Lecture 10: Backpropagation

Machine Learning and Imaging

BME 548L
Roarke Horstmeyer

This lecture uses material from:
• A. Baydin et al., Automatic Differentiation in Machine Learning: a Survey
• Stanford CS231n
• Deep Learning by I. Goodfellow
Important components of a CNN

CNN Architecture
- CONV size, stride, pad, depth
- ReLU & other nonlinearities
- POOL methods
- # of layers, dimensions per layer
- Fully connected layers

Loss function & optimization
- Type of loss function
- Regularization
- Gradient descent method
- SGD batch and step size

Other specifics: Pre-processing, initialization, dropout, batch normalization, augmentation
Important components of a CNN

CNN Architecture

- CONV size, stride, pad, depth
- ReLU & other nonlinearities
- POOL methods
- # of layers, dimensions per layer
- Fully connected layers

Loss function & optimization

- Type of loss function
- Regularization
- Gradient descent method
- SGD batch and step size

Other specifics: Pre-processing, initialization, dropout, batch normalization, augmentation

How does the optimizer actually work???
Our very basic convolutional neural network

\[L_{\text{in}}(y, f(W,x)) = \text{cross_entropy}(y, f(W,x)) \]

Training error

\[\frac{dL}{dW} = \frac{y^*}{f(W,x)} \]

\[L(w) = \frac{1}{N} \sum_{i=1}^{N} \ln(1 + e^{y_i \max(0, W_3 \max(0, W_2 \max(0, W_1 x_i)))}) \]

\(W_1 \) and \(W_2 \) are banded Toeplitz matrices, \(W_3 \) is a full matrix

3-layer network
Our very basic convolutional neural network

Training error

\[L_{\text{in}}(y, f(W,x)) = \text{cross_entropy}(y, f(W,x)) \]

Output

\[y^* = f(W,x) \]

Model

Ex. \([x_1, y_1]\) Ex. \([x_K, y_K]\)

Training Data

Forward pass: from \(x_i\) and current \(W\)'s, find \(L_{\text{in}}\)

\[L_{\text{in}} = \max w_3 \text{ max } w_2 \text{ max } w_1 \]

\[y^* \]
Our very basic convolutional neural network

\[L_{\text{in}}(y, f(W,x)) = \text{cross_entropy}(y, f(W,x)) \]

Training error

Output \(y^* \)

Model \(y^* = f(W,x) \)

Ex. \([x_1, y_1]\) Ex. \([x_K, y_K]\)

Training Data

\[L_{\text{in}} = \max \]

Given a new \(L_{\text{in}} \), want to update \(W \)'s to make \(L_{\text{in}} \) smaller!

Backwards pass: from new \(L_{\text{in}} \), need to update \(W \)'s! How?
Review: how can we determine the optimal W?

- Here, let’s assume we’ll use the steepest descent algorithm to “go down the hill”:
Review: how can we determine the optimal W?

- Here, let’s assume we’ll use the steepest descent algorithm to “go down the hill”:

 Input: labeled training examples $[x_i, y_i]$ for $i=1$ to N, initial guess of W's

 while loss function is still decreasing:
 Compute loss function $L(W, x_i, y_i)$
 Update W to make L smaller:
 $\frac{dL}{dW} = \text{evaluate_gradient}(W, x_i, y_i, L)$
 $W = W - \text{step_size} * \frac{dL}{dW}$

```python
while previous_step_size > precision and iters < max_iters
    prev_W = cur_W
    cur_W -= gamma * differential_dL(CNN_model, prev_W)
    previous_step_size = abs(cur_W - prev_W)
    iters += 1
```
Review: how can we determine the optimal W?

- Here, let’s assume we’ll use the steepest descent algorithm to “go down the hill”:

Input: labeled training examples $[x_i, y_i]$ for $i=1$ to N, initial guess of W’s

while loss function is still decreasing:
 Compute loss function $L(W,x_i,y_i)$
 Update W to make L smaller:
 \[
 \frac{dL}{dW} = \text{evaluate_gradient}(W, x_i, y_i, L) \\
 W = W - \text{step_size} \times \frac{dL}{dW}
 \]

Options to evaluate dL/dW:
1. Numerical gradient
2. Analytic gradient
3. Automatic differentiation

```python
while previous_step_size > precision and iters < max_iters
  prev_W = cur_W
  cur_W = gamma * differential_dL(CNN_model, prev_W)
  previous_step_size = abs(cur_W - prev_W)
  iters += 1
```
Review: how can we determine the optimal W?

- Here, let’s assume we’ll use the steepest descent algorithm to “go down the hill”:

 Input: labeled training examples $[x_i, y_i]$ for $i=1$ to N, initial guess of W’s

 while loss function is still decreasing:
 Compute loss function $L(W, x_i, y_i)$
 Update W to make L smaller:
 $$dL/dW = \text{evaluate_gradient}(W, x_i, y_i, L)$$
 $$W = W - \text{step_size} \times dL/dW$$

Options to evaluate dL/dW:
1. Numerical gradient
2. Analytic gradient
3. Automatic differentiation

*Note: Other gradient descent methods require the same fundamental calculation. So how gradient is computed is a different problem than how it is used
1. Numerical gradient, a simple example

With a matrix, compute this for each entry:

\[
\frac{dL(W_i)}{dW_i} = \lim_{h \to 0} \frac{L(W_i + h) - L(W_i)}{h}
\]

Example:

\[W = [1,2;3,4] \quad W_1+h = [1.001,2;3,4]\]

\[L(W, x, y) = 12.79 \quad L(W_1+h, x, y) = 12.8\]

\[dL(W_1)/dW_1 = 12.8-12.79/.001 \quad dL(W_1)/dW_1 = 10\]

Pros: Simple! Easy to code up!

Cons: Slow...really slow. And approximate
2. Analytic gradient, a simple example

Linear classification boundary

\[y = \begin{cases} -1 & \text{for } y = -1 \\ +1 & \text{for } y = +1 \end{cases} \]

\[\mathbf{x}_1 \quad \mathbf{x}_2 \]

Pros: Fast and exact

Cons: Error prone, especially with deep networks

\[L = \frac{1}{N} \sum_{i=1}^{N} (w^T \mathbf{x}_i - y_i)^2 \]

\[\nabla L(w) = \frac{2}{N} X^T (Xw - y) \]

Evaluate and use to update \(W \)
3. Automatic differentiation – what we’ll use without knowing it

Resources:

- Stanford CS231n, Lecture 4 notes and resources
 - http://cs231n.stanford.edu/syllabus

- I. Goodfellow et al., Deep Learning Chapter 6 Section 5
 - https://www.deeplearningbook.org/contents/mlp.html

- A. Baydin et al., “Automatic differentiation in machine learning: a survey”
3. Automatic differentiation – what is it?

- Not solely numerical or analytic
- Use insights into formation of final function
- Split into elementary operations
- Perform analytic (symbolic) differentiation at elementary operation level
- Keep intermediate numeric results
- Repeat process in lock-step with evaluation of final function

A. Baydin et al., Automatic Differentiation in Machine Learning: a Survey
3. Automatic differentiation – what is it?

- Not solely numerical or analytic
- Use insights into formation of final function
- Split into elementary operations
- Perform analytic (symbolic) differentiation at elementary operation level
- Keep intermediate numeric results
- Repeat process in lock-step with evaluation of final function

A. Baydin et al., Automatic Differentiation in Machine Learning: a Survey
3. Automatic differentiation – what is it?

- Not solely numerical or analytic
- Use insights into formation of final function
- Split into elementary operations
- Perform analytic (symbolic) differentiation at elementary operation level
- Keep intermediate numeric results
- **Repeat process in lock-step with evaluation of final function**
3. Automatic differentiation – what is it?

- Not solely numerical or analytic
- Use insights into formation of final function
- Split into elementary operations
- Perform analytic (symbolic) differentiation at elementary operation level
- Keep intermediate numeric results
- Repeat process in lock-step with evaluation of final function

A. Baydin et al., Automatic Differentiation in Machine Learning: a Survey
Automatic differentiation on computational graphs

\[f(x_1, x_2) = \ln(x_1) + x_1 x_2 - \sin(x_2) \]
Automatic differentiation on computational graphs

To both determine f and find $\frac{df}{dx_i}$:

- Create graph of local operations
- Compute analytic (symbolic) gradient at each node (unit) in graph
- Use inter-relationships to establish final desired gradient, $\frac{df}{dx_1}$
 - Forward differentiation
 - Backwards differentiation = Backpropagation
Automatic differentiation on computational graphs

\[f(x_1, x_2) = \ln(x_1) + x_1 x_2 - \sin(x_2) \]

Forward Primal Trace

\[
\begin{align*}
 v_{-1} &= x_1 & = 2 \\
 v_0 &= x_2 & = 5 \\
 v_1 &= \ln v_{-1} & = \ln 2 \\
 v_2 &= v_{-1} \times v_0 & = 2 \times 5 \\
 v_3 &= \sin v_0 & = \sin 5 \\
 v_4 &= v_1 + v_2 & = 0.693 + 10 \\
 v_5 &= v_4 - v_3 & = 10.693 + 0.959 \\
 y &= v_5 & = 11.652
\end{align*}
\]
Forward automatic differentiation

\[
f(x_1, x_2) = \ln(x_1) + x_1 x_2 - \sin(x_2)
\]

Forward Primal Trace

\(v_{-1} = x_1\)	2
\(v_0 = x_2\)	5
\(v_1 = \ln(v_{-1})\)	\(\ln 2\)
\(v_2 = v_{-1} \times v_0\)	\(2 \times 5\)
\(v_3 = \sin(v_0)\)	\(\sin 5\)
\(v_4 = v_1 + v_2\)	0.693 + 10
\(v_5 = v_4 - v_3\)	10.693 + 0.959

\(y = v_5\) | 11.652 |

Forward Tangent (Derivative) Trace

\(\dot{v}_{-1} = \dot{x}_1\)	1
\(\dot{v}_0 = \dot{x}_2\)	0
\(\dot{v}_1 = \dot{v}_{-1}/v_{-1}\)	\(1/2\)
\(\dot{v}_2 = \dot{v}_{-1} \times v_0 + \dot{v}_0 \times v_{-1}\)	\(1 \times 5 + 0 \times 2\)
\(\dot{v}_3 = \dot{v}_0 \times \cos(v_0)\)	\(0 \times \cos 5\)
\(\dot{v}_4 = \dot{v}_1 + \dot{v}_2\)	0.5 + 5
\(\dot{v}_5 = \dot{v}_4 - \dot{v}_3\)	5.5 - 0

\(\dot{y} = \dot{v}_5\) | 5.5 |
Forward automatic differentiation

\begin{align*}
 f(x_1, x_2) &= \ln(x_1) + x_1 x_2 - \sin(x_2) \\
 \text{Compute local derivative for all inputs and accumulate with chain rule}
\end{align*}

Forward Primal Trace

\(v_{-1}\)	2
\(v_0\)	5
\(v_1\)	\(\ln v_{-1} = \ln 2\)
\(v_2\)	\(v_{-1} \times v_0 = 2 \times 5\)
\(v_3\)	\(\sin v_0 = \sin 5\)
\(v_4\)	\(v_1 + v_2 = 0.693 + 10\)
\(v_5\)	\(v_4 - v_3 = 10.693 + 0.959\)
\(y\)	11.652

Forward Tangent (Derivative) Trace

\(\dot{v}_{-1}\)	\(\dot{x}_1\)
\(\dot{v}_0\)	\(\dot{x}_2\)
\(\dot{v}_1\)	\(\dot{v}_{-1}/v_{-1} = 1/2\)
\(\dot{v}_2\)	\(\dot{v}_{-1} \times v_0 + \dot{v}_0 \times v_{-1} = 1 \times 5 + 0 \times 2\)
\(\dot{v}_3\)	\(\dot{v}_0 \times \cos v_0 = 0 \times \cos 5\)
\(\dot{v}_4\)	\(\dot{v}_1 + \dot{v}_2 = 0.5 + 5\)
\(\dot{v}_5\)	\(\dot{v}_4 - \dot{v}_3 = 5.5 - 0\)
\(\dot{y}\)	5.5
Forward automatic differentiation

\[f(x_1, x_2) = \ln(x_1) + x_1 x_2 - \sin(x_2) \]

Forward Primal Trace

\[
\begin{align*}
v_{-1} &= x_1 & \text{value} &= 2 \\
v_0 &= x_2 & \text{value} &= 5 \\
v_1 &= \ln v_{-1} & \text{value} &= \ln 2 \\
v_2 &= v_{-1} \times v_0 & \text{value} &= 2 \times 5 \\
v_3 &= \sin v_0 & \text{value} &= \sin 5 \\
v_4 &= v_1 + v_2 & \text{value} &= 0.693 + 10 \\
v_5 &= v_4 - v_3 & \text{value} &= 10.693 + 0.959 \\
\end{align*}
\]

\[y = v_5 = 11.652 \]

Forward Tangent (Derivative) Trace

\[
\begin{align*}
\dot{v}_{-1} &= \dot{x}_1 & \text{value} &= 1 \\
\dot{v}_0 &= \dot{x}_2 & \text{value} &= 0 \\
\dot{v}_1 &= \dot{v}_{-1} / v_{-1} & \text{value} &= 1/2 \\
\dot{v}_2 &= \dot{v}_{-1} \times v_0 + \dot{v}_0 \times v_{-1} & \text{value} &= 1 \times 5 + 0 \times 2 \\
\dot{v}_3 &= \dot{v}_0 \times \cos v_0 & \text{value} &= 0 \times \cos 5 \\
\dot{v}_4 &= \dot{v}_1 + \dot{v}_2 & \text{value} &= 0.5 + 5 \\
\dot{v}_5 &= \dot{v}_4 - \dot{v}_3 & \text{value} &= 5.5 - 0 \\
\end{align*}
\]

\[\dot{y} = \dot{v}_5 = 5.5 \]

Leads to final desired \(df/dx_1 \)
Problem:
- For N inputs, need to compute this N times, setting x_i to 1 each time...
Machine Learning and Imaging – Roarke Horstmeyer (2020)

Forward automatic differentiation

\[f(x_1, x_2) = \ln(x_1) + x_1 x_2 - \sin(x_2) \]

Problem:
- For N inputs, need to compute this N times, setting \(x_i \) to 1 each time…

Solution:
Work backwards from end to start with backpropagation

<table>
<thead>
<tr>
<th>Forward Primal Trace</th>
<th>Forward Tangent (Derivative) Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>(v_{-1} = x_1) = 2</td>
<td>(\dot{v}_{-1} = \dot{x}_1) = 1</td>
</tr>
<tr>
<td>(v_0 = x_2) = 5</td>
<td>(\dot{v}_0 = \dot{x}_2) = 0</td>
</tr>
<tr>
<td>(v_1 = \ln v_{-1}) = \ln 2</td>
<td>(\dot{v}1 = \dot{v}{-1}/v_{-1}) = 1/2</td>
</tr>
<tr>
<td>(v_2 = v_{-1} \times v_0) = 2 \times 5</td>
<td>(\dot{v}2 = \dot{v}{-1} \times v_0 + \dot{v}0 \times v{-1}) = 1 \times 5 + 0 \times 2</td>
</tr>
<tr>
<td>(v_3 = \sin v_0) = \sin 5</td>
<td>(\dot{v}_3 = \dot{v}_0 \times \cos v_0) = 0 \times \cos 5</td>
</tr>
<tr>
<td>(v_4 = v_1 + v_2) = 0.693 + 10</td>
<td>(\dot{v}_4 = \dot{v}_1 + \dot{v}_2) = 0.5 + 5</td>
</tr>
<tr>
<td>(v_5 = v_4 - v_3) = 10.693 + 0.959</td>
<td>(\dot{v}_5 = \dot{v}_4 - \dot{v}_3) = 5.5 - 0</td>
</tr>
<tr>
<td>(y = v_5) = 11.652</td>
<td>(\dot{y} = \dot{v}_5) = 5.5</td>
</tr>
</tbody>
</table>
Backpropagation explanation from Stanford CS231N Slides

Other useful info here: http://cs231n.github.io/optimization-2/
Backpropagation explanation from Stanford CS231N Slides

Treat intermediate nodes like a dummy variable z, for $L(w_1)$

Key Idea: $\frac{dL}{dw_1} = (\frac{dL}{dz})(\frac{dz}{dw_1})$
Modularized implementation: forward / backward API

```python
class MultiplyGate(object):
    def forward(x, y):
        z = x * y
        self.x = x  # must keep these around!
        self.y = y
        return z

    def backward(dz):
        dx = self.y * dz  # [dz/dx * dL/dz]
        dy = self.x * dz  # [dz/dy * dL/dz]
        return [dx, dy]
```

(x, y, z are scalars)

Local gradient Upstream gradient variable
How Tensorflow actually works: create a whole extra new graph

Final desired derivative
Last thing – matrix and vector derivatives

Here’s a review:

\[u = Wv \]

\[\frac{du}{dv} = \]
Last thing – matrix and vector derivatives

Here’s a review:

\[u = Wv \]

\[\frac{du}{dv} = \]

\[u_3 = W_{3,1}v_1 + W_{3,2}v_2 + \ldots + W_{3,M}v_M \]

\[\frac{\partial u_3}{\partial v_2} = \frac{\partial}{\partial v_2}(W_{3,1}v_1 + W_{3,2}v_2 + \ldots + W_{3,M}v_M) = \frac{\partial}{\partial v_2}W_{3,2}v_2 = W_{3,2} \]

\[\frac{\partial u_i}{\partial v_j} = W_{i,j} \]

\[\frac{du}{dv} = W \]

• When confused, write out one entry, solve derivative and generalize

• Use dimensionality to help (if x has N elements, and y has M, then dy/dx must be NxM

• Take advantage of *The Matrix Cookbook*:
 • https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf
Let’s go through an example:

\[L = \| W_2 \, \text{ReLU}(W_1 \, X) \|_2^2 \]

\[\frac{dL}{dW_1} = ? \quad \frac{dL}{dW_2} = ? \]

(2-layer network with MSE where we neglect labels \(y \) for now)
Let's go through an example:

\[L = \| W_2 \text{ReLU}(W_1 X) \|_2^2 \]

(2-layer network with MSE where we neglect labels \(y \) for now)

\[\frac{dL}{dW_1} = ? \quad \frac{dL}{dW_2} = ? \]

\[
\begin{align*}
 z_1 &= XW_1 \\
 h_1 &= \text{ReLU}(z_1) \\
 \hat{y} &= h_1 W_2 \\
 L &= \|\hat{y}\|_2^2
\end{align*}
\]

Forward pass: solve for \(z_1, h_1, y \) and \(L \)
Let's go through an example:

\[L = \| W_2 \text{ReLU}(W_1 X) \|_2^2 \]

\[\frac{dL}{dW_1} = ? \quad \frac{dL}{dW_2} = ? \]

Gradients for scalar \(L \) will have same shape as denominator

Backpropagation from \(L \) to \(W_2 \)
Let's go through an example:

\[L = \| W_2 \text{ReLU}(W_1 X) \|_2^2 \]

\[\frac{dL}{dW_1} = ? \quad \frac{dL}{dW_2} = ? \]

(2-layer network with MSE where we neglect labels \(y \) for now)

Gradients for scalar \(L \) will have same shape as denominator

\[
\frac{\partial L}{\partial W_2} = \frac{\partial \hat{y}}{\partial W_2} \frac{\partial L}{\partial \hat{y}}
\]
Let's go through an example:

$$L = \| W_2 \text{ReLU}(W_1 X) \|_2^2$$

(2-layer network with MSE where we neglect labels y for now)

$$\frac{dL}{dW_1} = ? \quad \frac{dL}{dW_2} = ?$$

$$z_1 = X W_1$$

$$h_1 = \text{ReLU}(z_1)$$

$$\hat{y} = h_1 W_2$$

$$L = \|\hat{y}\|_2^2$$

$$\frac{\partial L}{\partial W_2} = \frac{\partial \hat{y}}{\partial W_2} \frac{\partial L}{\partial \hat{y}} = 2h_1^T \hat{y}$$

$$\frac{\partial \hat{y}}{\partial W_2} = h_1^T$$

$$\frac{\partial L}{\partial \hat{y}} = 2\hat{y}$$
Let's go through an example:

\[L = \| W_2 \text{ReLU}(W_1 X) \|_2^2 \]

(2-layer network with MSE where we neglect labels \(y \) for now)

\[
\begin{align*}
 z_1 &= X W_1 \\
 h_1 &= \text{ReLU}(z_1) \\
 \hat{y} &= h_1 W_2 \\
 L &= \| \hat{y} \|_2^2 \\

 \frac{\partial L}{\partial h_1} &= \frac{\partial L}{\partial \hat{y}} W_2^T \\
 \frac{\partial h_1}{\partial z_1} &= \frac{\partial L}{\partial h_1} \circ I[h_1 > 0] \\

 \frac{dL}{dW_1} &= \frac{dh_1}{\partial W_1} = x^\top \frac{\partial h_1}{\partial z_1}
\end{align*}
\]

Rely on dimensional analysis to select order of operations
Let’s go through an example:

\[L = \| W_2 \text{ReLU}(W_1 X) \|_2^2 \]

\[z_1 = XW_1 \]
\[h_1 = \text{ReLU}(z_1) \]
\[\hat{y} = h_1W_2 \]
\[L = \| \hat{y} \|_2^2 \]

\[\frac{\partial L}{\partial h_1} = \frac{\partial L}{\partial \hat{y}} W_2^\top \]
\[\frac{\partial h_1}{\partial z_1} = \frac{\partial L}{\partial h_1} \circ I[h_1 > 0] \]

\[\frac{dL}{dW_1} = \begin{bmatrix} dh_1 \\ x^\top \frac{\partial h_1}{\partial z_1} \end{bmatrix} \]

```python
import numpy as np

# forward prop
z_1 = np.dot(X, W_1)
h_1 = np.maximum(z_1, 0)
y_hat = np.dot(h_1, W_2)
L = np.sum(y_hat**2)

# backward prop
dy_hat = 2.0*y_hat
dW2 = h_1.T.dot(dy_hat)
dh1 = dy_hat.dot(W_2.T)
dz1 = dh1.copy()
dz1[z1 < 0] = 0
dW1 = X.T.dot(dz1)
```
Summary

- Tensorflow: define variables, series of operations & a cost function
- When you hit enter, Tensorflow effectively forms two graphs
 - Forward graph to evaluate function at each node
 - **Backprop:** Backwards graph that includes *local* derivatives of each operation as symbolic functions, as well as connections
- Tensorflow will go through the forward graph & save numerical results, then the backwards graph, to update weights via local operations, to minimize cost function
- Uses more impressive operations to do this with vectors and matrices efficiently