
BME 548L: Homework 2

February 21, 2024

Please write up solutions to all problems (however you’d like) and submit them to Grade-
scope by the above due date. It is important that you show all of your steps – points will be
deducted for simply writing the answer without showing any intermediate steps on how you
arrived at your answer. You may work together to solve these problems, but please write up
your own answer in your own way.

Remember that there is a coding component to this homework assignment as well, which
can be found on the website: https://deepimaging.github.io/homework/hw2

Problem 1: The magic of the max operator. In this problem, we’re going to try to
classify a set of 3 different training data points in two dimensions. Here are the example
points and their associated labels:

x1 =

[
2/3
2/3

]
, y1 = +1;x2 =

[
0
0

]
, y2 = −1;x3 =

[
−2/3
−2/3

]
, y3 = +1

(a) (5 points) Let’s try to classify these points with a linear classifier, y∗ = sign(wT X̂),
where w is the unknown 3×1 weight vector that we’d like to solve for. Remember,
we set the first entry of each 3×1 data vector x to 1 to fold the usual constant offset
term b into the inner product between w and x. To solve for w,row please construct a
3×3 data matrix X̂ that holds each of our 3 example points, expressed as a vector, in
each matrix row. Then, solve for the optimal linear classifier weights w by computing
the pseudo-inverse of X̂, and then by multiplying this pseudo-inverse, X†, with a 3×1
vector containing the labels. You can either compute X† and the resulting w by hand,
or use a computer to help. If you use the computer, please note that the np.linalg.pinv
function will be the most helpful here, given the challenging form of X̂.

(b) (5 points) How well do the optimal weights w do at classifying the original 3 data
points? To check this, it is helpful to solve for y∗ = sign(wT X̂), where X̂ is a matrix
that holds each of the training data points in its 3 columns, and y∗ ∈ R1×3 is a vec-
tor that holds the three classification score estimates. Please sketch the 3 points in
2D space, and discuss why the above classification attempt was or was not so successful.

1

https://deepimaging.github.io/homework/hw2


(c) (5 points) Maybe it’ll help to do a convolutional classification instead of a straight
linear classification? To test this, let’s assume that we’ve heard that a good convolu-
tional filter to mix this data up a bit is c = [−2, 2] (written as a row vector here to save
space). First, construct a convolution matrix W1 ∈ R4×3 with c across the diagonal.
Then, we’ll try out the following classifier,

y∗ = sign(w2
TW1X̂), (1)

where w2 is a 4×1 weight vector of unknown weights. Is it possible to determine a w2

that can correctly classify the three points?

(d) (5 points) Finally, let’s try to add a non-linearity in there, to see if that will help.
Using the same W1 as above, let’s solve,

y∗ = sign
(
w2

TReLU(W1X̂)
)
, (2)

where w2 is again a 4×1 weight vector of unknown weights, and the ReLU operation
is the max() operation that sets all values less than 0 equal to 0. Is it possible to
determine a w2 that can accurately classify the three points contained in the columns
of X̂?

Problem 2: Cost function for logistic classification. We showed in class that the cross-
entropy cost function works well for classifying images into outputs that are treated as prob-
ability distributions, as opposed to binary ”yes/no” categories. This cost function takes the
following form for the case of logistic classification:

Lin(w) =
1

N

N∑
n=1

ln
(
1 + e−ynwTxn

)
(3)

(a) (6 points) Noting that the standard logistic function θ(x) = ex/1+ex, please compute
the gradient of Lin and show that,

∇wLin(w) =
1

N

N∑
n=1

−ynxnθ(−ynw
Txn) (4)

(b) (6 points) Based on this computation, please show that a misclassified input con-
tributes more to the gradient than a correctly classified input. This is an important
thing to remember - the inputs that are misclassified will be important in driving your
gradient descent solver!

(c) (bonus 6 points) Compute the Hessian of Lin(w) with respect to w. Then, use this
Hessian to write an expression for the optimal step size to use for a steepest descent
solver for the logistic classification problem.

2



Problem 3: Perceptron Learning Algorithm. A simple iterative method related to solv-
ing the logistic classification problem is termed the Perceptron Learning Algorithm. In the
simplest form of this approach, we’ll start by guessing an initial separation boundary be-
tween training data points, where the data points are assigned known labels in one of two
categories. The separation boundary is defined by a vector of weights w, just like we’ve
been considering in class. At iteration t, where t = 1, 2, ..., the weight vector will take on
a value w(t). Then, the algorithm will pick one of the currently misclassified training data
points (x(t), y(t)) and will use it to update w(t). Since the example is misclassified, we have
sign(y(t)) ̸= sign(wT (t)x(t)). The update rule is,

w(t+ 1) = w(t) + y(t)x(t) (5)

The PLA algorithm continues through the iterative loop until there are no longer any mis-
classified points in the training data set, and will eventually converge to a linear separator
for linearly separable data.

(a) (6 points) To show that the weight update rule above moves in the direction of
correctly classifying x(t), first show that

y(t)wT (t)x(t) < 0 (6)

Hint: x(t) is misclassified by w(t)

(b) (6 points) Then, show that,

y(t)wT (t+ 1)x(t) > y(t)wT (t)x(t) (7)

Hint: Use the update rule here

(c) (6 points) As far as classifying x(t) is concerned, argue that move fromw(t) tow(t+1)
is a move in the right direction. Feel free to draw a picture of a simple example in 2D
if you find that helpful.

3


