

Lecture 10: Backpropagation

Machine Learning and Imaging

BME 548L Roarke Horstmeyer

This lecture uses material from:

- A. Baydin et al., Automatic Differentiation in Machine Learning: a Survey
- Stanford CS231n
- Deep Learning by I. Goodfellow

Important components of a CNN

CNN Architecture

•	CONV	size,	stride,	pad,	depth
---	------	-------	---------	------	-------

- ReLU & other nonlinearities
- POOL methods
- # of layers, dimensions per layer
- Fully connected layers

Loss function & optimization

- Type of loss function
- Regularization
- Gradient descent method
- SGD batch and step size

Optimization choices

Other specifics: Pre-processing, initialization, dropout, batch normalization, augmentation

Machine Learning and Imaging – Roarke Horstmeyer

Architecture

choices

Optimization

choices

Important components of a CNN

CNN Architecture

•	CONV size,	stride,	pad,	depth
---	------------	---------	------	-------

- ReLU & other nonlinearities
- POOL methods
- # of layers, dimensions per layer
- Fully connected layers

Loss function & optimization

- Type of loss function
- Regularization
- Gradient descent method
- SGD batch and step size

How does the optimizer actually work???

Other specifics: Pre-processing, initialization, dropout, batch normalization, augmentation

Architecture choices

Our very basic convolutional neural network

$$L(w) = \frac{1}{N} \sum_{i=1}^{N} \ln(1 + e^{-y_i \max(0, \mathbf{W}_3 \max(0, \mathbf{W}_2 \max(0, \mathbf{W}_1 x_i)))})$$

 W_1 and W_2 are banded Toeplitz matrices, W_3 is a full matrix

3-layer network

Our very basic convolutional neural network

Our very basic convolutional neural network

Review: how can we determine the optimal W?

• Here, let's assume we'll use the steepest descent algorithm to "go down the hill":

Review: how can we determine the optimal W?

• Here, let's assume we'll use the steepest descent algorithm to "go down the hill":

```
Input: labeled training examples [\mathbf{x}_i, \mathbf{y}_i] for i=1 to N, initial guess of W's
```

```
while loss function is still decreasing:

Compute loss function L(W, x_i, y_i)

Update W to make L smaller:

dL/dW = evaluate\_gradient(W, x_i, y_i, L)

W = W - step\_size * dL/dW
```

```
while previous_step_size > precision and iters < max_iters
    prev_W = cur_W
    cur_W -= gamma * differential_dL(CNN_model, prev_W)
    previous_step_size = abs(cur_W - prev_W)
    iters+=1</pre>
```

Machine Learning and Imaging – Roarke Horstmeyer (2020)

Review: how can we determine the optimal W?

• Here, let's assume we'll use the steepest descent algorithm to "go down the hill":

Input: labeled training examples $[\mathbf{x}_i, \mathbf{y}_i]$ for i=1 to N, initial guess of **W**'s

Review: how can we determine the optimal W?

• Here, let's assume we'll use the steepest descent algorithm to "go down the hill":

Input: labeled training examples $[\mathbf{x}_i, \mathbf{y}_i]$ for i=1 to N, initial guess of **W**'s

1. Numerical gradient, a simple example

With a matrix, compute this for each entry:

$$\frac{dL(W_i)}{dW_i} = \lim_{h \to 0} \frac{L(W_i + h) - L(W_i)}{h}$$

Example:

$$\begin{array}{ll} \mathsf{W} = [1,2;3,4] & \mathsf{W}_1 + \mathsf{h} = [1.001,2;3,4] \\ \mathsf{L}(\mathsf{W},\,\mathsf{x},\,\mathsf{y}) = 12.79 & \mathsf{L}(\mathsf{W}_1 + \mathsf{h},\,\mathsf{x},\,\mathsf{y}) = 12.8 \\ & \mathsf{d}\mathsf{L}(\mathsf{W}_1)/\mathsf{d}\mathsf{W}_1 = 12.8 - 12.79/.001 \\ & \mathsf{d}\mathsf{L}(\mathsf{W}_1)/\mathsf{d}\mathsf{W}_1 = 10 \end{array}$$

Pros: Simple! Easy to code up!

Cons: Slow...really slow. And approximate

2. Analytic gradient, a simple example

Evaluate and use to update W

Pros: Fast and exact Cons: Error prone, especially with deep networks...

3. Automatic differentiation – what we'll use without knowing it

Resources:

- Stanford CS231n, Lecture 4 notes and resources
 - http://cs231n.stanford.edu/syllabus
- I. Goodfellow et al., Deep Learning Chapter 6 Section 5
 - https://www.deeplearningbook.org/contents/mlp.html
- A. Baydin et al., "Automatic differentiation in machine learning: a survey"
 - <u>https://arxiv.org/pdf/1502.05767.pdf</u>

3. Automatic differentiation – what is it?

- Not solely numerical or analytic
- Use insights into formation of final function
- Split into elementary operations
- Perform analytic (symbolic) differentiation at elementary operation level
- Keep intermediate numeric results
- Repeat process in lock-step with evaluation of final function

A. Baydin et al., Automatic Differentiation in Machine Learning: a Survey

deep imaging

3. Automatic differentiation what is it?

- Not solely numerical or analytic •
- Use insights into formation of final ٠ function
- Split into elementary operations •
- Perform analytic (symbolic) ٠ differentiation at elementary operation level
- Keep intermediate numeric results
- Repeat process in lock-step with evaluation of final function

A. Baydin et al., Automatic Differentiation in Machine Learning: a Survey

 $f(x) = l_4 = 64x(1-x)(1-2x)^2(1-8x+8x^2)^2$

 $l_1 = x$

 $l_{n+1} = 4l_n(1 - l_n)$

3. Automatic differentiation – what is it?

- Not solely numerical or analytic
- Use insights into formation of final function
- Split into elementary operations
- Perform analytic (symbolic) differentiation at elementary operation level
- Keep intermediate numeric results
- Repeat process in lock-step with evaluation of final function

A. Baydin et al., Automatic Differentiation in Machine Learning: a Survey

3. Automatic differentiation – what is it?

- Not solely numerical or analytic
- Use insights into formation of final function
- Split into elementary operations
- Perform analytic (symbolic) differentiation at elementary operation level
- Keep intermediate numeric results
- Repeat process in lock-step with evaluation of final function

A. Baydin et al., Automatic Differentiation in Machine Learning: a Survey

Machine Learning and Imaging – Roarke Horstmeyer (2020)

deep imaging

Automatic differentiation on computational graphs

deep imaging

Automatic differentiation on computational graphs

To both determine f and find df/dx_i :

- Create graph of local operations
- Compute analytic (symbolic) gradient at each node (unit) in graph
- Use inter-relationships to establish final desired gradient, df/dx₁
 - Forward differentiation
 - Backwards differentiation = Backpropagation

Machine Learning and Imaging – Roarke Horstmeyer (2020

deep imaging

Automatic differentiation on computational graphs

Forward Primal Trace

	v_{-1}	$x_1 = x_1$	=2
	v_0	$= x_2$	=5
	v_1	$= \ln v_{-1}$	$= \ln 2$
	v_2	$= v_{-1} imes v_0$	$= 2 \times 5$
	v_3	$= \sin v_0$	$= \sin 5$
	v_4	$=v_1+v_2$	= 0.693 + 10
	v_5	$= v_4 - v_3$	= 10.693 + 0.959
♦	y	$=v_5$	= 11.652

deep imaging

Forward automatic differentiation

$x_1 \qquad \qquad$	+ $f(x_1, x_2) = \ln(x_1) +$ v_5 $f(x_1, x_2)$ $f(x_1, x_2)$	$x_1x_2 - \sin(x_2)$
$x_2 \longrightarrow v_0$	v_3	
Forward Primal Trace	Forward Tangent (Derivative) Trace	
$v_{-1} = x_1 = 2$	$\dot{v}_{-1} = \dot{x}_1$ = 1	_Set to 1 because
$v_0 = x_2 = 5$	$\dot{v}_0 = \dot{x}_2 = 0$	we want df/dx ₁
$v_1 = \ln v_{-1} = \ln 2$	$\dot{v}_1 = \dot{v}_{-1}/v_{-1} = 1/2$	
$v_2 = v_{-1} imes v_0 = 2 imes 5$	$\dot{v}_2 = \dot{v}_{-1}\! imes\!v_0\!+\!\dot{v}_0\! imes\!v_{-1} = 1 imes 5+0 imes 2$	
$v_3 = \sin v_0 = \sin 5$	$\dot{v}_3 = \dot{v}_0 imes \cos v_0 = 0 imes \cos 5$	
$v_4 = v_1 + v_2 = 0.693 + 10$	$\dot{v}_4 = \dot{v}_1 + \dot{v}_2 = 0.5 + 5$	
$v_5 = v_4 - v_3 = 10.693 + 0.959$	$\dot{v}_5 = \dot{v}_4 - \dot{v}_3 = 5.5 - 0$	
$\checkmark y = v_5 = 11.652$	\mathbf{v} \dot{y} $=\dot{v}_{5}$ $= 5.5$	

deep imaging

Forward automatic differentiation

$x_1 \longrightarrow v_{-1} \longrightarrow v_1$	+ $f(x_1, x_2) = \ln(x_1) + $	$-x_1x_2-\sin(x_2)$
$\begin{pmatrix} v_2 \end{pmatrix}$	$v_5 \longrightarrow f(x_1, x_2)$	
$x_2 \longrightarrow v_0$	v_3	_
Forward Primal Trace	Forward Tangent (Derivative) Trace	
$v_{-1}=x_1$ $=2$	$\dot{v}_{-1} = \dot{x}_1 = 1$	
$v_0 = x_2 = 5$	$\dot{v}_0 = \dot{x}_2 = 0$	
$v_1 = \ln v_{-1} = \ln 2$	$\dot{v}_1 = \dot{v}_{-1}/v_{-1} = 1/2$	Compute local
$v_2 = v_{-1} \times v_0 = 2 \times 5$	$\dot{v}_2 = \dot{v}_{-1} \times v_0 + \dot{v}_0 \times v_{-1} = 1 \times 5 + 0 \times 2$	derivative for all inputs and
$v_3 = \sin v_0 = \sin 5$	$\dot{v}_3 = \dot{v}_0 imes \cos v_0 = 0 imes \cos 5$	accumulate with
$v_4 = v_1 + v_2 = 0.693 + 10$	$\dot{v}_4 = \dot{v}_1 + \dot{v}_2 = 0.5 + 5$	chain rule
$v_5 = v_4 - v_3 = 10.693 + 0.959$	$\dot{v}_5 = \dot{v}_4 - \dot{v}_3 = 5.5 - 0$	
$\checkmark y = v_5 \qquad \qquad = 11.652$	\dot{y} $=\dot{v}_5$ $=5.5$	

deep imaging

Forward automatic differentiation

$x_1 \longrightarrow v_{-1} \longrightarrow v_1$	+ $f(x_1, x_2) = \ln(x_1) +$ v_4 v_5 $f(x_1, x_2)$ $f(x_1, x_2)$	$x_1x_2 - \sin(x_2)$
$x_2 \longrightarrow v_0$		
Forward Primal Trace	Forward Tangent (Derivative) Trace	
$v_{-1} = x_1 = 2$	$\dot{v}_{-1} = \dot{x}_1 = 1$	
$v_0 = x_2 = 5$	$\dot{v}_0 = \dot{x}_2 = 0$	
$v_1 = \ln v_{-1} = \ln 2$	$\dot{v}_1 = \dot{v}_{-1}/v_{-1} = 1/2$	
$v_2 = v_{-1} imes v_0 = 2 imes 5$	$\dot{v}_2 = \dot{v}_{-1}\! imes\!v_0\!+\!\dot{v}_0\! imes\!v_{-1} = 1 imes 5+0 imes 2$	
$v_3 = \sin v_0 = \sin 5$	$\dot{v}_3 = \dot{v}_0 imes \cos v_0 = 0 imes \cos 5$	
$v_4 = v_1 + v_2 = 0.693 + 10$	$\dot{v}_4 = \dot{v}_1 + \dot{v}_2 = 0.5 + 5$	
$v_5 = v_4 - v_3 = 10.693 + 0.959$	$\dot{v}_5 = \dot{v}_4 - \dot{v}_3 = 5.5 - 0$	Leads to final
$\checkmark y = v_5 = 11.652$	$\checkmark \dot{y} = \dot{v}_5$ = 5.5	- desired df/dx ₁

deep imaging

Forward automatic differentiation

Forward Primal Trace		Forward Tangent (Derivative) Trace					
Ι	$v_{-1}=x_1$	=2	Т	\dot{v}_{-1}	$\dot{x}_1=\dot{x}_1$	= 1	
	$v_0 = x_2$	= 5		\dot{v}_0	$=\dot{x}_{2}$	= 0	
	$v_1 = \ln v_{-1}$	$= \ln 2$		\dot{v}_1	$=\dot{v}_{-1}/v_{-1}$	= 1/2	
	$v_2 = v_{-1} imes v_0$	$= 2 \times 5$		\dot{v}_2	$=\dot{v}_{-1}\! imes\!v_0\!+\!\dot{v}_0\! imes\!v_{-1}$	$= 1 \times 5 + 0 \times 2$	
	$v_3 = \sin v_0$	$= \sin 5$		\dot{v}_3	$=\dot{v}_0 imes\cos v_0$	$= 0 \times \cos 5$	
	$v_4 = v_1 + v_2$	= 0.693 + 10		\dot{v}_4	$=\dot{v}_1+\dot{v}_2$	= 0.5 + 5	
	$v_5 = v_4 - v_3$	= 10.693 + 0.959		\dot{v}_5	$=\dot{v}_4-\dot{v}_3$	= 5.5 - 0	
♦	$y = v_5$	= 11.652	♦	ÿ	$=\dot{v}_{5}$	= 5.5	

Problem:

 For N inputs, need to compute this N times, setting x_i to 1 each time...

deep imaging

Forward automatic differentiation

Forward Primal Trace	Forward Tangent (Derivative) Trace	Droblom:
$v_{-1}=x_1$ $=2$	$\dot{v}_{-1}=\dot{x}_1$ $=1$	Problem: - For N input
$v_0 = x_2 = 5$	$\dot{v}_0 = \dot{x}_2 = 0$	compute th
$v_1 = \ln v_{-1} = \ln 2$	$\dot{v}_1 = \dot{v}_{-1}/v_{-1} = 1/2$	setting x _i to
$v_2 = v_{-1} imes v_0 = 2 imes 5$	$\dot{v}_2 = \dot{v}_{-1}\! imes\!v_0\!+\!\dot{v}_0\! imes\!v_{-1} = 1 imes 5+0 imes 2$	time
$v_3 = \sin v_0 = \sin 5$	$\dot{v}_3 = \dot{v}_0 imes \cos v_0 = 0 imes \cos 5$	Solution:
$v_4 = v_1 + v_2 = 0.693 + 10$	$\dot{v}_4 = \dot{v}_1 + \dot{v}_2 = 0.5 + 5$	Work backwar
$v_5 = v_4 - v_3 = 10.693 + 0.959$	$\dot{v}_5 = \dot{v}_4 - \dot{v}_3 = 5.5 - 0$	end to start w
$\checkmark y = v_5 \qquad \qquad = 11.652$	$igstarrow \dot{y} = \dot{v}_5 = 5.5$	propagation

uts, need to his N times, to 1 each

ards from with back-

Backpropagation explanation from Stanford CS231N Slides

Go over slides 12-44 here: http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture4.pdf

Other useful info here: <u>http://cs231n.github.io/optimization-2/</u>

deep imaging

Backpropagation explanation from Stanford CS231N Slides

Treat intermediate nodes like a dummy variable z, for $L(w_1)$

ep imaging

Modularized implementation: forward / backward API

(x,y,z are scalars)

<pre>lass MultiplyGate(object):</pre>
<pre>def forward(x,y):</pre>
$z = x^*y$
<pre>self.x = x # must keep these around!</pre>
self.y = y
return z
<pre>def backward(dz):</pre>
<pre>dx = self.y * dz # [dz/dx * dL/dz]</pre>
dy = self.x * dz # [dz/dy * dL/dz]
return [dx, dy]
Local gradient Upstream gradient variable

How Tensorflow actually works: create a whole extra new graph

Last thing – matrix and vector derivatives

Here's a review:

 $\mathbf{u} = \mathbf{W}\mathbf{v}$

Last thing – matrix and vector derivatives

$$\mathbf{u} = \mathbf{W}\mathbf{v}$$

$$\frac{d\mathbf{u}}{d\mathbf{v}} =$$

$$\mathbf{u}_3 = W_{3,1}v_1 + W_{3,2}v_2 + \dots + W_{3,M}v_M$$

- When confused, write out one entry, solve derivative and generalize
- Use dimensionality to help (if **x** has N elements, and **y** has M, then dy/dx must be NxM
- Take advantage of *The Matrix Cookbook*:
 - https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf

$$L = || W_2 \text{ ReLU}(W_1 X) ||_2^2$$

(2-layer network with MSE where we neglect labels **y** for now)

$$dL/dW_1 = ? dL/dW_2 = ?$$

$$\mathbf{L} = \| \mathbf{W}_{\mathbf{2}} \operatorname{ReLU}(\mathbf{W}_{\mathbf{1}} \mathbf{X}) \|_{2}^{2}$$

 $dL/dW_1 = ? dL/dW_2 = ?$

(2-layer network with MSE where we neglect labels **y** for now)

$$\begin{aligned} z_1 &= XW_1 & x & y & h_1 \\ h_1 &= \operatorname{ReLU}(z_1) & y & y & L \\ \hat{y} &= h_1W_2 & y & y & y & y \\ L &= ||\hat{y}||_2^2 & y^2 &$$

Forward pass: solve for z_1 , h_1 , y and L

$$L = || \mathbf{W}_{2} \operatorname{ReLU}(\mathbf{W}_{1} \mathbf{X}) ||_{2}^{2}$$

$$dL/d\mathbf{W}_{1} = ? \quad dL/d\mathbf{W}_{2} = ?$$
(2-layer network with MSE where we neglect labels **y** for now)
$$dL/d\mathbf{W}_{1} = ? \quad dL/d\mathbf{W}_{2} = ?$$

$$\sum_{i=1}^{x} \sum_{j=1}^{x} \sum_{i=1}^{y} \sum_{j=1}^{y} \sum_{i=1}^{y} \sum_{i=1}^{y} \sum_{i=1}^{y} \sum_{j=1}^{y} \sum_{i=1}^{y} \sum_{i=$$

 z_1

 h_1

 \hat{y}

L

$$L = || \mathbf{W}_{2} \operatorname{ReLU}(\mathbf{W}_{1} \mathbf{X}) ||_{2}^{2}$$

$$dL/d\mathbf{W}_{1} = ? \quad dL/d\mathbf{W}_{2} = ?$$
(2-layer network with MSE where we neglect labels **y** for now)
$$dL/d\mathbf{W}_{1} = ? \quad dL/d\mathbf{W}_{2} = ?$$

$$x = ||\hat{y}||_{2}^{2}$$

$$fraction ts for scalar L will have same shape as denominator
$$L = || \mathbf{W}_{2} \operatorname{ReLU}(\mathbf{W}_{1} \mathbf{X}) ||_{2}^{2}$$

$$\frac{\partial L}{\partial W_{2}} = \frac{\partial \hat{y}}{\partial W_{2}} \frac{\partial L}{\partial \hat{y}}$$

$$\frac{\partial L}{\partial W_{2}} = \frac{\partial \hat{y}}{\partial W_{2}} \frac{\partial L}{\partial \hat{y}}$$$$

$$L = || \mathbf{W}_{2} \operatorname{ReLU}(\mathbf{W}_{1} \mathbf{X}) ||_{2}^{2}$$

$$dL/d\mathbf{W}_{1} = ? \quad dL/d\mathbf{W}_{2} = ?$$
(2-layer network with MSE where we neglect labels **y** for now)
$$dL/d\mathbf{W}_{1} = ? \quad dL/d\mathbf{W}_{2} = ?$$

$$z_{1} = XW_{1}$$

$$h_{1} = \operatorname{ReLU}(z_{1})$$

$$\hat{y} = h_{1}W_{2}$$

$$L = ||\hat{y}||_{2}^{2}$$

$$\frac{\partial L}{\partial W_{2}} = \frac{\partial \hat{y}}{\partial W_{2}} \frac{\partial L}{\partial \hat{y}} = 2h_{1}^{T}\hat{y}$$

$$\frac{\partial \hat{y}}{\partial W_{2}} = h_{1}^{T} \quad \frac{\partial L}{\partial \hat{y}} = 2\hat{y}$$

ging

$$L = || \mathbf{W}_{2} \operatorname{ReLU}(\mathbf{W}_{1} \mathbf{X}) ||_{2}^{2}$$

$$z_{1} = XW_{1} \qquad dL/d\mathbf{W}_{1} = ?$$

$$h_{1} = \operatorname{ReLU}(z_{1})$$

$$\hat{y} = h_{1}W_{2}$$

$$L = ||\hat{y}||_{2}^{2}$$

$$\frac{\partial L}{\partial h_{1}} = \frac{\partial L}{\partial \hat{y}}W_{2}^{\top}$$

$$\frac{\partial h_{1}}{\partial z_{1}} = \frac{\partial L}{\partial h_{1}} \circ I[h_{1} > 0]$$

$$\frac{dL}{dW_{1}} = \left[\frac{dh_{1}}{\partial W_{1}} = x^{\top}\frac{\partial h_{1}}{\partial z_{1}}\right]$$

Summary

- Tensorflow: define variables, series of operations & a cost function
- When you hit enter, Tensorflow effectively forms two graphs
 - Forward graph to evaluate function at each node
 - **Backprop:** Backwards graph that includes *local* derivatives of each operation as symbolic functions, as well as connections
- Tensorflow will go through the forward graph & save numerical results, then the backwards graph, to update weights via local operations, to minimize cost function
- Uses more impressive operations to do this with vectors and matrices efficiently

