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deep imagingToday we’ll get into neural networks…

Input “axon”

Weighted “synapse”

Activation function f()
(Non-linearity)

Output (axon)
Neuron 
cell body



Machine Learning and Imaging – Roarke Horstmeyer (2024)

deep imaging

• Multiple weighted inputs: x -> y = wTx is “dendrites into cell body”
• Non-linearity f () after sum = “neuron’s activation function” (loose interp.)

Single ”neuron”: 
Inner product of 
inputs x with learned 
weights w & non-
linearity afterwards

Input x0 

Σ wixi + b

Input x2 

Input x1 

w2x2 

w1x1 

w0x0 
Input “axon”

Weighted “synapse”
w0

Activation function f()
(Non-linearity)

Output (axon)

f(Σ wixi + b)
Neuron 
cell body

Today we’ll get into neural networks…
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• For multiple cells (units), use matrix W to connect inputs to outputs
• These cascade in layers

W2W1x
y

Input layer
Hidden layer

Output layer

Today we’ll get into neural networks…
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• Let’s consider the first step – from input layer to hidden layer - 

Can you write a matrix expression that maps the input to hidden layer?

W2W1x
y

Input layer
Hidden layer

Output layer

Today we’ll get into neural networks…

Z
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• Let’s consider the first step – from input layer to hidden layer - 

Can you write a matrix expression that maps the input to hidden layer?

W2W1x
y

Input layer
Hidden layer

Output layer

Today we’ll get into neural networks…

x1

x2

x3

x
Z
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• Let’s consider the first step – from input layer to hidden layer - 

Can you write a matrix expression that maps the input to hidden layer?

W2W1x
y

Input layer
Hidden layer

Output layer

Today we’ll get into neural networks…

x1

x2

x3

x
z1

z2

z3

z

z4

=

Z
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• Let’s consider the first step – from input layer to hidden layer - 

Can you write a matrix expression that maps the input to hidden layer?

W2W1x
y

Input layer
Hidden layer

Output layer

Today we’ll get into neural networks…

w11

w12

w13

w14

w21

w22

w23

w24

w21

w22

w23

w24

W1

x1

x2

x3

x

NL•

z1

z2

z3

z

z4
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• Next, let’s write out the full chain from input x to output y!

W2W1x
y

Input layer
Hidden layer

Output layer

Today we’ll get into neural networks…
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w11 w12 w13 w14

w21 w22 w23 w24

w11

w12

w13

w14

w21

w22

w23

w24

W2

W2

NL•

W1

w21

w22

w23

w24

NL•

W1

x1

x2

x3

x
x

y1

y2

yy

=

Input layer
Hidden layer

Output layer

Today we’ll get into neural networks…
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deep imagingNeural networks = cascaded set of matrix multiplies and non-linearities

2-layer network: 3-layer network:

W2W1x
y

Input layer
Hidden layer

Output layer

W2W1x
y

Input layer
Hidden layer 1

Output layer

Hidden layer 2

W3
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Model
Output

y* Ex. [x1,y1] Ex. [xK,yK]

…
Training 
Data

Training error

Lin(y, f(W,x)) = y* = f(W,x)
cross_entropy(y, f(W,x))

Our very basic convolutional neural network

Forward pass: from xi and current W’s, find Lin 

y*

xi
= W3 W2 W1

ReLuReLuReLuLin
This is a 
3-layer 
Neural 
Network!
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Insight: Do we really need to mix every image pixel with every other image pixel to start?
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We probably don’t need to mix these two pixels to figure out that this is a cat

Insight: Do we really need to mix every image pixel with every other image pixel to start?
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But understanding the stripes in these 3 
pixels right near each other is going to be 
pretty helpful…

Insight: Do we really need to mix every image pixel with every other image pixel to start?
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W1

x = cat image

Eye pixel is here

Background pixel is hereSimultaneously having values in 
these two rows means the eye and 
the background are “mixing”
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W1

x = cat image

3 fur pixels 

Simultaneously having values in 
these three rows mixes the fur 
pixels
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Insight from last lecture:

W1

x = cat image

• Full matrix: O(n2) 

• Banded matrix: k•O(n)

• Banded Toeplitz matrix: k

W1

Banded W

0

0
k

S

=
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deep imaging
Insight from last lecture:

W1

x = cat image

• Full matrix: O(n2) 

• Banded matrix: k•O(n)

• Banded Toeplitz matrix: k

W1

Banded W

0

0 Image interpretation
k

S

= Sqrt(k) x Sqrt(k) pixels

Mix all the pixels in the 
red box, with associated 
weights, to form this entry 
of S 

Convolution Kernel
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deep imagingSimplification #2: Have each band be the same weights

This is the definition of a convolution 

W1

x = cat image

This type of matrix can dramatically reduce 
the number of weights that are used while still 
allowing local regions to mix:

Full matrix: O(n2) 
Banded matrix: k•O(n)
Banded Toeplitz matrix: k

wb

0

0

S

=

Banded Toeplitz W
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deep imagingWeights “savings” via convolution

• Having “fully connected” weight matrices can produce quite a lot of weights…let’s 
consider a binary classification task:

CIFAR10 dataset: each image is 32x32 pixels
Let’s say W1 has 500 rows
Let’s say W2 has 100 rows
Recall that W3 must have 2 rows
What is the total number of weights that we must optimize?
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deep imagingWeights “savings” via convolution

• Having “fully connected” weight matrices can produce quite a lot of weights…let’s 
consider a binary classification task:

CIFAR10: 32x32 images = 1024 pixels
W1 = 1024x500
W2 = 500x100
W3: 100x2 

Total number of weights: 562,200



Machine Learning and Imaging – Roarke Horstmeyer (2024)

deep imagingWeights “savings” via convolution

• Having “fully connected” weight matrices can produce quite a lot of weights…let’s 
consider a binary classification task:

• What if we instead used a convolutional neural network, where W1 and W2  are now 
convolution operations with a 10x10 pixel convolution kernel?

Total number of weights: 562,200
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deep imagingWeights “savings” via convolution

• Having “fully connected” weight matrices can produce quite a lot of weights…let’s 
consider a binary classification task:

• What if we instead used a convolutional neural network, where W1 and W2  are now 
convolution operations with a 10x10 pixel convolution kernel?

W1 = 10x10
W2 = 10x10
W3: 1024x2 

Total number of weights: 2248

Total number of weights: 562,200
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Model
Output

y* Ex. [x1,y1] Ex. [xK,yK]

…
Training 
Data

Training error

Lin(y, f(W,x)) = y* = f(W,x)
cross_entropy(y, f(W,x))

Our very basic convolutional neural network

Forward pass: from xi and current W’s, find Lin 

y*

xi
= W3 maxmaxmaxLin

This is a 
3-layer 
Neural 
Network!

W2 W1
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Model
Output

y* Ex. [x1,y1] Ex. [xK,yK]

…
Training 
Data

Training error

dL/dW

Lin(y, f(W,x)) = y* = f(W,x)
cross_entropy(y, f(W,x))

Our very basic convolutional neural network

W1 and W2 are banded Toeplitz matrices, W3 is a full matrix

3-layer network
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Model
Output

y* Ex. [x1,y1] Ex. [xK,yK]

…
Training 
Data

Training error

Lin(y, f(W,x)) = y* = f(W,x)
cross_entropy(y, f(W,x))

Our very basic convolutional neural network

Gradient descent via Lin to update many W’s

y*

xi
= W3 W2 W1

maxmaxmax

Given a new Lin, 
want to update W’s 
to make Lin smaller! 

Lin

Next class:
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Model
Output

y* Ex. [x1,y1] Ex. [xK,yK]

…
Training 
Data

Training error

Lin(y, f(W,x)) = y* = f(W,x)
cross_entropy(y, f(W,x))

Our very basic convolutional neural network

3-layer network for 2D images

FC CONV, 
ReLU, 

MP

CONV, 
ReLU, 

MP
ReLU

y*
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deep imagingA standard CNN pipeline:

miniAlexNet, 2014
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ResNet (2015)

AlexNet (2012)

Complex networks are just an extension of this…

VGG (2014)
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From Stanford CS231n: http://cs231n.stanford.edu/
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Break here 
to give brief 
introduction 
to CoLab


