_{1} and W_{2} are banded Toeplitz matrices, W_{3} is a full matrix 3-layer network

Our very basic convolutional neural network

Our very basic convolutional neural network

3-layer network for 2D images

A standard CNN pipeline:

miniAlexNet, 2014

ResNet (2015)

Complex networks are just an extension of this...

AlexNet (2012)

VGG (2014)

ConvNet Configuration					
A	A-LRN	B	C	D	E
$\begin{gathered} \text { 11 weight } \\ \text { layers } \end{gathered}$	11 weight layers	$\begin{gathered} 13 \text { weight } \\ \text { layers } \end{gathered}$	$\begin{gathered} 16 \text { weight } \\ \text { layers } \end{gathered}$	$\begin{gathered} 16 \text { weight } \\ \text { layers } \end{gathered}$	$\begin{gathered} 19 \text { weight } \\ \text { layers } \end{gathered}$
input (224 $\times 224 \mathrm{RGB}$ image)					
conv3-64	conv3-64 LRN	conv3-64 conv3-64	conv3-64 conv3-64	$\begin{aligned} & \hline \text { conv3-64 } \\ & \text { conv3-64 } \end{aligned}$	$\begin{gathered} \text { conv3-64 } \\ \text { conv3-64 } \end{gathered}$
maxpool					
conv3-128	conv3-128	conv3-128 conv3-128	conv3-128	conv3-128 conv3-128	conv3-128 conv3-128
maxpool					
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
			conv1-256	conv3-256	conv3-256
maxpool					
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
maxpool					
conv3-512	conv3-512				conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
maxpool					
FC-4096					
soft-max					

Comparing complexity...

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

Break here to give brief introduction to CoLab

File Edit View Insert Runtime Tools Help
Code + Text

- limport numpy as np import tensorflow as tf tf.enable_eager execution() \# if we're using tf version 1.14 , then we need to ciall this command; if using 2.0 , then
[] optimizer $=$ tf.train. GradientDescentOptimizer(learning_rate=.2) \# choose our optimizer and learning rate

for i in range(10): \# iterative optimization loop
with tf.GradientTape() as tape: \# gradient tape keeps track of the gradients associated with all the operations \# define our very simple minimization problem:
loss = x ** 2 \# we're going to minimize $x^{\wedge} 2$, which occurs at $x=0$
\# compute and apply gradients:
gradient $=$ tape.gradient(loss, x)
optimizer.apply_gradients([(gradient, x)])
\# print out current iteration and loss value:
print(i, 'loss $=$ ' + str(loss.numpy()), 'x = ' + str(x.numpy()))
$\Gamma \quad 0$ loss $=4.0 \mathrm{x}=1.2$
1 loss $=1.44 \mathrm{x}=0.72$
2 loss $=0.5184 \mathrm{x}=0.432$
3 loss $=0.186624 \mathrm{x}=0.2592$
4 loss $=0.06718464 \mathrm{x}=0.15552$
5 loss $=0.024186473 \mathrm{x}=0.093312$
6 loss $=0.008707129 \mathrm{x}=0.0559872$
7 loss $=0.0031345668 \mathrm{x}=0.03359232$
8 loss $=0.001128444 \mathrm{x}=0.020155393$
9 loss $=0.00040623985 \mathrm{x}=0.012093236$

